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Abstract

Ensuring strong theoretical privacy guarantees
on text data is a challenging problem which is
usually attained at the expense of utility. How-
ever, to improve the practicality of privacy pre-
serving text analyses, it is essential to design
algorithms that better optimize this tradeoff.
To address this challenge, we propose a release
mechanism that takes any (text) embedding
vector as input and releases a corresponding
private vector. The mechanism satisfies an ex-
tension of differential privacy to metric spaces.
Our idea based on first randomly projecting
the vectors to a lower-dimensional space and
then adding noise in this projected space gen-
erates private vectors that achieve strong theo-
retical guarantees on its utility. We support our
theoretical proofs with empirical experiments
on multiple word embedding models and NLP
datasets, achieving in some cases more than
10% gains over the existing state-of-the-art pri-
vatization techniques.

1 Introduction

Privacy has emerged as a topic of strategic conse-
quence across all computational fields. Differential
Privacy (DP) is a mathematical definition of pri-
vacy proposed by (Dwork et al., 2006). Ever since
its introduction, DP has been widely adopted and as
of today, it has become the de facto privacy defini-
tion in the academic world with also wide adoption
in industry, e.g., (Erlingsson et al., 2014; Dajani
et al., 2017; Team, 2017; Uber Security, 2017). DP
provides provable protection against adversaries
with arbitrary side information and computational
power, allows clear quantification of privacy losses,
and satisfies graceful composition over multiple
access to the same data. In DP, two parameters ε
and δ control the level of privacy. Very roughly, ε is
an upper bound on the amount of influence a single
data point has on the information released and δ
is the probability that this bound fails to hold, so
the definition becomes more stringent as ε, δ → 0.

The definition with δ = 0 is referred to as pure
differential privacy, and with δ > 0 is referred to
as approximate differential privacy.

Within the field of Natural Language Process-
ing (NLP), the traditional approach for privacy
was to apply anonymization techniques such as k-
anonymity (Sweeney, 2002) and its variants. While
this offers an intuitive way of expressing privacy
guarantees as a function of an aggregation param-
eter k, all such methods are provably non-private
(Korolova et al., 2009). Given the sheer increase
in data gathering occurring across a multiplicity of
connected platforms – a great number of which is
being done via user generated voice conversations,
text queries, or other language based metadata (e.g.,
user annotations), it is imperative to advance the
development of DP techniques in NLP.

Vector embeddings are a popular approach for
capturing the “meaning” of text and a form of un-
supervised learning useful for downstream tasks.
Word embeddings were popularized via embed-
ding schemes such as WORD2VEC (Mikolov et al.,
2013), GLOVE (Pennington et al., 2014), and FAST-
TEXT (Bojanowski et al., 2017). There is also a
growing literature on creating embeddings for sen-
tences, documents, and other textual entities, in
addition to embeddings in other domains such as
in computer vision (Goodfellow et al., 2016).

Recent works such as (Fernandes et al., 2019;
Feyisetan et al., 2019, 2020; Xu et al., 2020) have
attempted to directly adapt the methods of DP to
word embeddings by borrowing ideas from the pri-
vacy methods used for map location data (Andrés
et al., 2013). In the DP literature, one standard
way of achieving privacy is by adding properly cal-
ibrated noise to the output of a function (Dwork
et al., 2006). This is also the premise behind these
previously proposed DP for text techniques, which
are based on adding noise to the vector represen-
tation of words in a high dimensional embedding
space and additional post-processing steps. The
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privacy guarantees of applying such a method is
quite straightforward. However, the main issue is
that the magnitude of the DP privacy noise scales
with dimensionality of the vector, which leads to a
considerable degradation to the utility when these
techniques are applied to vectors produced through
popular embedding techniques. In this paper, we
seek to overcome this curse of dimensionality aris-
ing through the differential privacy requirement.
Also unlike previous results which were focused
on word embeddings, we focus on the general prob-
lem of privately releasing vector embeddings, thus
making our scheme more widely applicable.

1.1 Related Work

Vector representations of words, sentences, and
documents, have all become basic building blocks
in NLP pipelines and algorithms. Hence, it is natu-
ral to consider privacy mechanisms that target these
representations. The most relevant to this paper
is the privacy mechanism proposed in (Feyisetan
et al., 2020) that works by computing the vector
representation x of a word in the embedding space,
applying noise N calibrated to the global metric
sensitivity to obtain a perturbed vector v = x+N ,
and then swapping the original word another word
whose embedding is closest to v. (Feyisetan et al.,
2020) showed that this mechanism satisfies the
(ε, 0)-Lipschitz privacy definition. However, the
issue with this mechanism is that the magnitude
(norm) of the added noise is proportional to d,
which we avoid by projecting these vectors down
before the noise addition step. Our focus here is
also more general and not just on word embeddings.
Additionally, we provide theoretical guarantees on
our privatized vectors. We experimentally compare
with this approach.

The privacy mechanisms of (Fernandes et al.,
2019; Feyisetan et al., 2019) are also based on
similar noise addition ideas. However, (Fernandes
et al., 2019) utilized the Earth mover metric to mea-
sure distances (instead of Euclidean), and (Feyise-
tan et al., 2019) perturb vector representations of
words in high dimensional Hyperbolic space (in-
stead of a real space). In this paper, we focus on the
Euclidean space as it captures the most common
choice of metric space with vector models.

Over the past decade, a large body of work has
been developed to design basic algorithms and
tools for achieving DP, understanding the privacy-
utility trade-offs in different data access setups, and

on integrating DP with machine learning and statis-
tical inference. We refer the reader to (Dwork and
Roth, 2013) for a more comprehensive overview.

Dimensionality reduction for word embeddings
using PCA was explored in (Raunak et al., 2019)
for computational efficiency purposes. In this pa-
per, we use random projections for dimensionality
reduction that helps with reducing the magnitude of
noise needed for privacy. Another issue with PCA
like scheme is that there are strong lower bounds
(that scale with dimension of the vectors d) on the
amount of distortion needed for achieving differ-
entially private PCA in the local privacy model
(Wang and Xu, 2020).

