
Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15), pages 144–149
June 11, 2021. ©2021 Association for Computational Linguistics

144

On Geodesic Distances and Contextual Embedding Compression for Text
Classification

Rishi Jha∗ and Kai Mihata∗

Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA

{rjha01, kaim2}@cs.washington.edu

Abstract

In some memory-constrained settings like IoT
devices and over-the-network data pipelines,
it can be advantageous to have smaller con-
textual embeddings. We investigate the effi-
cacy of projecting contextual embedding data
(BERT) onto a manifold, and using nonlinear
dimensionality reduction techniques to com-
press these embeddings. In particular, we pro-
pose a novel post-processing approach, apply-
ing a combination of Isomap and PCA. We
find that the geodesic distance estimations, es-
timates of the shortest path on a Riemannian
manifold, from Isomap’s k-Nearest Neighbors
graph bolstered the performance of the com-
pressed embeddings to be comparable to the
original BERT embeddings. On one dataset,
we find that despite a 12-fold dimensional-
ity reduction, the compressed embeddings per-
formed within 0.1% of the original BERT em-
beddings on a downstream classification task.
In addition, we find that this approach works
particularly well on tasks reliant on syntactic
data, when compared with linear dimension-
ality reduction. These results show promise
for a novel geometric approach to achieve
lower dimensional text embeddings from ex-
isting transformers and pave the way for data-
specific and application-specific embedding
compressions.

1 Introduction

Contextual embeddings, like those BERT (Devlin
et al., 2019) generates, improve on non-contextual
word embeddings by providing contextual seman-
tics to the real-valued representation of a text. Al-
though these models have been shown to achieve
state-of-the-art performance on most NLP tasks,
they are notably expensive to train. To help combat
this, as mentioned by May et al. (2019), model com-
pression techniques like data quantization (Gong
et al., 2014), model pruning (Han et al., 2016), and
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knowledge distillation (Sanh et al., 2019, Hinton
et al., 2015) have been developed. However, at
768 dimensions, the embeddings themselves can
be prohibitively large for some tasks and settings.

Smaller embeddings both enable more compact
data sizes in storage-constrained settings and over-
the-air data pipelines, and help lower the requisite
memory for using the embeddings for downstream
tasks. For non-contextual word embeddings, Ling
et al. (2016) note that loading matrices can take
multiple gigabytes of memory, a prohibitively large
amount for some phones and IoT devices. While
contextual embeddings are smaller, downstream
models will face similar headwind for large cor-
pora.

Although there has been more extensive study
in the efficacy of compressing non-contextual
word embeddings (Raunak et al., 2019, Mu and
Viswanath, 2018), to the best of our knowl-
edge few contextual embedding compression post-
processing approaches have been proposed (Li and
Eisner, 2019). In their work, Li and Eisner (2019)
propose the Variational Information Bottleneck, an
autoencoder to create smaller, task specific embed-
dings for different languages. While effective, the
computational expense of additional training loops
is not appropriate for some memory constrained
applications.

Our approach more closely mirrors the work of
Raunak et al. (2019) who propose a Principal Com-
ponent Analysis (PCA)-based post-processing algo-
rithm to lower the dimensionality of non-contextual
word embeddings. They find that they can repli-
cate, or, in some cases, increase the performance
of the original embeddings. One limitation to this
approach is the lack of support for nonlinear data
patterns. Nonlinear dimensionality reductions, like
the Isomap shown in Figure 1, can pick up on la-
tent textual features that evade linear algorithms
like PCA. To achieve this nonlinearity, we extend
this approach to contextual embeddings, adding in
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Figure 1: Visualization of two-dimensional PCA and Isomap compressions based on BERT embeddings for the
SMS-SPAM dataset (Almeida et al., 2013). Spam is represented by a blue dot and ham by an orange x. We see
that for this dataset in two dimensions, the Isomap compression appears more linearly separable than the PCA
compression, making classification easier for the former.

additional geodesic distance information via the
Isomap algorithm (Tenenbaum et al., 2000). To the
best of our knowledge, the application of graph-
based techniques to reduce the dimensionality of
contextual embeddings is novel.

The goal of this paper is not to compete with
state-of-the-art models, but, rather, (1) to show that
12-fold dimensionality reductions of contextual em-
beddings can, in some settings, conserve much of
the original performance, (2) to illustrate the effi-
cacy of geodesic similarity metrics in improving
the downstream performance of contextual embed-
ding compressions, and (3) propose the creation
of more efficient, geodesic-distance-based trans-
former architectures. In particular, our main result
is showing that a 64-dimensional concatenation
of compressed PCA and Isomap embeddings are
comparable to the original BERT embeddings and
outperform our PCA baseline. We attribute this suc-
cess to the locality data preserved by the k-Nearest
Neighbors (k-NN) graph generated by the Isomap
algorithm.

2 Related Work

As best we know, there is very little literature re-
garding the intersection of contextual embedding
compression and geodesic distances. Most of the
existing work in related spaces deals with non-
contextual word embeddings. Despite the rapid
growth in the popularity of transformers, these em-
beddings still retain popularity.

