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Abstract

The Shared Task on Multi-Hop Inference for
Explanation Regeneration asks participants to
compose large multi-hop explanations to ques-
tions by assembling large chains of facts from
a supporting knowledge base. While previ-
ous editions of this shared task aimed to eval-
uate explanatory completeness – finding a set
of facts that form a complete inference chain,
without gaps, to arrive from question to correct
answer, this 2021 instantiation concentrates on
the subtask of determining relevance in large
multi-hop explanations. To this end, this edi-
tion of the shared task makes use of a large
set of approximately 250k manual explanatory
relevancy ratings that augment the 2020 shared
task data. In this summary paper, we describe
the details of the explanation regeneration task,
the evaluation data, and the participating sys-
tems. Additionally, we perform a detailed anal-
ysis of participating systems, evaluating var-
ious aspects involved in the multi-hop infer-
ence process. The best performing system
achieved an NDCG of 0.82 on this challeng-
ing task, substantially increasing performance
over baseline methods by 32%, while also leav-
ing significant room for future improvement.

1 Introduction

Multi-hop inference is the task of aggregating more
than one fact to perform an inference. In the context
of natural language processing, multi-hop inference
is typically evaluated using auxiliary tasks such as
question answering, where multiple sentences from
external corpora need to be retrieved and composed

Figure 1: The motivating example provided to par-
ticipants. Given a question and correct answer (top),
the explanation regeneration task requires participating
models to find sets of facts that, taken together, pro-
vide a detailed chain-of-reasoning for the answer (bot-
tom). This 2021 instantiation of the shared task focuses
on the subtask of collecting the most relevant facts for
building explanations.

to form reasoning chains that support the correct an-
swer (see Figure 1). As such, multi-hop inference
represents a crucial step towards explainability in
complex question answering, as the set of support-
ing facts can be interpreted as an explanation for
the underlying inference process (Thayaparan et al.,
2020).

Constructing long inference chains can be ex-
tremely challenging for existing models, which
generally exhibit a large drop in performance when
composing explanations and inference chains re-
quiring more than 2 inference steps (Fried et al.,
2015; Jansen et al., 2017, 2018; Khashabi et al.,
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2019; Yadav et al., 2020). To this end, this Shared
Task on Multi-hop Inference for Explanation Re-
generation (Jansen and Ustalov, 2019, 2020) has fo-
cused on expanding the capacity of models to com-
pose long inference chains, where participants are
asked to develop systems capable of reconstructing
detailed explanations for science exam questions
drawn from the WorldTree explanation corpus (Xie
et al., 2020; Jansen et al., 2018), which range in
compositional complexity from 1 to 16 facts (with
the average explanation including 6 facts).

Large explanations are typically evaluated on
two dimensions: relevance and completeness. Rele-
vance refers to whether each fact in an explanation
is relevant, topical, and required to complete the
chain of inference that moves from question to cor-
rect answer. Conversely, completeness evaluates
whether the entire set of facts in the explanation,
together, composes a complete chain of inference
from question to answer, without significant gaps.
In practice, both of these are challenging to eval-
uate automatically (Buckley and Voorhees, 2004;
Voorhees, 2002), given that multi-hop datasets typ-
ically include a single example of a complete ex-
planation, in large part due to the time and expense
associated with generating such annotation. Un-
derscoring this difficulty, post-competition manual
analyses on participating systems in the previous
two iterations of this shared task showed that mod-
els may be performing up to 20% better at retriev-
ing correct facts to build their explanation from,
highlighting this significant methodological chal-
lenge.

