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Abstract

Pre-trained models like Bidirectional Encoder
Representations from Transformers (BERT),
have recently made a big leap forward in Nat-
ural Language Processing (NLP) tasks. How-
ever, there are still some shortcomings in the
Masked Language Modeling (MLM) task per-
formed by these models. In this paper, we
first introduce a multi-graph including differ-
ent types of relations between words. Then,
we propose Multi-Graph augmented BERT
(MG-BERT) model that is based on BERT.
MG-BERT embeds tokens while taking advan-
tage of a static multi-graph containing global
word co-occurrences in the text corpus beside
global real-world facts about words in knowl-
edge graphs. The proposed model also em-
ploys a dynamic sentence graph to capture lo-
cal context effectively. Experimental results
demonstrate that our model can considerably
enhance the performance in the MLM task.

1 Introduction

In recent years, pre-trained models have led to
promising results in various Natural Language Pro-
cessing (NLP) tasks. Recently, Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019) has received much attention
as a pre-trained model that can be easily fine-tuned
for a wide range of NLP tasks. BERT is pre-trained
using two unsupervised tasks, Masked Language
Modeling (MLM) and Next Sentence Prediction
(NSP). In (Ettinger, 2019), some psycholinguistic
diagnostics are introduced for assessing the lin-
guistic capacities of pre-trained language models.
These diagnostic tests consist of commonsense and
pragmatic inferences, role-based event prediction,
and negation. Ettinger (2019) observes some short-
comings in BERT’s results and demonstrates that
although BERT sometimes predicts the first candi-
date for the masked token almost correctly, some of
its top candidates contradict each other. Besides, in

the tests targeting commonsense and pragmatic in-
ference, it is illustrated that BERT can not precisely
fill the gaps based on just the input context (Et-
tinger, 2019).

In this paper, we incorporate co-occurrences and
global information about words through graphs
describing relations of words along with local con-
texts considered by BERT. The intention is to find
more reliable and meaningful embeddings that re-
sult in better performance in MLM task. Utilizing
external information about the corpus and the world
in the form of graphs helps the model fill the gaps
in the MLM task more easily and with more cer-
tainty. We take advantage of the rich information
source accessible in knowledge graphs and also
condensed information of words co-occurrence in
graphs using Relational Graph Convolutional Net-
work (R-GCN) to enrich the embedding of tokens.
We also utilize the words in the current context as a
dynamic complete graph using an attention mecha-
nism. These graphs can considerably influence the
performance of BERT in the MLM task as shown
in the experiments.

2 Related Work

Knowledge graphs (KGs) are valuable sources
of facts about real-world entities. Many studies
have been recently introduced to utilize knowl-
edge graphs for various purposes, such as rec-
ommender systems (Wang et al., 2019a,b; He
et al., 2020) or link prediction (Feng et al., 2016;
Nguyen et al., 2018; Sun et al., 2019; Zhang et al.,
2020). Recently, using BERT along with knowl-
edge graphs has also been attended for knowledge
graph completion and analysis. Yao et al. (2019)
employ KG-BERT in triple classification, link pre-
diction, and relation prediction tasks. Furthermore,
knowledge graphs are used in NLP tasks such as
text classification (K M et al., 2018; Ostendorff
et al., 2019; Zhang et al., 2019a), named entity
recognition (Dekhili et al., 2019), and language
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modeling (Ahn et al., 2016; Logan et al., 2019).
ERNIE (Zhang et al., 2019b) is an enhanced lan-
guage representation model incorporating knowl-
edge graphs. In addition to BERT’s pre-training ob-
jectives, it uses an additional objective that intends
to select appropriate entities from the knowledge
graph to complete randomly masked entity align-
ments. Moreover, named entity mentions in the text
are recognized and aligned to their corresponding
entities in KGs.

Other types of graphs have also been utilized
in NLP tasks in some studies. For instance, Text
GCN (Yao et al., 2018) applies Graph Convolu-
tional Network (GCN) to the task of text classi-
fication. This paper’s employed graph is a text
graph created based on token co-occurrences and
document-token relations in a corpus. Moreover,
VGCN-BERT (Lu and Nie, 2019) enriches the
word embeddings of an input sentence using the
text graph inspired by Text GCN (Yao et al., 2018)
and examines the obtained model in FIRE hate
language detection tasks (Mandl et al., 2019).

