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Abstract

Debugging a machine learning model is hard
since the bug usually involves the training data
and the learning process. This becomes even
harder for an opaque deep learning model if
we have no clue about how the model actually
works. In this survey, we review papers that
exploit explanations to enable humans to give
feedback and debug NLP models. We call this
problem explanation-based human debugging
(EBHD). In particular, we categorize and dis-
cuss existing work along three dimensions of
EBHD (the bug context, the workflow, and
the experimental setting), compile findings on
how EBHD components affect the feedback
providers, and highlight open problems that
could be future research directions.

1 Introduction

Explainable AI focuses on generating explana-
tions for AI models as well as for their predictions.
It is gaining more and more attention these days
since explanations are necessary in many appli-
cations, especially in high-stake domains such as
healthcare, law, transportation, and finance (Adadi
and Berrada, 2018). Some researchers have ex-
plored various merits of explanations to humans,
such as supporting human decision making (Lai
and Tan, 2019; Lertvittayakumjorn et al., 2021),
increasing human trust in AI (Jacovi et al., 2020),
and even teaching humans to perform challenging
tasks (Lai et al., 2020). On the other hand, ex-
planations can benefit the AI systems as well, for
example, when explanations are used to promote
system acceptance (Cramer et al., 2008), to verify
the model reasoning (Caruana et al., 2015), and to
find potential causes of errors (Han et al., 2020).

In this paper, we review progress to date spe-
cifically on how explanations have been used in
the literature to enable humans to fix bugs in
NLP models. We refer to this research area as
explanation-based human debugging (EBHD), as

a general umbrella term encompassing explana-
tory debugging (Kulesza et al., 2010) and human-
in-the-loop debugging (Lertvittayakumjorn et al.,
2020). We define EBHD as the process of fixing
or mitigating bugs in a trained model using human
feedback given in response to explanations for the
model. EBHD is helpful when the training data
at hand leads to suboptimal models (due, for in-
stance, to biases or artifacts in the data), and hence
human knowledge is needed to verify and improve
the trained models. In fact, EBHD is related to
three challenging and intertwined issues in NLP:
explainability (Danilevsky et al., 2020), inter-
active and human-in-the-loop learning (Amershi
et al., 2014; Wang et al., 2021), and knowledge
integration (von Rueden et al., 2021; Kim et al.,
2021). Although there are overviews for each of
these topics (as cited above), our paper is the first
to draw connections among the three towards the
final application of model debugging in NLP.

Whereas most people agree on the meaning
of the term bug in software engineering, vari-
ous meanings have been ascribed to this term in
machine learning (ML) research. For example,
Selsam et al. (2017) considered bugs as imple-
mentation errors, similar to software bugs, while
Cadamuro et al. (2016) defined a bug as a partic-
ularly damaging or inexplicable test error. In this
paper, we follow the definition of (model) bugs
from Adebayo et al. (2020) as contamination in
the learning and/or prediction pipeline that makes
the model produce incorrect predictions or learn
error-causing associations. Examples of bugs in-
clude spurious correlation, labeling errors, and un-
desirable behavior in out-of-distribution testing.

The term debugging is also interpreted differ-
ently by different researchers. Some consider de-
bugging as a process of identifying or uncovering
causes of model errors (Parikh and Zitnick, 2011;
Graliński et al., 2019), while others stress that de-
bugging must not only reveal the causes of prob-
lems but also fix or mitigate them (Kulesza et al.,
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Paper
Context Workflow

Setting
Task Model Bug Exp. Exp. Feedback Updatesources scope method

Kulesza et al. (2009) TC NB AR G,L SE LB,WS M,D SP
Stumpf et al. (2009) TC NB SS L SE WO T SP
Kulesza et al. (2010) TC NB SS G,L SE WO,LB M,D SP
Kulesza et al. (2015) TC NB AR G,L SE WO,WS M SP
Ribeiro et al. (2016) TC SVM AR L PH WO D CS
Koh and Liang (2017) TC LR WL L PH LB D SM