This 2021 instantiation of the Shared Task on
Explanation Regeneration focuses on the theme
of determining relevance in large multi-hop ex-
planations. To this end, participants were given
access to a large pre-release dataset of approx-
imately 250k explanatory relevancy ratings that
augment the 2020 shared task data (Jansen and
Ustalov, 2020), and were tasked with ranking the
facts most critical to assembling large explanations
for a given question highest. Similarly to the pre-
vious instances of our competition, the shared task
has been organized on the CodaLab platform.1 We
released train and development datasets along with
the baseline solution in advance to allow one to get
to know the task specifics.2 We ran the practice

1https://competitions.codalab.org/
competitions/23615

2https://github.com/cognitiveailab/
tg2021task

phase from February 15 till March 9, 2021. Then
we released the test dataset without answers and
ran the official evaluation phase from March 10 till
March 24, 2021. After that we established post-
competition phase to enable long-term evaluation
of the methods beyond our shared task. Partici-
pating systems substantially increased task perfor-
mance compared to a supplied baseline system by
32%, while achieving moderate overall absolute
task performance – highlighting both the success
of this shared task, as well as the continued chal-
lenge of determining relevancy in large multi-hop
inference problems.

2 Related Work

Semantic Drift. Multi-hop question answering
systems suffer from the tendency of composing
out-of-context inference chains as the number of
required hops (aggregated facts) increases. This
phenomenon, known as semantic drift, has been
observed in a number of works (Fried et al., 2015;
Jansen, 2017), which have empirically demon-
strated that multi-hop inference models exhibit a
substantial drop in performance when aggregating
more than 2 facts or paragraphs. Semantic drift has
been observed across a variety of representations
and traversal methods, including word and depen-
dency level (Pan et al., 2017; Fried et al., 2015),
sentence level (Jansen et al., 2017), and paragraph
level (Clark and Gardner, 2018). Khashabi et al.
(2019) have demonstrated that ongoing efforts on
“very long” multi-hop reasoning are unlikely to suc-
ceed without the adoption of a richer underlying
representation that allows for reasoning with fewer
hops.

Many-hop multi-hop training data. There is a
recent explosion of explanation-centred datasets for
multi-hop question answering (Jhamtani and Clark,
2020; Xie et al., 2020; Jansen et al., 2018; Khot
et al., 2020; Yang et al., 2018; Thayaparan et al.,
2020; Wiegreffe and Marasović, 2021). However,
most of these datasets require the aggregation of
only two sentences or paragraphs, making it hard
to evaluate the robustness of the models in terms of
semantic drift. On the other hand, the WorldTree
corpus (Xie et al., 2020; Jansen et al., 2018) used
in this shared task is explicitly designed to test
multi-hop inference models on the reconstruction
of long inference chains requiring the aggregation
of an average of 6 facts, and as many as 16 facts.

https://competitions.codalab.org/competitions/23615
https://competitions.codalab.org/competitions/23615
https://github.com/cognitiveailab/tg2021task
https://github.com/cognitiveailab/tg2021task
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Question: Which of the following best explains why the Sun appears to move across the sky every day?
Answer: Earth rotates on its axis.

Explanatory Relevance Ratings

# Fact (Table Row) Relevance
1 The Earth rotating on its axis causes the Sun to appear to move across the sky during the day 6
2 If a human is on a rotating planet then other celestial bodies will appear to move from that human’s perspective due to

the rotation of that planet
6

3 The Earth rotates on its tilted axis 6
4 Diurnal motion is when objects in the sky appear to move due to Earth’s rotation on its axis 6
5 Apparent motion is when an object appears to move relative to another object’s perspective / another object ’s position 5
6 Earth rotating on its axis occurs once per day 4
7 Rotation is a kind of motion 4
8 A rotation is a kind of movement 4
9 The Sun sets in the west 2
10 The Sun is a kind of star 2
11 Earth is a kind of planet 2
12 Earth’s angle of tilt causes the length of day and night to vary 0
13 The Earth being tilted on its rotating axis causes seasons 0
14 Revolving is a kind of motion 0
15 The Earth revolving around the Sun causes stars to appear in different areas in the sky at different times of year 0

Table 1: An example of the relevance ratings used in the 2021 shared task. (top) The question and correct answer.
(bottom) Facts from the corpus, and their associated relevance rating, sorted from most-relevant to least-relevant.
While the dataset provides manual relevancy ratings for the top 30 rows, only 15 are shown here for space.