For non-contextual word embeddings, Mu and
Viswanath (2018) propose a post-processing algo-
rithm that projects embedded data away from the
dominant principal components, in order to greater
differentiate the data. Raunak et al. (2019) expand
on this algorithm by combining it with PCA re-
ductions. Both approaches are effective, but, are

limited to linear dimensionality reductions.
Some nonlinear approaches include Andrews

(2016) and Li and Eisner (2019) who both use
autoencoder-based compressions. Notably, the for-
mer only addresses non-contextual embeddings.

Meanwhile the usage of graphs in NLP is well
established, but their usage in the compression of
contextual embeddings is not well documented.
Wiedemann et al. (2019) use a k-NN classification
to achieve state-of-the-art word sense disambigua-
tion. Their work makes clear the effectiveness of
the k-NN approach in finding distinctions in hyper-
localized data.

3 Method

With the goal of reducing the contextual embedding
dimensionality, we first processed our data using
a pre-trained, uncased BERT Base model. Then,
we compressed the data to a lower dimension using
both PCA and Isomap as described in Section 3.2.
This method aims to capture as much information
as possible from the original BERT embeddings
while preserving graphical locality information and
nonlinearities in the final contextual embeddings.

3.1 Isomap and Geodesic Distances

For this paper, to blend geodesic distance informa-
tion and dimensionality reduction, we use Tenen-
baum’s Isomap (Tenenbaum et al., 2000). Isomap
relies on a weighted neighborhood graph that al-
lows for the inclusion of complex, nonlinear pat-
terns in the data, unlike a linear algorithm like
PCA. In specific, this graph is constructed so that
the edges between each vertex (datapoint) and its
k-nearest neighbors have weight corresponding to
the pairwise Euclidean distance on a Riemannian
manifold. Dijkstra’s shortest path between two
points then estimates their true geodesic distance.
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Figure 2: PCA baseline performance on CoLA (Warstadt et al., 2019) and SST-2 (Socher et al., 2013). PCA
embedding performance by dimension is represented by the solid blue line. Regression at 768 dimensions is
represented by an orange dashed line. On these two datasets, even at much smaller dimensionality, we see that
PCA has comparable performance.

These geodesics are particularly useful for delin-
eating points that are close in Euclidean space but
not on a manifold i.e. similar BERT embeddings
with different meanings.

If we assume the data follows a manifold,
Isomap can exploit the Riemannian locality of
these complex contextual embeddings. As Figure 1
shows, in some cases this is a good assumption to
make since we are then able to dissect complex em-
beddings into near-linearly separable clusters. No-
tably, there are some limitations to this approach. If
the manifold is sparse, i.e. there are few data points
on certain regions of the manifold, or k is too small,
the shortest path estimation of the geodesic dis-
tance can be unrepresentative of the true distance.
On the contrary, if k is too large, Isomap overgen-
eralizes and loses its fine-grained estimation of the
Riemannian surface.

Nonetheless, we hypothesize that these global
geodesic distance approximations explain the em-
pirical advantage Isomap has in our setting over
other popular nonlinear dimensionality reduction
techniques. Many alternatives, like Locally Lin-
ear Embeddings (Roweis and Saul, 2000) focus,
instead, on preserving intra-neighborhood dis-
tance information that may not encompass inter-
neighborhood relationships as Isomap does.

3.2 Our Approach

We applied our post-processing method to the
BERT embeddings through three different dimen-
sionality reductions. We used (1) PCA, (2) Isomap,
and (3) a concatenation of embeddings from the
two before training a small regression model on the
embeddings. This approach aims to use linear and
nonlinear dimensionality reduction techniques to
best capture the data’s geodesic locality informa-
tion.

PCA. To compute linearly-reduced dimensional-
ity embeddings, we used PCA to reduce the 768-
dimensional BERT embeddings down to a num-
ber of components ranging from 16 to 256. While
there are other linear dimensionality reduction tech-
niques, PCA is a standard benchmark and empir-
ically performed the best. These serve as a linear
baseline for reduced dimension embeddings.

Isomap. To compute geodesic locality informa-
tion, we post-processed our BERT embeddings
with Isomap. The final Isomap embeddings ranged
from 16 to 96 dimensions, all computed with 96
neighbors and Euclidean distance.

Concatenated Embeddings. To include fea-
tures from both of these reductions, we combined
an Isomap embedding with a PCA embedding to
form concatenations of several dimensions. We ex-
perimented with ratios of PCA embedding size to
Isomap embedding size from 0 to 1

2 at 1
8 intervals.

We found that this ratio was the main determinant
of relative accuracy, so for analysis we fixed the
total dimension to 64.

4 Experiments and Results

We assess the results of these compression tech-
niques on two text classification datasets. We pro-
vide the code for our experiments1.