In this paper, we aim to improve BERT’s perfor-
mance (in the MLM task) by incorporating a static
multi-graph that includes both the knowledge graph
and global co-occurrence graphs derived from the
corpus as well as a dynamic graph including in-
put sentence tokens. Static text graphs have been
recently employed in VGCN-BERT (Lu and Nie,
2019) via a modified version of GCN that extends
the input by a fixed number of embeddings. How-
ever, the modification of embeddings in this work
is only based on input tokens. Neither other vocab-
ularies in the static text graphs nor real-world facts
(available in KGs) affect the final embeddings of
tokens. On the other hand, while ENRIE (Zhang
et al., 2019b) and KEPLER (Wang et al., 2019c)
utilize KGs to reach an improved model, they do
not employ other graphs derived from the corpus.
Also, ERNIE does not learn graph-based embed-
ding during representation learning and only adopts
embeddings trained by TransE (Bordes et al., 2013).
However, in our model, since we incorporate a
multi-graph by extending BERT architecture and
providing a graph layer of an R-GCN module and
attention mechanism, a multi-graph augmented rep-
resentation learning model is obtained.

3 Preliminaries

GCN (Kipf and Welling, 2017) is one of the most
popular models for graph node embedding. R-

GCN (Schlichtkrull et al., 2018) extends GCN to
provide node embedding of multi-relational graphs:
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is the set of vi’s neighbours under relation r and
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4 Methodology

This section presents the overall architecture of our
model, called Multi-Graph augmented BERT (MG-
BERT). MG-BERT takes advantage of BERT’s
power in capturing context of an input text as well
as a graph module including an R-GCN layer over
a static multi-graph and a graph attention layer over
a dynamic sentence graph. This static multi-graph
includes global information about words available
as facts in KGs in addition to dependencies be-
tween tokens of the input text and other words in
the vocabulary which are discovered by computing
co-occurrence statistics in the corpus. Two graphs
are used to condense co-occurrences of words in
the corpus inspired by Text GCN (Yao et al., 2018)
that are also employed by VGCN-BERT (Lu and
Nie, 2019). One of these graphs includes local
co-occurrences of terms that is computed based on
point-wise mutual information (PMI) of terms i
and j which is calculated by:

p(i) =
#W (i)

#W
, p(i, j) =

#W (i, j)

#W
,

PMI(i, j) = log
p(i, j)

p(i)p(j)
. (1)

In the above equations, #W (i) and #W (i, j) de-
note the number of fixed size windows contain-
ing term i and both of the terms i and j, respec-
tively. #W is the whole number of windows in
the corpus. The other graph includes the docu-
ment level co-occurrence of tokens in the corpus
computed based on term frequency-inverse docu-
ment frequency (TF-IDF). The knowledge graph
is also incorporated in this multi-graph. Formally,
the weighted edges between token i and token j for
three types of relations R = {KG,PMI,TF-IDF}
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in the multi-graph are:

ATF−IDF
ij = λT

∑
d∈docs

TidTjd

AKG
ij = λK

∑
e∈KG

KGieKGej if i, j ∈ KG

APMI
ij = λP PMI(i, j) if PMI(i, j) > 0

A∗ij = 1 if i = j
(2)

where Tid denotes the TF-IDF of token i in docu-
ment d, PMI(i, j) shows PMI calculated by Eq. 1,
and KGe1e2 is nonzero when a relation between
these two entities exists in the knowledge graph.
Note that we add a self-connection relation to our
knowledge graph for maintaining one-hop links,
while also considering two hops as in Eq. 2 to
employ indirect relations through paths of length
two in the knowledge graph. λK , λP , and λT are
also hyperparameters that can control the impact of
three types of relations on tokens’ embeddings. To
utilize the multi-graph introduced above, we add a
single-layer R-GCN described in Section 3 to the
BERT model.

Furthermore, we use a graph attention mecha-
nism to capture local information via a dynamic
and complete graph in which nodes represent all to-
kens of the input sentence. The complete dynamic
graph is used in order to obtain context-dependent
new embeddings while the R-GCN layer itself pro-
vides the same new embeddings for a specific token
even if the token appears in different contexts. This
happens because the single R-GCN layer always
performs on the same static multi-graph.