Explanation regeneration approaches on
WorldTree. A number of approaches have been
proposed for the explanation regeneration task on
WorldTree, including those from previous itera-
tions of this shared task. These approaches adopt a
set of diverse techniques ranging from graph-based
learning (Li et al., 2020), to Transformer-based
language models (Cartuyvels et al., 2020; Das
et al., 2019; Pawate et al., 2020; Chia et al.,
2019), Integer Linear Programming (Gupta and
Srinivasaraghavan, 2020), and sparse retrieval
models (Valentino et al., 2021; Chia et al., 2019).
The current state-of-the-art on the explanation
regeneration task is represented by a model that
employs a combination of language models and
Graph Neural Networks (GNN) (Li et al., 2020),
with the bulk of performance contributed from
the language model. Strong performance is also
achieved by transformer models adapted to rank
inference chains (Das et al., 2019) or operating
in an iterative and recursive fashion (Cartuyvels
et al., 2020). In contrast with neural-based models,
recent works (Valentino et al., 2021) have shown
that the explanatory patterns emerging in the
WorldTree corpus can be leveraged to improve
sparse retrieval models and provide a viable way
to alleviate semantic drift.

3 Task Description

Following the previous editions of the shared task,
we frame explanation generation as a ranking prob-
lem. Specifically, for a given science question, a
model is supplied both the question and correct
answer text, and must then selectively rank all the
atomic scientific and world knowledge facts in the
knowledge base such that those that were labelled
as most relevant to building an explanation by a hu-
man annotator are ranked the highest. Additional
details on the ranking problem are described in
the 2019 shared task summary paper (Jansen and
Ustalov, 2019).

4 Training and Evaluation Dataset

Questions and Explanations: The 2021 shared
task adopts the same set of questions and knowl-
edge base included in the 2020 shared task (Jansen
and Ustalov, 2020), with additional relevance an-
notation described below. The questions and expla-
nations are drawn from the WorldTree V2 expla-
nation corpus (Xie et al., 2020), a set of detailed
multi-fact explanations to standardized elementary
and middle-school science exam questions drawn
from the Aristo Reasoning Challenge (ARC) cor-
pus(Clark et al., 2018). WorldTree V2 contains
2207 train, 496 development, and 1665 held-out
test questions and explanations.
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Team Performance (NDCG)

DeepBlueAI 0.820
RedDragonAI 0.771
Google-BERT 0.700
Huawei noah 0.683

Baseline 0.501

Table 2: Overall task performance systems participat-
ing in the 2021 Shared Task on Multi-Hop Inference
for Explanation Regeneration. Performance is mea-
sured using Normalized Discounted Cumulative Gain
(NDCG).

Relevancy Ratings: The WorldTree V2 dataset
used in previous iterations of the shared task in-
cludes a single complete explanation per question,
supplied as a list of binary classifications that de-
scribe which facts are included in the gold expla-
nation for a given question. This 2021 edition of
the shared task augments these original WorldTree
explanations with a pre-release dataset3 of approxi-
mately 250,000 manual relevancy ratings. Specif-
ically, for each question in the corpus, a set of 30
facts determined to be the most likely facts relevant
to building an explanation were manually assigned
relevancy ratings by annotators. Ratings are on a
7-point scale (0-6), where facts rated as a 6 are the
most critical to building an explanation, while facts
rated as 0 are unrelated to the question. An example
of these relevance ratings is shown in Table 1.

Evaluation Metrics: Historically, performance on
the explanation regeneration task was evaluated
using Mean Average Precision (MAP) , using the
binary ratings (gold or not gold) associated with
each fact for a given explanation. To leverage the
new graded annotation schema, here we switch
to evaluate system performance using Normalized
Discounted Cumulative Gain (NDCG) (Järvelin
and Kekäläinen, 2002; Wang et al., 2013).

5 System Descriptions and Performance

The 2021 shared task received 4 submissions, with
3 teams choosing to submit system description pa-
pers. The performance of the submitted systems
are shown in Table 2. Overall, we observe that all
participating teams substantially improved upon
the NDCG score achieved by the baseline model,
with increases of up to 30%. In this section, we

3We thank the authors of this dataset for allowing it to
be used anonymously for this shared task, while it is under
consideration for publication.

summarize the key features of the approaches pro-
posed by the teams.