Ribeiro et al. (2018b) VQA TellQA AR G PH RU D SPTC fastText AR,OD
Teso and Kersting (2019) TC LR AR L PH WO D SM
Cho et al. (2019) TQA NeOp AR L SE AT T NR
Khanna et al. (2019) TC LR WL L PH LB D SM
Lertvittayakumjorn et al. (2020) TC CNN AR,SS,OD G PH FE T CS
Smith-Renner et al. (2020) TC NB AR,SS L SE LB,WO M,D CS
Han and Ghosh (2020) TC LR WL L PH LB D SM
Yao et al. (2021) TC BERT* AR,OD L PH RE D,T SP
Zylberajch et al. (2021) NLI BERT AR L PH ES D SP

Table 1: Overview of existing work on EBHD of NLP models. We use abbreviations as follows:
Task: TC = Text Classification (single input), VQA = Visual Question Answering, TQA = Table
Question Answering, NLI = Natural Language Inference / Model: NB = Naive Bayes, SVM = Support
Vector Machines, LR = Logistic Regression, TellQA = Telling QA, NeOp = Neural Operator, CNN =
Convolutional Neural Networks, BERT* = BERT and RoBERTa / Bug sources: AR = Natural artifacts,
SS = Small training subset, WL = Wrong label injection, OD = Out-of-distribution tests / Exp. scope:
G = Global explanations, L = Local explanations / Exp. method: SE = Self-explaining, PH = Post-hoc
method / Feedback (form): LB = Label, WO = Word(s), WS = Word(s) Score, ES = Example Score,
FE = Feature, RU = Rule, AT = Attention, RE = Reasoning / Update: M = Adjust the model parameters,
D = Improve the training data, T = Influence the training process / Setting: SP = Selected participants,
CS = Crowdsourced participants, SM = Simulation, NR = Not reported.

2015; Yousefzadeh and O’Leary, 2019). In this
paper, we adopt the latter interpretation.

Scope of the Survey. We focus on work using
explanations of NLP models to expose whether
there are bugs and exploit human feedback to
fix the bugs (if any). To collect relevant papers,
we started from some pivotal EBHD work (e.g.,
Kulesza et al., 2015; Ribeiro et al., 2016; Teso and
Kersting, 2019), and added EBHD papers citing or
being cited by the pivotal work (e.g., Stumpf et al.,
2009; Kulesza et al., 2010; Lertvittayakumjorn
et al., 2020; Yao et al., 2021). Next, to ensure that
we did not miss any important work, we searched
for papers on Semantic Scholar1 using the Car-
tesian product of five keyword sets: {debugging},
{text, NLP}, {human, user, interactive, feedback},
{explanation, explanatory}, and {learning}. With
16 queries in total, we collected the top 100 pa-

1https://www.semanticscholar.org/.

pers (ranked by relevancy) for each query and kept
only the ones appearing in at least 2 out of the
16 query results. This resulted in 234 papers that
we then manually checked, leading to selecting a
few additional papers, including Han and Ghosh
(2020) and Zylberajch et al. (2021). The overall
process resulted in 15 papers listed in Table 1
as the selected studies primarily discussed in this
survey. In contrast, some papers from the fol-
lowing categories appeared in the search results,
but were not selected because, strictly speaking,
they are not in the main scope of this survey: de-
bugging without explanations (Kang et al., 2018),
debugging outside the NLP domain (Ghai et al.,
2021; Popordanoska et al., 2020; Bekkemoen and
Langseth, 2021), refining the ML pipeline instead
of the model (Lourenço et al., 2020; Schoop et al.,
2020), improving the explanations instead of the
model (Ming et al., 2019), and work centered on
revealing but not fixing bugs (Ribeiro et al., 2020;
Krause et al., 2016; Krishnan and Wu, 2017).
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Figure 1: A general framework for explanation-based human debugging (EBHD) of NLP models, consisting of
the inspected (potentially buggy) model, the humans providing feedback, and a three-step workflow. Boxes list
examples of the options (considered in the selected studies) for the components or steps in the general framework.

