
Proceedings of the Fifth Workshop on Teaching NLP, pages 112–114
June 10–11, 2021. ©2021 Association for Computational Linguistics

112

Naive Bayes versus BERT: Jupyter notebook assignments for an
introductory NLP course

Jennifer Foster and Joachim Wagner
School of Computing

Dublin City University
jfoster|jwagner@dcu.ie

Abstract

We describe two Jupyter notebooks that form
the basis of two assignments in an introductory
Natural Language Processing (NLP) module
taught to final year undergraduate students at
Dublin City University. The notebooks show
the students how to train a bag-of-words polar-
ity classifier using multinomial Naive Bayes,
and how to fine-tune a polarity classifier using
BERT. The students take the code as a starting
point for their own experiments.

1 Introduction

We describe two Jupyter1 notebooks that form the
basis of two assignments in a new introductory
Natural Language Processing (NLP) module taught
to final year students on the B.Sc. in Data Science
programme at Dublin City University. As part of a
prior module on this programme, the students have
some experience with the NLP problem of quality
estimation for machine translation. They have also
studied machine learning and are competent Python
programmers. Since this is the first Data Science
cohort, there are only seven students. Four graduate
students are also taking the module.

The course textbook is the draft 3rd edition of
(Jurafsky and Martin, 2009).2 It is impossible to
teach the entire book in a twelve week module and
so we concentrate on the first ten chapters. The
following topics are covered:

1. Pre-processing

2. N-gram Language Modelling

3. Text Classification using Naive Bayes and Lo-
gistic Regression

4. Sequence Labelling using Hidden Markov
Models and Conditional Random Fields

5. Word Vectors
1https://jupyter.org/
2https://web.stanford.edu/~jurafsky/

slp3/

6. Neural Net Architectures (feed-forward, re-
current, transformer)

7. Ethical Issues in NLP

The course is fully online for the 2020/2021 aca-
demic year. Lectures are pre-recorded and there are
weekly live sessions where students anonymously
answer comprehension questions via zoom polls
and spend 20-30 minutes in breakout rooms work-
ing on exercises. These involve working out toy ex-
amples, or using online tools such as the AllenNLP
online demo3 (Gardner et al., 2018) to examine the
behaviour of neural NLP systems.

Assessment takes the form of an online end-of-
semester open-book exam worth 60% and three
assignments worth 40%. The first assignment is
worth 10% and involves coding a bigram language
model from scratch. The second and third assign-
ments are worth 15% each and involve experimen-
tation, using Google Colab4 as a platform. For both
assignments, a Jupyter notebook is provided to the
students which they are invited to use as a basis
for their experiments. We describe both of these in
turn.

2 Notebooks

We describe the assignment objectives, the note-
books we provide to the students5 and the experi-
ments they carried out.

2.1 Notebook One: Sentiment Polarity with
Naive Bayes

The assignment The aim of this assignment is
to help students feel comfortable carrying out text
classification experiments using scikit-learn (Pe-
dregosa et al., 2011). Sentiment analysis of movie
reviews is chosen as the application since it is a

3https://demo.allennlp.org/
4https://colab.research.google.com
5An updated version of the notebooks will be made avail-

able in the materials repository of the Teaching-NLP 2021
workshop.

https://jupyter.org/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://demo.allennlp.org/
https://colab.research.google.com


113

familiar and easily understood task and domain, re-
quiring little linguistic expertise. We use the dataset
of Pang and Lee (2004) because its relatively small
size (2,000 documents) makes it quicker to train on.
The documents are provided in tokenised form and
have been split into ten cross-validation folds. We
provide a Jupyter notebook implementing a base-
line bag-of-words Naive Bayes classifier which
assigns a label positive or negative to a review. The
students are asked to experiment with this baseline
model and to attempt to improve its accuracy by
experimenting with

1. different learning algorithms, e.g. logistic re-
gression, decision trees, support vector ma-
chines, etc.

2. different feature sets, such as handling nega-
tion, including bigrams and trigrams, using
sentiment lexicons and performing linguistic
analysis of the input

They are asked to use the same cross-validation
set-up as the baseline system. Marks are awarded
for the breadth of experimentation, the experiment
descriptions, code clarity, average 10-fold cross-
validation accuracy and accuracy on a ‘hidden’ test
set (also movie reviews).