Baseline (tf.idf). We adopt a term frequency-
inverse document frequency (tf.idf) baseline (see,
e.g. Manning et al., 2008, Ch. 6). Specifically,
given a question and its correct answer, the baseline
calculates the cosine similarity between a query
vector (representing the question and correct an-
swer) and document vectors (representing a given
fact) for each fact in the knowledge base. The
model then adopts the tf.idf weighting scheme to
rank each fact in the knowledge base for a given
question-answer pair. This baseline achieves a
NDCG score of 0.501 on the test set.

DeepBlueAI. The model presented by Pan et al.
(2021) represents the top-performing system in this
edition of the shared task with a NDCG score of
0.820 – representing a substantial 32% improve-
ment when compared to the tf.idf baseline. The
model employs a two step retrieval strategy. In
the first step, a pre-trained language model is fine-
tuned to retrieve the top-K (K > 100) relevant
facts for each question and answer pair. Subse-
quently, the same architecture is adopted to build
a re-ranking model to refine the list of the top-
K candidate facts. The authors propose the use
of a triplet loss for the fine-tuning of the model.
Specifically, the triplet loss minimizes the distance
between an anchor and a positive example, while
maximizing the distance between the same anchor
and a negative example. The team treats question
and correct answer as the anchor, while the facts
annotated with high ratings are adopted as positive
examples. Different experiments are conducted
with three negative sampling strategies for retrieval
and re-ranking. The best results are obtained when
sampling negative examples from the same tables
of highly relevant facts. The authors find that the
best performance is obtained when averaging the re-
sults from RoBERTa (Liu et al., 2019) and ERNIE
2.0 (Sun et al., 2020) with different random seeds.

RedDragonAI. The system developed by
Kalyan et al. (2021) combines iterative information
retrieval with an ensemble of language models,
achieving a NDCG score of 0.771. The first step
of the proposed approach is to retrieve a limited
number of facts to be subsequently re-ranked by
language models. The first step is a modification
of the approach proposed by Chia et al. (2020),
where the model iteratively selects the closest n
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Table type DeepBlueAI RedDragonAI Google-BERT Baseline (tf.idf)

Retrieval 0.775 0.736 0.671 0.477
Inference-supporting 0.716 0.712 0.683 0.433
Complex inference 0.738 0.688 0.664 0.406

Table 3: Performance (NDCG) of the systems when considering different types of knowledge.

Relevance (>) DeepBlueAI RedDragonAI Google-BERT Baseline (tf.idf)

0 0.820 0.771 0.700 0.501
2 0.818 0.764 0.686 0.489
4 0.831 0.692 0.601 0.416

Table 4: Performance (NDCG) when restricted to examining facts with a given minimum relevance rating.

facts to the question using BM25 vectors and then
update the query vector via a max operation. The
iterative retrieval step is performed until a list of
K = 200 facts is selected from the knowledge
base. Subsequently, the top K explanation facts
are re-ranked using language models. The best
model consists of an ensemble of BERT (Devlin
et al., 2019) and SciBERT (Beltagy et al., 2019).
These models are fine-tuned to predict the target
explanatory relevance ratings using the follow-
ing input: Question + Answer [SEP]
Explanation. Specifically, the authors frame
the problem as a regression via mean squared
error loss. The ensemble is achieved by linearly
combining the scores of the models. The authors
reported two negative results obtained using
a two-stage approach and different negative
sampling techniques. In the two-stage approach,
the facts were firstly categorized using binary
scores to discriminate between relevant and
irrelevant sentences, and then re-ranked predicting
the target explanatory relevance rating. Regarding
the negative sampling strategy, the authors noticed
that highest percentage of errors occurring at
inference time was due to irrelevant facts that
are lexically close to highly relevant explanation
sentences. They attempted to alleviate this problem
by randomly sampling facts from the knowledge
base and retrieving close negative examples during
training. Neither of these two methods resulted in
significant improvements.