Figure 2: The proposal by Ribeiro et al. (2016) as an instance of the general EBHD framework.

General Framework. EBHD consists of three
main steps as shown in Figure 1. First, the expla-
nations, which provide interpretable insights into
the inspected model and possibly reveal bugs, are
given to humans. Then, the humans inspect the
explanations and give feedback in response. Fi-
nally, the feedback is used to update and improve
the model. These steps can be carried out once, as
a one-off improvement, or iteratively, depending
on how the debugging framework is designed.

As a concrete example, Figure 2 illustrates how
Ribeiro et al. (2016) improved an SVM text clas-
sifier trained on the 20Newsgroups dataset (Lang,
1995). This dataset has many artifacts that could
make the model rely on wrong words or tokens
when making predictions, reducing its generaliz-
ability.2 To perform EBHD, Ribeiro et al. (2016)
recruited humans from a crowdsourcing platform
(i.e., Amazon Mechanical Turk) and asked them to
inspect LIME explanations3 (i.e., word relevance

2For more details, please see Section 2.1.3.
3LIME stands for Local Interpretable Model agnostic

Explanations (Ribeiro et al., 2016). For each model predic-
tion, it returns relevance scores for words in the input text to
show how important each word is for the prediction.

scores) for model predictions of ten examples.
Then, the humans gave feedback by identifying
words in the explanations that should not have
received high relevance scores (i.e., supposed to
be the artifacts). These words were then removed
from the training data, and the model was re-
trained. The process was repeated for three rounds,
and the results show that the model generalized
better after every round. Using the general frame-
work in Figure 1, we can break the framework of
Ribeiro et al. (2016) into components as depicted
in Figure 2. Throughout the paper, when review-
ing the selected studies, we will use the general
framework in Figure 1 for analysis, comparison,
and discussion.

Human Roles. To avoid confusion, it is worth
noting that there are actually two human roles
in the EBHD process. One, of course, is that
of feedback provider(s), looking at the explana-
tions and providing feedback (noted as ‘Human’
in Figure 1). The other is that of model devel-
oper(s), training the model and organizing the
EBHD process (not shown in Figure 1). In prac-
tice, a person could be both model developer
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and feedback provider. This usually happens dur-
ing the model validation and improvement phase,
where the developers try to fix the bugs them-
selves. Sometimes, however, other stakeholders
could also take the feedback provider role. For
instance, if the model is trained to classify elec-
tronic medical records, the developers (who are
mostly ML experts) hardly have the medical
knowledge to provide feedback. So, they may ask
doctors acting as consultants to the development
team to be the feedback providers during the
model improvement phase. Further, EBHD can
be carried out after deployment, with end users
as the feedback providers. For example, a model
auto-suggesting the categories of new emails to
end users can provide explanations supporting the
suggestions as part of its normal operation. Also,
it can allow the users to provide feedback to both
the suggestions and the explanations. Then, a rou-
tine written by the developers will be triggered to
process the feedback and update the model auto-
matically to complete the EBHD workflow. In this
case, we need to care about the trust, frustration,
and expectation of the end users while and after
they give feedback. In conclusion, EBHD can take
place practically both before and after the model
is deployed, and many stakeholders can act as the
feedback providers, including, but not limited to,
the model developers, the domain experts, and the
end users.

Paper Organization. Section 2 explains the
choices made by existing work to achieve EBHD
of NLP models. This illustrates the current state of
the field with the strengths and limitations of exist-
ing work. Naturally, though, a successful EBHD
framework cannot neglect the ‘‘imperfect’’ nature
of feedback providers, who may not be an ideal
oracle. Hence, Section 3 compiles relevant human
factors that could affect the effectiveness of the
debugging process as well as the satisfaction of the
feedback providers. After that, we identify open
challenges of EBHD for NLP in Section 4 before
concluding the paper in Section 5.