Random projections have been used as a tool
to design differentially private algorithms in other
problem settings too (Blocki et al., 2012; Wang
et al., 2015; Kenthapadi et al., 2013; Zhou et al.,
2009; Kasiviswanathan and Jin, 2016).

2 Preliminaries

We denote [n] = {1, . . . , n}. Vectors are in
column-wise fashion. We measure the distance
between embeddings through the Euclidean metric.
For a vector x, we set ‖x‖ to denote the Euclidean
(L2-) norm and ‖x‖1 denotes its L1-norm. For
sets S, T , the Minkowski sum S + T = {a + b :
a ∈ S, b ∈ T}. N (0, σ2) denotes the Gaussian
distribution with mean 0 and variance σ2.

2.1 Privacy Motivations for Text

The privacy concerns around word embedding vec-
tors stem from how they are created. For example,
embeddings created using neural models inherit the
side effects of unintended memorizations that come
with such models (Carlini et al., 2019). Similarly it
has been demonstrated that text generation models
that encode language representations also suffer
from various degrees of information leakage (Song
and Shmatikov, 2019; Lyu et al., 2020). While this
might not be concerning for off the shelf models
trained on public data, it becomes important for
word embeddings trained on non-public data.

Recent studies (Song and Raghunathan, 2020;
Thomas et al., 2020) have shown that word em-
beddings are vulnerable to 3 types of attacks (1)
embedding inversion where the vectors can be used
to recreate some of the input training data; (2) at-
tribution inference occurs when sensitive attributes
(such as authorship) of the input data are revealed
even when they are independent of the task at hand;



17

and (3) membership inference where an attacker is
able to determine if data from a particular user was
used to train the word embedding model.

The privacy consequences are further amplified
depending on the domain of data under considera-
tion. For example, a study by (Abdalla et al., 2020)
on word embeddings in the medical domain demon-
strated that: (1) they were able to reconstruct up to
68.5% of full names based on the embeddings i.e.,
embedding inversion; (2) they were able to retrieve
associated sensitive information to specific patients
in the corpus i.e., attribution inference; and (3) by
using the distance between the vector of a patient’s
name and a billing code, they could differentiate
between patients that were billed, and those that
weren’t i.e., membership inference.

These findings all underscore the need to release
text embeddings using a rigorous notion of privacy,
such as differential privacy, that preserves user pri-
vacy and mitigates the attacks described above.

2.2 Background on Differential Privacy.
Differential privacy (Dwork et al., 2006) gives a
formal standard of privacy, requiring that, for all
pairs of datasets that differ in one element, the
distribution of outputs should be similar. In this
paper, we use the notion of local differential privacy
(LDP) (Kasiviswanathan et al., 2011).

A randomized algorithm A : X → Z is (ε, δ)-
local differentially private (LDP) if for any two
data x, x′ ∈ X and all (measurable) sets U ⊆ Z ,

Pr[A(x) ∈ U ] ≤ eεPr[A(x′) ∈ U ] + δ.

The probability is taken over the random coins
of A. Here, we think of δ as being cryptographi-
cally small, whereas ε is typically thought of as a
moderately small constant. The above definition
considers every pair of x and x′ (considered as
adjacent for the purposes of DP). The LDP no-
tion requires that the given x has a non-negligible
probability of being transformed into any other
x′ ∈ X no matter how unrelated (far) x and x′

are. However, for text embeddings, this strong re-
quirement makes it virtually impossible to enforce
that the semantics of a word are approximately pre-
served by the privatized vector (Feyisetan et al.,
2020). To address this problem, we work with a
modification of the above definition, referred to as
Lipschitz (or metric) privacy, that is better suited
for metric spaces defined through embedding mod-
els. Lipschitz privacy is closely related to LDP
where the adjacency relation is defined through

the Hamming metric, but also generalizes to in-
clude Euclidean, Manhattan, and Chebyshev met-
rics, among others (Chatzikokolakis et al., 2013;
Andrés et al., 2013; Chatzikokolakis et al., 2015;
Fernandes et al., 2019; Feyisetan et al., 2019, 2020).
Similar to differential privacy, Lipschitz privacy is
preserved under post-processing and composition
of mechanisms (Koufogiannis et al., 2016).
Definition 1 (Lipschitz Privacy (Dwork et al.,
2006; Chatzikokolakis et al., 2013)). Let (X , d)
be a metric space. A randomized algorithm A :
X → Z is (ε, δ)-Lipschitz private if for any two
data x, x′ ∈ X and all (measurable) sets U ⊆ Z ,

Pr[A(x) ∈ U ] ≤ exp(εd(x, x′))Pr[A(x′) ∈ U ] + δ.

An alternate equivalent way of stating this would
be to say that with probability at least 1 − δ,
over a drawn from either A(x) or A(x′), we have
| lnPr[A(x) = a]− lnPr[A(x′) = a]| ≤ εd(x, x′).

The key difference between Lipschitz privacy
and LDP is that the latter corresponds to a particular
instance of the former when the distance function
is given by d(x, x′) = 1 for every x 6= x′.

In this paper, the metric space of interest is de-
fined by embeddings which organize discrete ob-
jects in a continuous real space such that objects
that are “similar” result in vectors are “close” in
the embedded space. For the distance measure, we
focus on the Euclidean metric, d(x, x′) = ‖x−x′‖
that is known to capture semantic similarity be-
tween discrete words in a continuous space.

For a function, f : X → Rm, the most
basic technique in differential privacy to release
f(x) is to answer f(x) + ν , where ν is instance-
independent additive noise (e.g., Laplace or Gaus-
sian) with standard deviation proportional to the
global sensitivity of the function f .
Definition 2 (Global sensitivity). For a function
f : X → Rm, define the global sensitivity of f as

∆f = max
x,x′∈X

‖f(x)− f(x′)‖
‖x− x′‖ .