Google-BERT. Xiang et al. (2021) propose a
framework composed of three main steps. In the
first step, the model adopts a simple tf.idf model
with cosine similarity to retrieve the top-K relevant
explanation sentences (K = 50) for each question

and correct answer pair. In the second step, the
authors employ an autoregressive model which se-
lects the most relevant facts in a iterative manner.
Specifically, the authors propose the adoption of a
BERT-based model (Devlin et al., 2019) that selects
the facts at iteration n given the facts retrieved in
the previous step. The model uses up to 4 iterations.
Finally, the authors employ a re-ranking module to
re-score the retrieved candidate explanations com-
puting the relevance between each fact and the
question-answer pairs. The re-ranking model is
implemented using a BERT model for binary clas-
sification. The ablation study shows that the first
two steps allow achieving a performance of 0.679
NDCG, that is improved up to 0.700 NDCG using
the re-ranking model. Moreover, the experiments
show that the best performance is achieved when
the re-ranking model is adopted to re-score the top
K = 30 facts.

6 Detailed Analysis

In order to better understand the behavior and con-
tribution of the proposed systems, we perform a
detailed analysis by grouping the explanatory facts
in the supporting knowledge base in different cate-
gories. Specifically, we adopt categories that cover
various aspects of the multi-hop inference process,
ranging from different kinds of knowledge to dif-
ferent degrees of explanatory relevance and lexical
overlap, to analyse the performance of each model
beyond the overall explanation regeneration score.

6.1 Performance by Table Knowledge Types

Similarly to the previous editions of the shared
task (Jansen and Ustalov, 2019, 2020), we present
the results achieved by the systems considering
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Precison@k DeepBlueAI RedDragonAI Google-BERT Baseline (tf.idf)

k = 1 0.941 0.918 0.845 0.715
k = 3 0.878 0.849 0.791 0.582
k = 5 0.817 0.784 0.743 0.501
k = 10 0.686 0.661 0.647 0.381
k = 20 0.512 0.507 0.523 0.272
k = 50 0.296 0.303 0.315 0.161

Table 5: Precision@k for each model across varying values of k.

Overlaps (≤ T ) DeepBlueAI RedDragonAI Google-BERT Baseline (tf.idf)

100.0% 0.820 0.771 0.700 0.501
90.0% 0.820 0.771 0.700 0.501
80.0% 0.820 0.771 0.699 0.501
70.0% 0.818 0.769 0.698 0.497
60.0% 0.816 0.766 0.695 0.493
50.0% 0.813 0.763 0.691 0.487
40.0% 0.804 0.754 0.679 0.471
30.0% 0.791 0.738 0.661 0.443
20.0% 0.751 0.704 0.628 0.382
10.0% 0.653 0.603 0.559 0.261
0.0% 0.467 0.358 0.425 0.134

Table 6: Percentage of lexical overlap and respective NDCG scores for each model. In this experiment, we measure
the performance of the systems considering only those facts that have a percentage of overlap≤ a given threshold T .
The percentage of overlap is computed by dividing the number of shared terms between question-answer pair and
a fact by the total number of unique terms. To evaluate the systems in the most challenging setting, we gradually
decrease the value of T down to 0.

different knowledge types in the knowledge base.
The explanatory facts in the WorldTree corpus are
stored in semi-structured tables that are broadly
divided into three main categories:

• Retrieval: Facts that generally encode knowl-
edge about taxonomic relations or properties.

• Inference-Supporting: Facts that include
knowledge about actions, affordances, uses
of materials or devices, sources of things, re-
quirements, or affect relationships.

• Complex Inference: Facts that encode knowl-
edge of causality, processes, changes, coupled
relationships, and if/then relationships.

We break down the NDCG performance of each
model across these knowledge types and report the
results in Table 3.

In line with previous editions of the shared task,
we observe that the performance of the models
tends to be higher for the retrieval type, while de-

creasing for inference-supporting and complex in-
ference facts. This can be explained by the fact
that retrieval knowledge is generally specific to
the concepts in the questions and therefore eas-
ier to rank, while inference-supporting and com-
plex facts typically include more abstract scientific
knowledge requiring multi-hop inference. These
results are consistent across all the models except
from Google-BERT, which exhibits the best perfor-
mance on the inference-supporting type and more
stable results in general. We attribute this outcome
to the autoregressive component adopted by the
system, which may facilitate the ranking of more
challenging explanatory facts. With respect to the
general performance of the models, we observe
that DeepBlueAI consistently outperforms other
approaches across all knowledge categories.