The notebook We implement document-level
sentiment polarity prediction for movie reviews
with multinomial Naive Bayes and bag-of-words
features. We first build and test the functionality to
load the dataset into a nested list of documents, sen-
tences and tokens, each document annotated with
its polarity label. Then we show code to collect the
training data vocabulary and assign a unique ID to
each entry. Documents are then encoded as bag-
of-word feature vectors in NumPy (Harris et al.,
2020), optionally clipped at frequency one to pro-
duce binary vectors. Finally, we show how to train
a multinomial Naive Bayes model with scikit-learn,
obtain a confusion matrix, measure accuracy and
report cross-validation results. The functionality is
demonstrated using a series of increasingly specific
Python classes.

What the students did Most students carried
out an extensive range of experiments, for the most
part following the suggestions we provided at the
assignment briefing and the strategies outlined in
the lectures. The baseline accuracy of 83% was
improved in most projects by about 3-5 points. The
algorithm which gave the best results was logistic

regression, whose default hyper-parameters worked
well. The students who reported the highest accu-
racy scores used a combination of token unigrams,
bigrams and trigrams, whereas most students di-
rectly compared each n-gram order. The students
were free to change the code structure, and indeed
some of them took the opportunity to refactor the
code to a style that better suited them.

2.2 Notebook Two: Sentiment Polarity with
BERT

The assignment The aim of this second assign-
ment is to help students feel comfortable using
BERT (Devlin et al., 2019). We provide a sample
notebook which shows how to fine-tune BERT on
the same task and dataset as in the previous assign-
ment. The students are asked to do one of three
things:

1. Perform a comparative error analysis of the
output of the BERT system(s) and the systems
from the previous assignment. The aim here is
to get the students thinking about interpreting
system output.

2. Using the code in this notebook and online
resources as examples, fine-tune BERT on a
different task. The aim here is to 1) allow the
students to experiment with something other
than movie review polarity classification and
explore their own interests, and 2) test their
research and problem-solving skills.

3. Attempt to improve the BERT-based system
provided in the notebook by experimenting
with different ways of overcoming the input
length restriction.

The notebook We exemplify how to fine-tune
BERT on the (Pang and Lee, 2004) dataset, using
Hugging Face Transformers (Wolf et al., 2020) and
PyTorch Lightning (Falcon, 2019). We introduce
the concept of subword units, showing BERT’s
token IDs for sample text input, the matching vo-
cabulary entries, the mapping to the original input
tokens and BERT’s special [CLS] and [SEP] to-
kens. Then, we show the length distribution of
documents in the data set and sketch strategies to
address the limited sequence length of BERT. We
implement taking 1) a slice from the start or 2) the
end of each document, or 3) combining a slice from
the start with a slice from the end of each document.
In doing so, we show the students how a dataset



114

can be read from a custom file format into the data
loader objects expected by the framework.

What the students did Of the ten students who
completed the assignment, three chose the first op-
tion of analysing system output and seven chose
the second option of fine-tuning BERT on a task
of their choosing. These included detection of
hate speech in tweets, sentence-level acceptability
judgements, document-level human rights viola-
tion detection, and sentiment polarity classification
applied to tweets instead of movie reviews. No stu-
dent opted for the third option of examining ways
to overcome the input length limit in BERT for the
(Pang and Lee, 2004) dataset.

3 Future Improvements

We surveyed the students to see what they thought
of the assignments. On the positive side, they found
them challenging and interesting, and they appreci-
ated the flexibility provided in the third assignment.
On the negative side, they felt that they involved
more effort than the marks warranted, and they
found the code in the notebooks to be unnecessar-
ily complicated. The object-oriented nature of the
code was also highlighted as a negative by some.
For next year, we plan to 1) streamline the code,
hiding some of the messy details, 2) reduce the
scope of the assignments, and 3) provide more
BERT fine-tuning example notebooks.

Acknowledgements

The second author’s contribution to this work was
funded by Science Foundation Ireland through
the SFI Frontiers for the Future programme
(19/FFP/6942). We thank the reviewers for their
helpful suggestions, and the DCU CA4023 students
for their hard work and patience!

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

WA et al. Falcon. 2019. Pytorch lightning. GitHub
repository.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Charles R. Harris, K. Jarrod Millman, Stéfan J.
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. 2020. Array programming with
NumPy. Nature, 585(7825):357–362.

Dan Jurafsky and James H. Martin. 2009. Speech and
language processing. Pearson Prentice Hall, Upper
Saddle River, N.J.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pages 271–
278, Barcelona, Spain.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://github.com/PyTorchLightning/pytorch-lightning
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