2.3 Dimensionality Reduction.
Dimensionality reduction is the problem of em-
bedding a set from high-dimensions into a low-
dimensional space, while preserving certain prop-
erties of the original high-dimensional set. Perhaps
the most fundamental result for dimensionality re-
duction is the Johnson-Lindenstrauss (JL) lemma
which states that any set of p points in high di-
mensions can be embedded into O(log(p)/β2) di-
mensions, while preserving the Euclidean norm of
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all points within a multiplicative factor between
1 − β and 1 + β. In fact, one could embed an in-
finite continuum of points into lower dimensions
while preserving the Euclidean norm of all point
up to a multiplicative distortion. A classical result
due to (Gordon, 1988) characterizes the relation
between the “size” of the set and the required di-
mensionality of the embedding on the unit sphere.
Before stating the result, we need to introduce the
notion of Gaussian width which captures the L2-
geometric complexity of X .
Definition 3 (Gaussian Width). Given a closed set
X ⊂ Rd, its Gaussian width ω(X ) is defined as:

ω(X ) = Eg∈N (0,1)d [sup
x∈X
〈x, g〉].

Many popular sets have low Gaussian width (Ver-
shynin, 2016). For example, ifX contains vector in
Rd that are c-sparse (at most c non-zero elements)
then ω(X ) =

√
c log(d/c). If X contains vec-

tors that are sparse in the L1-sense, say ∀x ∈ X ,
‖x‖1 ≤ c, then ω(X ) = O(c

√
log d). Similarly if

X is the d-dimensional probability simplex, then
ω(X ) = O(

√
log d). Notice that in all these cases

ω(X )2 is exponentially smaller than d.
The following is a restatement of the original

Gordon’s theorem that is better suited for this paper.
Theorem 1 (Gordon’s Theorem (Gordon, 1988)).
Let β ∈ (0, 1), X be a subset of the unit d-
dimensional sphere and let Φ ∈ Rm×d be a ma-
trix with i.i.d. entries from N (0, 1/m). Then,
|‖Φx‖ − 1| ≤ β, holds for all x ∈ X with
probability at least 1 − 2 exp(−γ2/2) if m =
Ω((ω(X ) + γ)2/β2).

In particular, for a set of points X ⊂ Rd, we
have the following:
Pr [∀x ∈ X , |‖Φx‖ − ‖x‖| ≤ β‖x‖] ≥ 1 − γ, if
m = Ω((ω(X ) +

√
log(1/γ))2/β2)

Since for any set X with |X | = p, w(X )2 ≤
log p, therefore the above theorem is a generaliza-
tion of the JL lemma. By a simple manipulation
and adjusting β, Theorem 1 can be restated for
preserving inner-products.
Corollary 2. Under the setting of Theorem 1, for
a set of points X in Rd,∣∣〈Φx,Φx′〉 − 〈x, x′〉∣∣ ≤ β‖x‖‖x′‖,
holds for all x, x′ ∈ X with probability at least

1− γ, if m = Ω((ω(X ) +
√

log(1/γ))2/β2).
The above result also holds if we replace the

Gaussian random matrix Φ by a sparse random
matrix (Bourgain et al., 2015). For simplicity, we
use a Gaussian matrix Φ for projection.

3 Our Approach

The main issue arising in constructing differentially
private vector embeddings is that a direct noise ad-
dition to the vectors (such as in (Feyisetan et al.,
2020)) would require that the L2-norm of the noise
vector scales almost linearly with the dimension-
ality of the vector. To overcome this dimension
dependence, our mechanism is based on the idea
of performing a dimensionality reduction and then
adding noise to the projected vector. By carefully
balancing the dimensionality of the vectors with the
magnitude of the noise needed for DP, the mecha-
nism achieves a superior performance overall.

We will add noise calibrated to the sensitivity of
the dimensionality reduction function. The noise
is sampled from a d-dimensional distribution with
density p(z) ∝ exp(−ε‖z‖/∆f ). Sampling from
this distribution is simple as noted in (Wu et al.,
2017).1. The following simple claim (that holds for
all functions f ) shows that this mechanism satis-
fies Definition 1. All the missing proofs from this
section are collected in Appendix C.

Claim 3. Let f : X → Rm. Then pub-
lishing A(x) = f(x) + κ where κ is sampled
from the distribution in Rm with density p(z) ∝
exp(−ε‖z‖/∆f ) satisfies (ε, 0)-Lipschitz privacy.

Let Φ be an m×d matrix with i.i.d. entries from
N (0, 1/m). Consider an embedding model M .
Let Dom(M) denote the domain and Ran(M) ⊂
Rd denote the range of M . Define a function fΦ :
Ran(M)→ Rm as

fΦ(x) = Φx and Φ ∈ Rm×d i.i.d. fromN (0, 1/m) . (1)

Let us first investigate the global sensitivity of fΦ

using Theorem 1. Instead of considering a fixed
bound on global sensitivity, we provide a proba-
bilistic upper bound.

Lemma 4. Let Φ be an m × d matrix with i.i.d.
entries from N (0, 1/m). Let β ∈ (0, 1). If
m = Ω((ω(Ran(M)) +

√
log(1/δ))2/β2), then

with probability, at least 1− δ, ∆fΦ
≤ 1 + β.

Let β ∈ (0, 1) be a fixed constant. Consider the
mechanism which publishes A(x) = fΦ(x) + κ
where κ is drawn from the distribution with density
p(z) ∝ exp(−ε‖z‖/(1 + β)). Given a set of sen-
sitive words (x1, . . . , xn), we can apply A(xi) to
each word xi, to release A(x1), . . . ,A(xn) ∈ Rm.