2 Categorization of Existing Work

Table 1 summarizes the selected studies along
three dimensions, amounting to the debugging
context (i.e., tasks, models, and bug sources), the
workflow (i.e., the three steps in our general frame-
work), and the experimental setting (i.e., the mode

of human engagement). We will discuss these di-
mensions with respect to the broader knowledge
of explainable NLP and human-in-the-loop learn-
ing, to shed light on the current state of EBHD of
NLP models.

2.1 Context

To demonstrate the debugging process, existing
work needs to set up the bug situation they aim
to fix, including the target NLP task, the in-
spected ML model, and the source of the bug to be
addressed.

2.1.1 Tasks
Most papers in Table 1 focus on text classifica-
tion with single input (TC) for a variety of specific
problems such as email categorization (Stumpf
et al., 2009), topic classification (Kulesza et al.,
2015; Teso and Kersting, 2019), spam classifica-
tion (Koh and Liang, 2017), sentiment analysis
(Ribeiro et al., 2018b), and auto-coding of tran-
scripts (Kulesza et al., 2010). By contrast,
Zylberajch et al. (2021) targeted natural lan-
guage inference (NLI) which is a type of text-pair
classification, predicting whether a given premise
entails a given hypothesis. Finally, two papers in-
volve question answering (QA), i.e., Ribeiro et al.
(2018b) (focusing on visual question answering
[VQA]) and Cho et al. (2019) (focusing on table
question answering [TQA]).

Ghai et al. (2021) suggested that most research-
ers work on TC because, for this task, it is much
easier for lay participants to understand explana-
tions and give feedback (e.g., which keywords
should be added or removed from the list of top
features).4 Meanwhile, some other NLP tasks re-
quire the feedback providers to have linguistic
knowledge such as part-of-speech tagging, pars-
ing, and machine translation. The need for lin-
guists or experts renders experiments for these
tasks more difficult and costly. However, we sug-
gest that there are several tasks where the trained
models are prone to be buggy but the tasks are
underexplored in the EBHD setting, though they
are not too difficult to experiment on with lay
people. NLI, the focus of Zylberajch et al. (2021),
is one of them. Indeed, McCoy et al. (2019) and
Gururangan et al. (2018) showed that NLI models

4Nevertheless, some specific TC tasks, such as authorship
attribution (Juola, 2007) and deceptive review detection (Lai
et al., 2020), are exceptions because lay people are generally
not good at these tasks. Thus, they are not suitable for EBHD.
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can exploit annotation artifacts and fallible syn-
tactic heuristics to make predictions rather than
learning the logic of the actual task. Other tasks
and their bugs include: QA, where Ribeiro et al.
(2019) found that the answers from models are
sometimes inconsistent (i.e., contradicting previ-
ous answers); and reading comprehension, where
Jia and Liang (2017) showed that models, which
answer a question by reading a given paragraph,
can be fooled by an irrelevant sentence being ap-
pended to the paragraph. These non-TC NLP tasks
would be worth exploring further in the EBHD
setting.

2.1.2 Models
Early work used Naive Bayes models with bag-
of-words (NB) as text classifiers (Kulesza et al.,
2009, 2010; Stumpf et al., 2009), which are rel-
atively easy to generate explanations for and to
incorporate human feedback into (discussed in
Section 2.2). Other traditional models used in-
clude logistic regression (LR) (Teso and Kersting,
2019; Han and Ghosh, 2020) and support vector
machines (SVM) (Ribeiro et al., 2016), both with
bag-of-words features. The next generation of
tested models involves word embeddings. For text
classification, Lertvittayakumjorn et al. (2020)
focused on convolutional neural networks (CNN)
(Kim, 2014) and touched upon bidirectional LSTM
networks (Hochreiter and Schmidhuber, 1997),
while Ribeiro et al. (2018b) used fastText, relying
also on n-gram features (Joulin et al., 2017). For
VQA and TQA, the inspected models used atten-
tion mechanisms for attending to relevant parts
of the input image or table. These models are
Telling QA (Zhu et al., 2016) and Neural Oper-
ator (NeOp) (Cho et al., 2018), used by Ribeiro
et al. (2018b) and Cho et al. (2019), respectively.
While the NLP community nowadays is mainly
driven by pre-trained language models (Qiu et al.,
2020) with many papers studying their behaviors
(Rogers et al., 2021; Hoover et al., 2020), only
Zylberajch et al. (2021) and Yao et al. (2021)
have used pre-trained language models, including
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), as test beds for EBHD.