6.2 Performance by Relevance Ratings
As described in Section 4, the dataset for the 2021
shared task includes relevance ratings that range
from 0 (not relevant) to 6 (highly relevant). To
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better understand the quality of the facts retrieved
by each model, we calculated the NDCG score of
each model broken down by relevance ratings. The
results of this analysis are reported in Table 4.

Similar to the results obtained on different
knowledge types, we observe that DeepBlueAI con-
sistently outperforms other approaches across all
relevance rating bins. In contrast to other models,
DeepBlueAI exhibits increasing performance for
higher relevance ratings, confirming that the model
is particularly suited for retrieving highly relevant
facts (i.e., facts with relevance ratings > 4). We
conjecture that these results are due to the partic-
ular training configuration adopted by the system,
which employs a triplet loss to encourage the re-
trieval of highly relevant facts.

6.3 Precision@k
We compute the Precision@k to complement the
results obtained via the NDCG metric. In contrast
to NDCG which weights facts based on relevancy
ratings, here for this evaluation we consider all the
facts with a rating greater than 0 as gold. The re-
sults of the analysis are reported in Table 5. The
results show that DeepBlueAI substantially out-
performs other models for values of k ≤ 10. As
k becomes large, other models overtake it’s per-
formance, though the difference between models
becomes small.

6.4 Performance by Lexical Overlap
One of the crucial issues regarding the evaluation
of multi-hop inference models is the possibility to
achieve strong overall performance without using
real compositional methods (Min et al., 2019; Chen
and Durrett, 2019; Trivedi et al., 2020). Therefore,
in order to evaluate multi-hop inference more ex-
plicitly, we break down the performance of each
model with respect to the difficulty of accessing
specific facts in an explanation via direct lexical
overlap. This comes from the assumption that facts
sharing many terms with question or answer are
relatively easier to find and rank highly.

Table 6 reports the performance of the systems
by considering a difference percentage L of lexical
overlaps between question-answer pairs and facts
computed as follows:

L =
|t(Q||A) ∩ t(Fi)|
|t(Q||A) ∪ t(Fi)|

× 100

In the equation above, t(Q||A) represents the set
of unique terms (without stop-words) in question

and correct answer, while t(Fi) is the set of unique
terms in a given fact Fi. The percentage of overlaps
is then derived by dividing the number of shared
terms between a question-answer pair and a fact
by the number of their unique terms. Therefore, a
value of L equal to 50%, for example, means that
50% of the unique terms in a question-answer pair
and a fact are shared.

Given a question and a value L computed for
each fact annotated with relevance ratings, we mea-
sure the performance of the systems considering
only those facts that have a percentage of overlaps
≤ a given threshold T . To evaluate the systems in
the most challenging setting, we gradually decrease
the value of T down to 0.

Overall, we observe that DeepBlueAI consis-
tently outperforms all the other models across all
the considered categories. Interestingly, we ob-
serve that Google-BERT performs better than Red-
DragonAI when considering facts that have zero
lexical overlaps with question or answer, confirm-
ing the importance of performing specific analysis
for the evaluation of multi-hop inference.

Despite the substantial improvement on the base-
line obtained by the competing models, we still
observe a significant drop in performance with low
degrees of lexical overlaps. This drop indicates
that the proposed models still struggle to retrieve
abstract explanatory facts requiring multi-hop infer-
ence, leaving wide space for future improvements.

7 Conclusion

The 2021 edition of the Shared Task on Multi-Hop
Inference for Explanation Regeneration was a suc-
cess, with 4 participating teams each substantially
improving performance over the baseline model.
The best performing team, DeepBlueAI, produced
a system that improves absolute performance by
32%, up to 0.820 NDCG, bringing overall state-of-
the-art performance at this relevancy ranking as-
pect of multi-hop inference to a moderate level. We
hope that future systems for many-hop multi-hop
inference that aim to build large detailed explana-
tions for question answering will be able to lever-
age these results to build strong relevancy retrieval
subcomponents to augment their compositional in-
ference algorithms.
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