1The idea is to first sample a uniform vector in the unit
sphere in Rm, say v and to sample a magnitude l from the
Gamma distribution Γ(m,∆f/ε), and output κ = lv
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Algorithm PRIVEMB summarizes the mechanism.
Since each vector is perturbed independently, the
algorithm can be invoked locally. We now establish
the privacy guarantee of PRIVEMB. The δ factor
comes in from Lemma 4 because we only have a
probabilistic bound on the global sensitivity, i.e.,
there exists pairs of x, x′ for whom the bound on
global sensitivity of 1 + β could fail.

For example, imagine a situation where there are
n users each having a sensitive word (embedding).
Given access to a common Φ, they can perturb their
word locally and transmit only the perturbed vector.

Algorithm 1: PRIVEMB

Input: x1, . . . , xn ∈ Ran(M) for model M ,
privacy parameters ε, δ > 0,
and dimensionality reduction parameter β ∈ (0, 1)
Output: private vector embeddings w1, . . . , wn
Let m = Ω((ω(Ran(M)) +

√
log(1/δ))2/β2)

Let Φ ∼i.i.d. N (0, 1/m)
for i ∈ {1, . . . , n} do

wi = Φxi + κi where κi is i.i.d. from the distr.
with density p(z) ∝ exp(−ε‖z‖/(1 + β))

release (w1, . . . , wn)

Using Claim 3 and Lemma 4, we now establish
that privacy proof for Algorithm PRIVEMB.

Proposition 5. Algorithm PRIVEMB is (ε, δ)-
Lipschitz private. Let β ∈ (0, 1), δ > 0, ε > 0,
and m = Ω((ω(Ran(M)) +

√
log(1/δ))2/β2).

Let Φ be an m × d matrix with i.i.d. entries from
N (0, 1/m). Then publishing A(x) = fΦ(x) + κ
where κ is drawn from the distribution in Rm
with density p(z) ∝ exp(−ε‖z‖/(1 + β)) is (ε, δ)-
Lipschitz private.

It is important to note that the β does not affect
the privacy analysis, i.e., for any input parameter
β, Algorithm PRIVEMB is (ε, δ)-Lipschitz private.

While the idea behind Algorithm PRIVEMB is
simple, it is widely applicable and effective. As
an example consider vector representation of text
such as through Bag-of-K-grams, which creates
representations that are sparse in some very high-
dimensional space (say c-sparse vectors). In this
case, even though d could be extremely large,
we can project these vectors to ≈ c log(d/c)-
dimensional space (due to their low Gaussian
width) and add noise in the projected space for
achieving privacy. On the other hand, the privacy
mechanism of (Feyisetan et al., 2020), with noise
magnitude proportional to d will completely de-
stroy the information in these vectors.

4 Utility Analysis of Alg. PRIVEMB

We now provide utility performance bounds for Al-
gorithm PRIVEMB. As mentioned earlier these are
the first theoretical analysis for any private vector
embedding scheme. We start with two important
properties of interest based on distances and inner-
products that commonly arise when dealing with
text embeddings. Our next result compares the loss
of a linear model trained on these private vector em-
beddings to loss of a similar model trained on the
original vector embeddings. All our error bounds
depend on m ≈ ω(Ran(M))2.

We start with a simple observation about the
magnitude of the noise vector. Consider κ drawn
from the noise distribution with density p(z) ∝
exp(−ε‖z‖/(1 + β)). The Euclidean norm of κ
is distributed according to the Gamma distribution
Γ(m, (1 + β)/ε) (Wu et al., 2017) and satisfies the
following bound.

Claim 6 ((Wu et al., 2017; Chaudhuri et al., 2011)).
For the noise vector κ, we have that with probabil-
ity at least 1− γ, ‖κ‖ ≤ (m ln(m/γ)(1 + β))/ε.

Since β < 1, we can simplify the right hand
side of the above claim to (2m ln(m/γ))/ε. Let
τ be the maximum Euclidean norm of the vectors
x1, . . . , xn, i.e., ∀i ∈ [n], ‖xi‖ ≤ τ .

4.1 Distance Approximation Guarantee

Our first result compares the distances between the
private vectors and between the original vectors.

Proposition 7. Consider Algorithm PRIVEMB.
With probability at least 1 − δ, for all pairs
xi, xj ∈ (x1, . . . , xn), |‖wi−wj‖−‖xi−xj‖| ≤
2βτ + 4(m ln(2nm/δ))/ε.

As a baseline consider the privatization mecha-
nism proposed by (Feyisetan et al., 2020) which
computes a privatized version of an embedding
vector x by adding noise N to the original vec-
tor x. Formally, (Feyisetan et al., 2020) defined
a mechanism where the private vector vi is con-
structed from xi as follows: vi = xi + Ni where
Ni is drawn from the distribution in Rd with den-
sity p(z) ∝ exp(−ε‖z‖)) to x. Since the noise
vector Ni is now d-dimensional, its Euclidean
norm will tightly concentrate around its mean
E[‖Ni‖] = O(d). Therefore, with high probability,
|‖vi−vj‖−‖xi−xj‖| = Ω(d) holds for the mecha-
nism proposed in (Feyisetan et al., 2020). However,
in our mechanism, the dependence on d is replaced
by m which as argued above is generally much
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smaller than d. On the flip side though, PRIVEMB

satisfies (ε, δ)-Lipschitz privacy for δ > 0, whereas
the mechanism in (Feyisetan et al., 2020) achieves
the stronger (ε, 0)-Lipschitz privacy.

4.2 Inner-Product Approximation Guarantee

Word embeddings seek to capture word similarity,
so similar words (e.g., synonyms) have embeddings
with high inner product. We now compare the inner
product between the private vectors to the inner
product between the original embedding vectors.

Proposition 8. Consider Algorithm PRIVEMB.
With probability at least 1 − δ, for all pairs
xi, xj ∈ (x1, . . . , xn), |〈wi, wj〉 − 〈xi, xj〉| ≤
βτ2 +8τm ln(2nm/δ)/ε+(2m ln(2nm/δ))2/ε2.