2.1.3 Bug Sources
Most of the papers in Table 1 experimented on
training datasets with natural artifacts (AR), which
cause spurious correlation bugs (i.e., the input
texts having signals that are correlated to but not

the reasons for specific outputs) and undermine
models’ generalizability. Out of the 15 papers
we surveyed, 5 used the 20Newsgroups dataset
(Lang, 1995) as a case study, because it has many
natural artifacts. For example, some punctuation
marks appear more often in one class due to the
writing styles of the authors contributing to the
class, so the model uses these punctuation marks
as clues to make predictions. However, because
20Newsgroups is a topic classification dataset, a
better model should focus more on the topic of
the content since the punctuation marks can also
appear in other classes, especially when we apply
the model to texts in the wild. Apart from clas-
sification performance drops, natural artifacts can
also cause model biases, as shown in De-Arteaga
et al. (2019) and Park et al. (2018) and debugged
in Lertvittayakumjorn et al. (2020) and Yao et al.
(2021).

In the absence of strong natural artifacts, bugs
can still be simulated using several techniques.
First, using only a small subset of labeled data
(SS) for training could cause the model to exploit
spurious correlation leading to poor performance
(Kulesza et al., 2010). Second, injecting wrong
labels (WL) into the training data can obviously
blunt the model quality (Koh and Liang, 2017).
Third, using out-of-distribution tests (OD) can
reveal that the model does not work effectively
in the domains that it has not been trained on
(Lertvittayakumjorn et al., 2020; Yao et al., 2021).
All of these techniques give rise to undesirable
model behaviors, requiring debugging. Another
technique, not found in Table 1 but suggested in
related work (Idahl et al., 2021), is contaminating
input texts in the training data with decoys (i.e.,
injected artifacts) which could deceive the model
into predicting for the wrong reasons. This has
been experimented with in the computer vision
domain (Rieger et al., 2020), and its use in the
EBHD setting in NLP could be an interesting
direction to explore.

2.2 Workflow

This Section describes existing work around the
three steps of the EBHD workflow in Figure 1,
namely, how to generate and present the explana-
tions, how to collect human feedback, and how to
update the model using the feedback. Researchers
need to make decisions on these key points harmo-
niously to create an effective debugging workflow.
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2.2.1 Providing Explanations

The main role of explanations here is to provide
interpretable insights into the model and uncover
its potential misbehavior or irrationality, which
sometimes cannot be noticed by looking at the
model outputs or the evaluation metrics.

Explanation Scopes. Basically, there are two
main types of explanations that could be provided
to feedback providers. Local explanations (L) ex-
plain the predictions by the model for individual
inputs. In contrast, global explanations (G) explain
the model overall, independently of any specific
inputs. It can be seen from Table 1 that most ex-
isting work use local explanations. One reason for
this may be that, for complex models, global ex-
planations can hardly reveal details of the models’
inner workings in a comprehensible way to users.
So, some bugs are imperceptible in such high-level
global explanations and then not corrected by the
users. For example, the debugging framework
FIND, proposed by Lertvittayakumjorn et al.
(2020), uses only global explanations, and it was
shown to work more effectively on significant
bugs (such as gender bias in abusive language
detection) than on less-obvious bugs (such as
dataset shift between product types of sentiment
analysis on product reviews). Otherwise, Ribeiro
et al. (2018b) presented adversarial replacement
rules as global explanations to reveal the model
weaknesses only, without explaining how the
whole model worked.