4.1 Data
We evaluate our method on two text classifica-
tion tasks: the Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2019), a 10657 sentence
binary classification dataset on grammatical cor-
rectness and the Stanford Sentiment Treebank v2
(SST-2) (Socher et al., 2013), a 70042 sentence

1https://github.com/kaimihata/geo-bert

https://github.com/kaimihata/geo-bert
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Embedding Isomap Dim PCA Dim CoLA SST-2
PCA N/A 64 0.339 0.842
Concatenation* 16 48 0.421 0.846
Concatenation 32 32 0.384 0.822
Concatenation 48 16 0.357 0.817
Isomap 64 N/A 0.332 0.814
BERT N/A N/A 0.455 0.847

Table 1: 64-dimensional embedding performance on CoLA (Warstadt et al., 2019) and SST-2 (Socher et al., 2013).
CoLA is measured by Matthews correlation and SST-2 by accuracy. While Isomap did not perform the best
outright, on these datasets we found that some inclusion of locality data proved meaningful. This shows the
trade-off between locality information and performance mentioned in Section 4.4. The best 12-fold compression
performance is asterisked.

binary (positive / negative) sentiment classification
dataset.

For CoLA, we used the predefined, 9594 data-
point train set and for SST-2, we used the first 8000
samples of their training set to construct ours due
to computational limitations. For testing and evalu-
ation, we used the corresponding datasets defined
by GLUE (Wang et al., 2018). In addition, for all
of our evaluations, we used the same pre-trained
BERT embeddings for consistency.

4.2 Training and Evaluation

All of these post-processed embeddings, as well
as the BERT embeddings, were trained on a down-
stream regression model consisting of one hidden
layer (64 dim) with ReLU activation, a learning
rate of 1× 10−4, and were optimized via ADAM
(Kingma and Ba, 2015). The BERT embeddings
are used as a baseline for comparison.

To evaluate our embeddings on CoLA and SST-2,
we used their GLUE-defined metrics of Matthews
correlation and validation accuracy, respectively.
For each embedding experiment, our procedure
consisted of running our post-processing method
on the BERT embeddings then training the down-
stream model. Each reported metric is the average
of three of these procedures.

4.3 Baseline Comparison

Agnostic of post-processing algorithm, we found
reduced-dimensionality embeddings were compet-
itive with the original embeddings. Although
smaller reduction factors, understandably, per-
formed better, we found that even when reduced
by a factor as large as 12, our PCA embeddings
experienced small losses in performance on both
datasets (Figure 2). To demonstrate the effect of the
inclusion of locality data, we picked an embedding

size of 64 dimensions (a reduction factor of 12) to
balance embedding size and performance for our
main experiment.

In comparison to our 768-dimensional baseline,
at 64 dimensions, the best reduction results were
within 7.5% and 0.1% for CoLA and SST-2, respec-
tively (Table 1). These results show that with or
without the presence of locality data, compressed
embeddings can perform comparably to the origi-
nal embeddings.

4.4 Locality Information Trade-off

As shown in Table 1, on neither dataset did the fully
PCA or Isomap embeddings perform the best. The
best performer was, instead, a combination of these
two approaches. This indicates that there must
exist a trade-off on the effectiveness of locality
data. While without locality data, the embedding
obviously misses out on geodesic relationships, too
much locality information may replace more useful
features that the PCA embeddings extract. Just as
the quality of the geodesic distance estimations rely
on how well the data fits the underlying manifold,
as discussed in Section 3, so, too, does its effective-
ness. To explain this phenomenon, we hypothesize
that the addition of small amounts of locality data
bolsters performance by describing the geodesic
relationships without drowning out important syn-
tactic and semantic information provided by PCA.

4.5 Task-Specific Locality

While the best reduction consisted of a concatena-
tion of 16-dimensional Isomap and 48-dimensional
PCA embeddings, whether the other concatena-
tions performed better than our PCA baseline was
dependent on the task. For CoLA, we found that all
three concatenated embeddings performed better
than PCA, whereas for SST-2, only the top perform-
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ing concatenated embedding beat out our baseline.
To describe this disparity we look towards the na-
ture of the datasets and tasks. Notably, CoLA re-
quires models to identify proper grammar, a syntac-
tic task, while SST-2 requires models to understand
the sentiment of sentences, a semantic task. Syn-
tactic data often has some intrinsic structure to it,
and perhaps our manifold approach encompasses
this information well. Based on this result, explor-
ing this distinction could be an exciting avenue for
further study.

5 Conclusions and Future Work

We present a novel approach for compressing
BERT embeddings into effective lower dimension
representations. Our method shows promise for
the inclusion of geodesic locality information in
transformers and future compression methods. We
hope our results lead to more work investigating the
geometric structure of transformer embeddings and
developing more computationally efficient NLP
training pipelines. To further this work, we plan to
investigate the efficacy of (1) other graph dimen-
sionality reduction techniques, (2) non-Euclidean
distance metrics, and (3) our approach on differ-
ent transformers. In addition, we would like to
investigate whether datasets for other tasks can be
effectively projected onto a manifold.
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