4.3 Performance on Linear Models

We now discuss about the performance of the pri-
vate vectors (w1, . . . , wn) when used with com-
mon machine learning models. Given n datapoints,
(x1, y1), . . . , (xn, yn) drawn from some universe
Rd × R (where yi represents the label on point
xi), we consider the problem of learning a linear
model on this labeled data. We assume that xi’s
are sensitive whereas the yi’s are publicly known.
Such situations arise commonly in practice. For
example, consider a drug company investigating
the effectiveness of a drug trail over n users. Here,
yi could represent the response to the drug for user
i which is known to the drug company, whereas xi
could encode the medical history of user i which
the user would like to keep private.

We focus on a broad class of models, where
the loss functions have the form, `(〈x, θ〉; y) for
parameter θ ∈ Rd, where ` : R × R → R. This
captures a variety of learning problems, e.g., the lin-
ear regression is captured by setting `(〈x, θ〉; y) =
(y − 〈x, θ〉)2, logistic regression is captured by set-
ting `(〈x, θ〉; y) = ln(1+exp(−y〈x, θ〉)), support
vector machine is captured by setting `(〈x, θ〉; y) =
hinge(y〈x, θ〉), where hinge(a) = 1 − a if a ≤ 1
and 0 otherwise. We assume that the function ` is
convex and Lipschitz in the first parameter. Let λ`
denote the Lipschitz parameter of the loss function
` over the first parameter, i.e., |`(a; y)− `(b; y)| ≤
λ`|a− b| for all a, b ∈ R.

On the data (x1, y1), . . . , (xn, yn), the (empir-
ical) training loss for a parameter θ is defined
as: 1

n

∑n
i=1 `(〈xi, θ〉; yi) and the goal in train-

ing (empirical risk minimization) is to minimize
this loss over a parameter space Θ. Let θ? be a

true minimizer of 1
n

∑n
i=1 `(〈xi, θ〉; yi), i.e., θ? ∈

argminθ∈Θ
1
n

∑n
i=1 `(〈xi, θ〉; yi).

Our goal will be to compare the loss of
the model trained on the privatized points
(w1, y1), . . . (wn, yn) where the wi’s are produced
by Algorithm PRIVEMB to the true minimum loss
(= 1

n

∑n
i=1 `(〈xi, θ?〉; yi)). Let ‖Θ‖ defined as

supθ∈Θ ‖θ‖ denote the diameter of Θ. The follow-
ing proposition states our result.
Proposition 9. Consider Algorithm PRIVEMB.
With probability at least 1− δ,

min
θ∈Θ

1

n

n∑
i=1

`(〈wi,Φθ〉; yi) ≤
1

n

n∑
i=1

`(〈xi, θ?〉; yi)

+
4λ`(m ln(2nm/δ))‖Θ‖

ε
+ λ`βτ‖Θ‖.

In the above result the error terms will be negligi-
ble if β � 1/(λ`τ‖Θ‖) and ε � λ`(m ln(2nm/δ))‖Θ‖.
Though in our experiments (see Section 5), we no-
tice good performance with private vectors even
when β and ε don’t satisfy these conditions.

Another point to note is that our setting, where
we train ML models over a differentially private
data release, is different from traditional literature
on differentially private empirical risk minimiza-
tion where the goal is to release only a private
version of model parameter θ, and not the data it-
self, see e.g., (Chaudhuri et al., 2011; Bassily et al.,
2014). In particular, this means that the results
from traditional differentially private empirical risk
minimization do not carry over to our setting. Our
data release setup allows training any number of
ML models on the private vectors without having
to pay for the cost of composition on the privacy
guarantees (as post-processing does not affect the
privacy guarantee), which is a desirable property.

5 Experimental Evaluations

We carry out four experiments to demon-
strate the improvement of our approach (Algo-
rithm PRIVEMB), denoted as M2, over (ε, 0)-
Lipschitz privacy mechanism proposed in (Feyise-
tan et al., 2020) (denoted by M1).2 The first three
map to the theoretical guarantees described Sec-
tion 4, i.e., (1) distance approximation guarantee,
(2) inner-product approximation guarantee, and (3)
performance on linear models. The final experi-
ment provides further evidence for performance of

2We choose this mechanism as the baseline as in this setup
it achieves the current state-of-the-art utililty guarantees.
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using these private vectors for downstream clas-
sification tasks. All our experiments are on em-
beddings generated by GLOVE (Pennington et al.,
2014) and FASTTEXT (Bojanowski et al., 2017).
The dimensionality of the embedding d = 300 in
both cases. Due to space constraints, we present
the FASTTEXT results in Appendix B.

The value of δ is kept constant for all exper-
iments (involving our scheme) at 1e − 6. We
set ω(Ran(M)) =

√
log d. The parameter

β only affects the utility guarantee, and Algo-
rithm PRIVEMB is always (ε, δ)-Lipschitz private
for any value of β. In our experiments, corrob-
orating our theoretical guarantees, we do vary β
to illustrate the effect of β on the guarantees. Re-
member that higher values of β results in lower-
dimensional vectors, so setting β appropriately lets
one trade-off between the loss of utility due to di-
mension reduction vs. the gain in the utility due to
lesser noise needed for lower-dimensional vectors.

We also vary the privacy parameter ε in our ex-
periments. While lower values ε are certainly de-
sirable, it is widely known that differentially pri-
vate algorithms for certain problems (such as those
arising in complex domains such as NLP) require
slightly larger ε values to provide reasonable util-
ity in practice (Fernandes et al., 2019; Feyisetan
et al., 2020; Xie et al., 2018; Ma et al., 2020). For
example, the related work on differential privately
releasing text embeddings from Fernandes et al.
(Fernandes et al., 2019) and Feyisetan et al. (Feyise-
tan et al., 2020) report values of ε of up to 20 and
30 depending on the dimensionality of the space.