As shown in Fig. 1, the whole graph module is
placed immediately after the BERT token embed-
dings layer since the hidden states of the whole
vocabulary are available in this layer. We pass the
entire multi-graph to the R-GCN module so that
the global dependencies would affect embeddings
of tokens properly using Eq. 3. We also use an at-
tention mechanism as in Eq. 4 to consider the local
context. The new embedding of token i in sentence
s is computed as:

h
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where Âr refers to the normalized adjacency matrix
of relation r, W s are trainable weight matrices (i.e.
Wrs denote parameters of the R-GCN layer and
WQuery

k , WKey
k , and W V al

k denote the attention
parameters), and hi is the ith token’s embedding
from the BERT token embeddings layer.

Next, we aggregate the obtained tokens’ embed-
dings by the graph module with position embed-
dings and segment embeddings (similar to BERT).
Afterward, we feed these representations to BERT
encoders to find final embeddings. The proposed
model architecture is shown in Figure 1.

In the training phase, a token from each sentence
is randomly masked, and the model is trained to
predict the masked token based on both the context
and the incorporated static multi-graph.

5 Experiments

In this section, we explain the details of training
MG-BERT and conduct experiments to evaluate
and compare our model with the related methods
recently proposed.
Datasets. During training, we use the WN18
knowledge graph, derived from WordNet, as an
unlabeled graph (Bordes et al., 2014). We also
experiment MG-BERT and other recent models on
CoLA, SST-2, and Brown datasets (Warstadt et al.,
2019; Socher et al., 2013; Francis and Kucera,
1979). The detailed description of these datatsets
is given in Appendix A.

Parameter Setting. In order to capture word
co-occurence statistics of the corpus, we use the
BERT’s tokenizer on sentences and set the sliding
window size to 20 when calculating the PMI value.
The whole BERT module in MG-BERT is first
initialized with the pre-trained bert-base-uncase
version of BERT in PyTorch and the model is
trained on the MLM task with cross entropy
loss (Wolf et al., 2019). Regarding Eq. 2, different
hyper-parameter settings have been used for
each dataset. λK , λP , and λT are set to 0.01,
0.001, and 0.001, respectively in both CoLA
and Brown datasets and 0.001, 1.0, and 0.001
in SST-2 dataset. The hyperparameter λdyn is
also set to 0.8. The graph attention mechanism
is performed with 12 heads. The R-GCN and
graph attention layers’ output dimension are also
set to 768 that equals to the dimension of the
BERT token embeddings layer to substitute easily
BERT’s token embeddings with the embeddings
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Figure 1: The architecture of MG-BERT. The “Aggregate" phase includes an aggregation of new tokens’ embed-
dings with the position embeddings and the segment embeddings of the BERT model.

derived from the graph module. We also employ
the normalization trick introduced in GCN (Kipf
and Welling, 2017) to normalize each adjacency
matrix in the multi-graph.

Compared methods. To assess our model,
we compare it with BERT as the baseline.
Moreover, ERNIE and VGCN-BERT are being
compared as the recent methods utilizing knowl-
edge graph and text graph, respectively (Zhang
et al., 2019b; Lu and Nie, 2019). We also compare
MG-BERT with MG-BERT(base) which doesn’t
use the dynamic graph incorporating the context
according to Eq. 4. All these models are fine-tuned
on the text datasets for a fair evaluation.

Results. We evaluate our model using Hits@1 and
Hits@5 metrics. Hits@k shows the proportion
of correct tokens appearing in the top k results
for each sample. In Table 1, we report the results
of evaluations performed on the test sets of
CoLA, SST-2, and Brown datasets. These results
demonstrate that the proposed method outperforms
other models and taking advantage of the graph
module with dataset-specific hyper-parameters
improves the performance.

The reason to our superiority over VGCN-BERT
(Lu and Nie, 2019) is that it doesn’t take advantage
of real-world facts (available in KGs). Moreover,
as opposed to MG-BERT, it modifies initial em-
beddings of tokens only based on input tokens of
each sentence and other vocabularies in the text
graphs don’t influence the final embeddings of to-
kens. On the other hand, ERNIE (Zhang et al.,
2019b) doesn’t take full advantage of graphs since
it doesn’t use graphs derived from the corpus. Be-

sides, it does not learn graph-based embeddings
during representation learning. It is worth men-
tioning that the entity embedding model used in
ERNIE has been trained on a huge subset of Wiki-
data1, which is almost 120 times bigger than WN18
knowledge graph employed in our method.

The superiority of MG-BERT over MG-
BERT(base) demonstrates the importance of the
dynamic sentence graph and the results of MG-
BERT(base) itself shows that utilizing the static
multi-graph has been useful.

