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Abstract

Deep neural networks have revolutionized
many fields, including Natural Language Pro-
cessing. This paper outlines teaching materi-
als for an introductory lecture on deep learn-
ing in Natural Language Processing (NLP).
The main submitted material covers a summer
school lecture on encoder-decoder models.
Complementary to this is a set of jupyter note-
book slides from earlier teaching, on which
parts of the lecture were based on. The main
goal of this teaching material is to provide an
overview of neural network approaches to nat-
ural language processing, while linking mod-
ern concepts back to the roots showing tradi-
tional essential counterparts. The lecture de-
parts from count-based statistical methods and
spans up to gated recurrent networks and atten-
tion, which is ubiquitous in today’s NLP.

1 Introduction

In 2015, the “deep learning tsunami” hit our
field (Manning, 2015). In 2011, neural networks
were not really “a thing” yet in NLP; they were
even hardly taught. I remember when in 2011 An-
drew Ng introduced the free online course on ma-
chine learning, which soon after led Daphne Koller
and him to start massive online education: “Many
scientists think the best way to make progress [..]
is through learning algorithms called neural net-
works”.1 Ten years later, it is hard to imagine any
NLP education not touching upon neural networks
and in particular, representation learning. While
neural networks have undoubtedly pushed the field,
it has led to a more homogenized field; some lec-
turers even question whether to include pre-neural
methods. I believe it is essential to teach statistical
foundations besides modern DL, ie., to go back to
the roots, to better be equipped for the future.2

1Accessed March 15, 2021: https://bit.ly/
2OZH2MZ

2Disclaimer: This submitted teaching material is limited as
it spans a single lecture. However, I believe it to be essential to

2 Structure of the summer school lecture

This paper outlines teaching material (Keynote
slides, Jupyter notebooks), which I would like to
provide to the community for reuse when teaching
an introductory course on deep learning for NLP.3

The main material outlined in this paper is a
Keynote presentation slide deck for a 3-h lecture
on encoder-decoder models. An overview of the
lecture (in non-temporal form), from foundations,
to representations to neural networks (NNs) be-
yond vanilla NNs is given in Figure 1. Moreover, I
provide complementary teaching material in form
of Jupyter notebook (convertable to slides). I’ve
used these notebooks (slides and exercises) during
earlier teaching and in parts formed the basis of the
summer school lecture (see Section 3).

Figure 1: Overview of the core concepts covered.

The lecture covers NLP methods broadly from
introduction concepts of more traditional NLP
methods to recent deep learning methods. A par-
ticular focus is to contrast traditional approaches
from the statistical NLP literature (sparse repre-

teach traditional methods besides modern neural approaches
(e.g. count-based vs prediction-based word representations;
statistical n-grams vs neural LMs; naive Bayes and logistic
regression vs neural classifiers, to name a few examples).

3Available at: https://github.com/bplank/
teaching-dl4nlp

https://bit.ly/2OZH2MZ
https://bit.ly/2OZH2MZ
https://github.com/bplank/teaching-dl4nlp
https://github.com/bplank/teaching-dl4nlp
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sentations, n-grams) to their deep learning-based
counterparts (dense representations, ‘soft’ ngrams
in CNNS and RNN-based encoders). Consequently,
the following topics are covered in the lecture:

• Introduction to NLP and DL (deep learning),
what makes language so difficult; traditional
versus neural approaches

• N-gram Language Models,

• Feedforward Neural Networks (FFNNs)

• What’s the input? Sparse traditional vs dense
representations; Bag of words (BOW) vs con-
tinuous BOW (CBOW)

• Neural Language Models (LMs)

• Convolutional Neural Networks (CNNs) for
Text Classification (‘soft n-grams’)

• Recurrent Neural Networks (RNNs) for Text
Processing, RNNs as LMs

• Bidirectional RNNs, stacking, character rep-
resentations

• Gated RNNs (GRU, LSTMs)

• Deep contextualized embeddings (Embed-
dings as LMs, Elmo)

• Attention

The lecture was held as 3-h lecture at the first
Athens in NLP (AthNLP) summer school in 2019.
In the overall schedule of the summer school, this
lecture was the 3rd in a row of six. It was scheduled
after an introduction to classification (by Ryan Mc-
Donald), and a lecture on structured prediction (by
Xavier Carreras). The outlined encoder-decoder
lecture was then followed by a lecture on ma-
chine translation (by Arianna Bisazza; the lecture
build upon this lecture here and included the trans-
former), machine reading (by Sebastian Riedel)
and dialogue (by Vivian Chen).4 Each lecture was
enhanced by unified lab exercises.5

4Videos of all lectures are available at: http:
//athnlp2019.iit.demokritos.gr/schedule/
index.html

5Exercises were kindly provided as unified framework by
the AthNLP team, and hence are not provided here. They in-
cluded, lab 1: Part-of-Speech tagging with the perceptron; lab
2: POS tagging with the structured perceptron; lab 3: neural
encoding for text classification; lab 4: neural language model-
ing; lab 5: machine translation; lab 6: question answering

As key textbook references, I would like to refer
the reader to chapters 3-9 of Jurafsky and Mar-
tin’s 3rd edition (under development) (Jurafsky
and Martin, 2020),6 and Yoav Goldberg’s NLP
primer (Goldberg, 2015). Besides these textbooks,
key papers include (Kim, 2014) for CNNs on texts,
attention (Luong et al., 2015) and Elmo (Peters
et al., 2018).

3 Complementary notebooks of earlier
material

This lecture evolved from a series of lectures given
earlier, amongst which a short course given in
Malta in 2019, and a MSc-level course I taught
at the University of Groningen (Language Technol-
ogy Project). To complement the Keynote slides
of the summer school lecture provided here, ear-
lier Jupyter notebooks can be found at the website.
These cover a subset of the material above.

4 Conclusions

This short paper outlines teaching material for an in-
troductory lecture on deep learning for NLP. By re-
leasing this teaching material, I hope to contribute
material that fellow researchers find useful when
teaching introductory courses on DL for NLP. For
comments and suggestions to improve upon this
material, please reach out to me.
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