5.1 Distance Approximation Guarantees

This experiment compares the distance between
pairs of private vectors to that between the corre-
sponding original vectors. We sampled 100 word
vectors from the vocabulary. For each of these 100
vectors, we compare the distance to another set of
100 randomly sampled vectors. These 100× 100
pair of vectors were kept constant across all ex-
periment runs. For each embedding model, we
compared |‖vi − vj‖ − ‖xi − xj‖| where the vi’s
are generated by the schemed in (Feyisetan et al.,
2020) (M1), to |‖wi − wj‖ − ‖xi − xj‖| where
the wi’s are generated by our scheme (M2). The
experiments were carried out at values of ε = 1, 2,
and 5 for M1 and M2, while varying the values of
β for M2 between 0.5 and 0.7.
Results. The results in Fig. 1 show the experiment
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Figure 1: Distance Approximation (GLOVE)

outcomes across the different values of ε, β, and
embeddings. Lower values on the y−axis indicate
better results in that the distance between the pri-
vate vectors are a good approximation to the actual
distances between the original vectors. Overall,
the guarantees of our approach M2 are better than
M1 as observed by the smaller distance differences
across all conditions. Next, the results also high-
light that for both mechanisms, as expected, the
guarantees get better as ε increases, due to the in-
troduction of less noise (note the different scales
across ε). Finally, the results reveal that for a given
value of ε, as the value of β increases, the guaran-
tees of our scheme improve. This can be viewed
through the guarantees of Proposition 7, which
consists of two terms, the first term increases with
β and the second term due to its dependence on
1/β2 (through m) decreases with β. Since the sec-
ond (noise) term generally dominates, we get an
improvement with β, suggesting that it is advanta-
geous to pick a larger β in practice.

5.2 Inner Prod Approximation Guarantees
This experiment compares the inner product be-
tween pairs of private vectors to that between the
corresponding original vectors. The setup here is
identical to the distance approximation experiments
(i.e., the same 100× 100 word pairs and mix of ε
and β). The results capture |〈wi, wj〉 − 〈xi, xj〉|.
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Figure 2: Inner Prod Approximation (GLOVE)

Results. The results in Fig. 2 show the experiment
outcomes across ε, β, and embeddings. Similar
to the findings in Fig. 1, the results of M2 are an
improvement over M1 with the same patterns of
improvement. For a fixed privacy budget, the per-
formance of M2 is better than that of M1 and the
gap increases as β increases. Again this suggests
that one should pick a larger β.
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Non-Private Baselines M1: ε = 10 M2: ε = 10, β = 0.9
Dataset InferSent SkipThought TRAIN ACC TEST ACC TRAIN ACC TEST ACC

MR (Pang and Lee, 2005) 81.10 79.40 58.10 55.61 57.76 58.11
CR (Hu and Liu, 2004) 86.30 83.10 68.32 63.97 72.52 71.02
MPQA (Wiebe et al., 2005) 90.20 89.30 78.76 77.98 77.84 78.86
SST-5 (Socher et al., 2013) 46.30 44.80 31.24 31.90 32.70 32.49
TREC-6 (Li and Roth, 2002) 88.20 88.40 60.54 53.20 62.53 73.00

Table 1: Training and test accuracy scores on classification tasks.

5.3 Performance on Linear Models

We built a simple binary SVM linear mode to clas-
sify single keywords into 2 classes: positive and
negative based on their conveyed sentiment. The
dataset used was a list from (Hu and Liu, 2004) con-
sisting of 4783 negative and 2006 positive words.
We selected a subset of words that occurred in both
GLOVE and FASTTEXT embeddings and capped
both lists to have an equal number of words. The re-
sulting datasets each had 1899 words. The purpose
of this experiment was to explore the behaviors of
M1 and M2 at different values of ε and β for a
linear model. Results shown are over 10 runs.

M2
β = 0.7

M2
β = 0.8

M2
β = 0.9

Privacy Mechanism

0.535

0.540

0.545

0.550

A
cc
ur
ac

y

Accuracy at ε= 5.0
M2
M1

M2
β = 0.7

M2
β = 0.8

M2
β = 0.9

Privacy Mechanism

0.70

0.71

0.72

A
cc
ur
ac

y

Accuracy at ε= 10.0
M2
M1

M2
β = 0.7

M2
β = 0.8

M2
β = 0.9

Privacy Mechanism

0.810

0.815

0.820

0.825

A
cc
ur
ac

y

Accuracy at ε= 20.0
M2
M1

M2
β = 0.7

M2
β = 0.8

M2
β = 0.9

Privacy Mechanism

0.55

0.56

0.57

0.58

0.59

A
U
C

AUC at ε= 5.0
M2
M1

M2
β = 0.7

M2
β = 0.8

M2
β = 0.9

Privacy Mechanism

0.77

0.78

A
U
C

AUC at ε= 10.0
M2
M1

M2
β = 0.7

M2
β = 0.8

M2
β = 0.9

Privacy Mechanism

0.890

0.895

0.900

A
U
C

AUC at ε= 20.0
M2
M1

Figure 3: Linear Model Performance (GLOVE)

Results. The results on the performance on linear
models are presented in Fig. 3. The performance
metrics are (i) accuracy on a randomly selected
20% test set, and (ii) the area under the ROC curve
(AUC). Higher values on the y−axis indicate better
results. The findings follow from our first 2 exper-
iments which demonstrate that for a fixed privacy
ε guarantee, the utility of M2 is better than that of
M1 and the gap between the performance of M2
and M1 increases as β increases.