Graphs Hits@1 Hits@5
K 70.51± 1.28 86.27± 0.31

P 69.63± 1.78 85.75± 0.91

T 69.78± 1.18 84.78± 1.10

KP 70.37± 1.41 85.66± 0.92

KT 70.50± 0.99 85.54± 0.83

PT 70.60± 1.32 85.22± 0.80

KPT 70.94± 1.20 85.12± 1.20

Table 2: Experimental results of variations of MG-
BERT(base) using different graphs on CoLA dataset.
The symbols K, P, and T stand for employing KG, PMI,
and TF-IDF relations, respectively.

In addition, evaluation results of different varia-
tions of MG-BERT(base) on CoLA dataset, consid-
ering different graphs, are represented in Table 2,
demonstrating the effect of each graph on the per-
formance. The experimental results indicate the
role of exploiting various graphs in language repre-
sentation learning.

We also compare MG-BERT and MG-
BERT(base) with other models using perplexity

1https://www.wikidata.org/
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Model CoLA SST-2 Brown
Hits@1 Hits@5 Hits@1 Hits@5 Hits@1 Hits@5

BERT
(Devlin et al., 2019)

68.50
±1.49

84.53
±1.18

80.48
±0.85

88.42
±0.70

58.31
±1.17

76.38
±0.49

ERNIE
(Zhang et al., 2019b)

69.57
±0.89

84.58
±0.72

81.17
±0.77

88.26
±0.57

57.42
±0.73

75.34
±0.65

VGCN-BERT
(Lu and Nie, 2019)

69.03
±0.78

84.81
±0.62

80.85
±0.48

88.37
±0.58

57.97
±0.97

76.17
±0.67

MG-BERT(base) 70.95
±1.20

85.12
±1.20

81.28
±0.51

88.56
±0.79

58.66
±0.11

76.64
±0.61

MG-BERT 71.72
±0.97

86.67
±0.51

83.07
±0.47

89.13
±0.39

58.38
±0.60

76.59
±0.67

Table 1: Hits@k esults on CoLA, SST-2, and Brown datasets. The best score is highlighted in bold and the second
best score is highlighted with underline.

Model CoLA SST-2 Brown
BERT

(Devlin et al., 2019)

1.33
±0.01

1.43
±0.01

1.66
±0.02

ERNIE
(Zhang et al., 2019b)

1.23
±0.01

1.20
±0.01

1.71
±0.02

VGCN-BERT
(Lu and Nie, 2019)

1.32
±0.01

1.41
±0.01

1.75
±0.02

MG-BERT(base) 1.26
±0.02

1.45
±0.01

1.82
±0.01

MG-BERT 1.23
±0.01

1.25
±0.01

1.63
±0.01

Table 3: Perplexity results on CoLA, SST-2, and Brown
datasets. The best score is highlighted in bold.

metric in Table 3. In this paper, the perplexity is
only calculated on the masked tokens as:

PPL = exp

(
n∑

i=1

− log ŷ
[MASK]
i

)
,

where ŷ[MASK]
i is the predicted probability of the

masked token in the i-th sample. A model with
higher perplexity allocates lower probability to the
correct masked tokens, which is not desired. The
results shown in Table 3 generally demonstrate the
fact that both MG-BERT and ERNIE solve the
MLM task with more certainty compared to BERT
and VGCN-BERT.

We also illustrate some examples of MLM task
performed by MG-BERT(base) and BERT in Ap-
pendix B. These examples demonstrate that real-
world information of knowledge graph and global
information of co-occurrence graphs remarkably

compensate BERT’s shortage.

6 Conclusion

In this paper, we proposed a language representa-
tion learning model that enhances BERT by aug-
menting it with a graph module (i.e. an R-GCN
layer over a static multi-graph, including global
dependencies between words, and a graph atten-
tion layer over a dynamic sentence graph). The
static multi-graph utilized in this work consists
of a knowledge graph as a source of information
about real-world facts and two other graphs built
based on word co-occurrences in local windows
and documents in the corpus. Therefore, the pro-
posed model utilizes the local context, the corpus-
level co-occurence statistics, and the global word
dependencies (through incorporating a knowledge
graph) to find the input tokens’ embeddings. The
results generally show the superiority of the pro-
posed model in the Masked Language Modeling
task compared to both the BERT model and the re-
cent models employing knowledge or text graphs.
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