5.4 Performance on NLP Datasets

We further evaluated M2 against M1 at a fixed
value of ε and β on classification tasks on 5 NLP
datasets. The experiments were done and can
be replicated using SentEval (Conneau and Kiela,
2018), an evaluation toolkit for sentence embed-
dings by replacing the default embeddings with

the private embeddings. From the previous experi-
ments, we know that it is better to pick a larger β,
so we set β = 0.9 here.
Results. Table 1 presents the results and summa-
rizes the datasets: MR (Pang and Lee, 2005), CR
(Hu and Liu, 2004), MPQA (Wiebe et al., 2005),
SST-5 (Socher et al., 2013), and TREC-6 (Li and
Roth, 2002). Table 1 presents the results from the
experiments. We also present results of 2 non-
private baselines on all the datasets based on In-
fersent and SkipThought described in (Conneau
et al., 2017). The evaluation metrics were train and
test accuracies, therefore, higher scores indicate
better utility. Not surprisingly, because of the noise
addition there is is a performance drop when we
compare the private mechanisms to the non-private
baselines. However, the results reinforce our find-
ings that the utility afforded by M2 are better than
M1 at fixed values of ε. Some of the improvements
are remarkably significant e.g., +7% on the CR
dataset, and +20% on TREC-6.
Summary of the Results. Overall, these exper-
iments demonstrate that PRIVEMB offers better
utility than the embedding privatization scheme
of (Feyisetan et al., 2020).

6 Concluding Remarks

In this paper, we introduced an (ε, δ)-Lipschitz
private algorithm for generating real valued em-
bedding vectors. Our mechanism works by first
reducing the dimensionality of the vectors though a
random projection, then adding noise calibrated to
the sensitivity of the dimensionality reduction func-
tion. The mechanism can be utilized for any well-
defined embedding model including but not limited
to word, sentence, and document embeddings. We
prove theoretical bounds that show how various
properties of interest important for vector embed-
dings are well-approximated through the private
vectors, and our empirical results across multiple
embedding models and NLP datasets demonstrate
the superior utility guarantees.
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Supplementary Material for
“Private Release of Text

Embedding Vectors”

A Additional Experiments

We now investigate a slightly different setup where
we perform the dimensionality reduction while
training the embeddings (denoted as A1). So here
instead of only assuming access to private embed-
dings vectors as in M1 and M2, we also assume
access to the corpus and training platform. Fig. 4
presents results (with linear models as in Experi-
ment 3) on 50d, 100d, and 200d GLOVE embed-
dings, and corresponding setting of β = 0.93, 0.66
and 0.468 in M2 to match the dimensionality. Un-
surprisingly the results below show that A1 obtains
better results than M2 where the dimensionality
reduction happens post training. Mechanism A1
however has two drawbacks compared to M2: (1) it
assumes access to the original training corpus and
platform which is not always accessible, and (2) it
is more computationally expensive as it requires
retraining the embeddings from scratch.
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Figure 4: Comparing effects of dimensionality reduc-
tion during training vs. after (GLOVE).

B Missing Experiment Results on
Fasttext

Experiment 1: Distance Approximation Guar-
antees.
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Figure 5: Distance Approximation Experiments
(FASTTEXT)

Experiment 2: Inner Prod Approximation
Guarantees.
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Figure 6: Inner Prod Approximation Experiment
(FASTTEXT)

Experiment 3: Performance on Linear Models.
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Figure 7: Linear Model Performance Experiments
(FASTTEXT)

C Missing Details from Section 3

Claim 10 (Claim 3 Restated). Let f : X → Rm.
Then publishing A(x) = f(x) + κ where κ is
sampled from the distribution in Rm with density
p(z) ∝ exp(−ε‖z‖/∆f ) satisfies (ε, 0)-Lipschitz
privacy.

Proof. First note that f(x) + κ has the same dis-
tribution as that of κ but with a different mean.
Consider any x, x′ ∈ X . We will be interested in
bounding the ratio Pr[A(x) = w]/Pr[A(x′) = w].

Pr[A(x) = w]

Pr[A(x′) = w]
=

exp(−ε‖w − f(x)‖/∆f )

exp(−ε‖w − f(x′)‖/∆f )

= exp(ε(‖w − f(x′)‖ − ‖w − f(x)‖)/∆f )

≤ exp(ε‖f(x)− f(x′)‖/∆f )

≤ exp(ε‖x− x′‖),

where the first inequality follows from triangle in-
equality and the last one follows from the definition
of global sensitivity (Definition 2). Therefore, for
any measurable set U ⊆ Rm, Pr[A(x) ∈ U ] ≤
exp(ε‖x− x′‖)Pr[A(x′) ∈ U ].

Lemma 11 (Lemma 4 Restated). Let Φ be an
m × d matrix with i.i.d. entries from N (0, 1/m).
Let β ∈ (0, 1). If m = Ω((ω(Ran(M)) +√

log(1/δ))2/β2), then with probability, at least
1− δ, ∆fΦ

≤ 1 + β.
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Proof. Consider the set Ran(M) − Ran(M)
(where − denotes the Minkowski difference be-
tween the sets). By properties of the Gaussian
width (see Section 2), the Gaussian width of this
new set is at most ω(Ran(M)) + ω(Ran(M)) ≤
2ω(Ran(M)). From Theorem 1, under the above
setting of m, with probability at least 1− δ,

∆fΦ
= max

x,x′∈Ran(M)

‖Φx− Φx′‖
‖x− x′‖

≤ (1 + β).

This completes the proof.

Proposition 12 (Proposition 5 Restated). Algo-
rithm PRIVEMB is (ε, δ)-Lipschitz private.

Proof. Let A(x) = fΦ(x) + κ = Φx+ κ where κ
is drawn from the distribution in Rm with density
p(z) ∝ exp(−ε‖z‖/(1 + β)). Let E denote the
event that the ∆fΦ

≤ 1− β. From Lemma 11, we
know that over the choice of Φ, Pr[E ] ≥ 1 − δ.
Consider any x, x′ ∈ Ran(M).

Pr[A(x) = w]

= Pr[A(x) = w | E ]Pr[E ] + Pr[A(x) = w | Ē ]Pr[Ē ]

≤ Pr[A(x) = w | E ] + δ,

where we used that Pr[E ] ≤ 1, Pr[A(x) =
w | Ē ] ≤ 1, and Pr[Ē ] ≤ δ. Now under E ,
from Claim 10, Pr[A(x) = w] ≤ exp(ε‖x −
x′‖)Pr[A(x′) = w]. Since the above argument
holds for all x, x′ simultaneously, we get the A is
(ε, δ)-Lipschitz private.

Since Algorithm PRIVEMB can be viewed as ap-
plying the above mechanism A on the x1, . . . , xn
independently, we get that Algorithm PRIVEMB is
(ε, δ)-Lipschitz private.

Proposition 13 (Proposition 7 Restated). Consider
Algorithm PRIVEMB. With probability at least 1−δ,
for all pairs xi, xj ∈ (x1, . . . , xn), |‖wi − wj‖ −
‖xi − xj‖| ≤ 2βτ + 4(m ln(2nm/δ))/ε.

Proof. Let wi = Φxi + κi and wj = Φxj + κj .
Using Theorem 1, with probability at least 1− δ,

|‖wi − wj‖ − ‖xi − xj‖|
= |‖Φxi + κi − (Φxj + κj)‖ − ‖xi − xj‖|
≤ |‖Φ(xi − xj)‖ − ‖xi − xj‖+ ‖κi‖+ ‖κj‖|
≤ β‖xi − xj‖+ ‖κi‖+ ‖κj‖. (2)

For a fixed i, from Claim 6, we get that with prob-
ability at least 1 − δ, ‖κi‖ ≤ (2m ln(m/δ))/ε.
Using a union bound,

Pr[∀i ∈ [n], ‖κi‖ ≤ (2m ln(nm/δ))/ε] ≥ 1− δ.

Plugging this into (2), we get that with probability
at least 1− 2δ, for all i, j ∈ [n]

|‖wi−wj‖−‖xi−xj‖| ≤ β‖xi−xj‖+4(m ln(nm/δ))/ε.

Using ‖xi− xj‖ ≤ 2τ and scaling δ completes the
proof.

Proposition 14 (Proposition 8 Restated). Con-
sider Algorithm PRIVEMB. With probability at
least 1 − δ, for all pairs xi, xj ∈ (x1, . . . , xn),
|〈wi, wj〉−〈xi, xj〉| ≤ βτ2+8τm ln(2nm/δ)/ε+
(2m ln(2nm/δ))2/ε2.

Proof. Let wi = Φxi + κi and wj = Φxj + κj .
Using Corollary 2, with probability at least 1− δ,

|〈wi, wj〉 − 〈xi, xj〉|
= |〈Φxi + κi,Φxj + κj〉 − 〈xi, xj〉|
= |〈Φxi,Φxj〉+ 〈Φxi, κj〉+ 〈κi,Φxj〉+ 〈κi, κj〉 − 〈xi, xj〉|
≤ β‖xi‖xj‖+ |〈Φxi, κj〉+ 〈κi,Φxj〉+ 〈κi, κj〉|
≤ β‖xi‖xj‖+ (1 + β)‖xi‖‖κj‖+ (1 + β)‖xj‖‖κi‖+ ‖κi‖‖κj‖
≤ βτ2 + 2τ(‖κj‖+ ‖κi‖) + ‖κi‖‖κj‖. (3)

As in Proposition 7,

Pr[∀i ∈ [n], ‖κi‖ ≤ (2m ln(nm/δ))/ε] ≥ 1− δ.

Plugging this into (3), we get that with probability
at least 1− 2δ, for all i, j ∈ [n]

|〈wi, wj〉−〈xi, xj〉| ≤ βτ2+
8τm ln(nm/δ)

ε
+

(2m ln(nm/δ))2

ε2
.

By scaling δ we get the claimed bound.

Proposition 15 (Proposition 9 Restated). Consider
Algorithm PRIVEMB. With probability at least 1−
δ,

min
θ∈Θ

1

n

n∑
i=1

`(〈wi,Φθ〉; yi) ≤
1

n

n∑
i=1

`(〈xi, θ?〉; yi)

+
4λ`(m ln(2nm/δ))‖Θ‖

ε
+ λ`βτ‖Θ‖.

Proof. By the Lipschitzness assumption,

|`(〈wi,Φθ?〉; yi)− `(〈xi, θ?〉; yi)|
≤ λ`|〈wi,Φθ?〉 − 〈xi, θ?〉|. (4)

Focusing on the right hand side, from Corollary 2,
with probability at least 1− δ, for all i ∈ [n],

|〈wi,Φθ?〉 − 〈xi, θ?〉|
= |〈Φxi + κi,Φθ

?〉 − 〈xi, θ?〉|
≤ |〈κi,Φθ?〉|+ β‖xi‖‖θ?‖
≤ (1 + β)‖κi‖‖θ?‖+ β‖xi‖‖θ?‖
≤ 2‖κi‖‖Θ‖+ βτ‖Θ‖,
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where we used β ∈ (0, 1), ‖xi‖ ≤ τ , ‖θ?‖ ≤ ‖Θ‖,
and with probability at least 1− δ, ‖Φθ?‖ ≤ (1 +
β)‖θ?‖ (from Theorem 1). Using the bound on
‖κi‖, we get that with probability at least 1− δ, for
all i ∈ [n],

|〈wi,Φθ?〉−〈xi, θ?〉| ≤
4(m ln(2nm/δ))‖Θ‖

ε
+βτ‖Θ‖.

Plugging this into (4) and averaging over i gives
that with probability at least 1− δ,

1

n

n∑
i=1

`(〈wi,Φθ?〉; yi)

≤ 1

n

n∑
i=1

`(〈xi, θ?〉; yi) +
4λ`(m ln(2nm/δ))‖Θ‖

ε
+ λ`βτ‖Θ‖.

Since,

min
θ∈Θ

1

n

n∑
i=1

`(〈wi,Φθ〉; yi) ≤
1

n

n∑
i=1

`(〈wi,Φθ?〉; yi),

we get the claimed result.