On the other hand, using local explanations
has limitations in that it demands a large amount
of effort from feedback providers to inspect the
explanation of every single example in the train-
ing/validation set. With limited human resources,
efficient ways to rank or select examples to ex-
plain would be required (Idahl et al., 2021). For
instance, Khanna et al. (2019) and Han and Ghosh
(2020) targeted explanations of incorrect predic-
tions in the validation set. Ribeiro et al. (2016)
picked sets of non-redundant local explanations to
illustrate the global picture of the model. Instead,
Teso and Kersting (2019) leveraged heuristics
from active learning to choose unlabeled exam-
ples that maximize some informativeness criteria.

Recently, some work in explainable AI consid-
ers generating explanations for a group of pre-
dictions (Johnson et al., 2020; Chan et al., 2020)
(e.g., for all the false positives of a certain class),

thus staying in the middle of the two extreme ex-
planation types (i.e., local and global). This kind
of explanation is not too fine-grained, yet it can
capture some suspicious model behaviors if we
target the right group of examples. So, it would be
worth studying in the context of EBHD (to the best
of our knowledge, no existing study experiments
with it).

Generating Explanations. To generate expla-
nations in general, there are two important ques-
tions we need to answer. First, which format
should the explanations have? Second, how do we
generate the explanations?

For the first question, we see many possible
answers in the literature of explainable NLP (e.g.,
see the survey by Danilevsky et al., 2020). For
instance, input-based explanations (so-called fea-
ture importance explanations) identify parts of the
input that are important for the prediction. The
explanation could be a list of importance scores
of words in the input, so-called attribution scores
or relevance scores (Lundberg and Lee, 2017;
Arras et al., 2016). Example-based explanations
select influential, important, or similar examples
from the training set to explain why the model
makes a specific prediction (Han et al., 2020;
Guo et al., 2020). Rule-based explanations pro-
vide interpretable decision rules that approximate
the prediction process (Ribeiro et al., 2018a).
Adversarial-based explanations return the small-
est changes in the inputs that could change
the predictions, revealing the model misbehavior
(Zhang et al., 2020a). In most NLP tasks, input-
based explanations are the most popular approach
for explaining predictions (Bhatt et al., 2020).
This is also the case for EBHD, as most selected
studies use input-based explanations (Kulesza
et al., 2009, 2010; Teso and Kersting, 2019; Cho
et al., 2019) followed by example-based expla-
nations (Koh and Liang, 2017; Khanna et al.,
2019; Han and Ghosh, 2020). Meanwhile, only
Ribeiro et al. (2018b) use adversarial-based expla-
nations, whereas Stumpf et al. (2009) experiment
with input-based, rule-based, and example-based
explanations.

For the second question, there are two ways
to generate the explanations: self-explaining meth-
ods and post-hoc explanation methods. Some
models (e.g., Naive Bayes, logistic regression, and
decision trees) are self-explaining (SE) (Danilevsky
et al., 2020), also referred to as transparent
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(Adadi and Berrada, 2018) or inherently inter-
pretable (Rudin, 2019). Local explanations of
self-explaining models can be obtained at the same
time as predictions, usually from the process
of making those predictions, while the models
themselves can often serve directly as global
explanations. For example, feature importance
explanations for a Naive Bayes model can be
directly derived from the likelihood terms in the
Naive Bayes equation, as done by several papers in
Table 1 (Kulesza et al., 2009; Smith-Renner et al.,
2020). Also, using attention scores on input as
explanations, as done in Cho et al. (2019), is a
self-explaining method because the scores were
obtained during the prediction process.

In contrast, post-hoc explanation methods (PH)
perform additional steps to extract explanations
after the model is trained (for a global explana-
tion) or after the prediction is made (for a local
explanation). If the method is allowed to access
model parameters, it may calculate word relevance
scores by propagating the output scores back to the
input words (Arras et al., 2016) or analyzing the
derivative of the output with respect to the input
words (Smilkov et al., 2017; Sundararajan et al.,
2017). If the method cannot access the model pa-
rameters, it may perturb the input and see how
the output changes to estimate the importance of
the altered parts of the input (Ribeiro et al., 2016;
Jin et al., 2020). The important words and/or the
relevance scores can be presented to the feedback
providers in the EBHD workflow in many forms
such as a list of words and their scores (Teso and
Kersting, 2019; Ribeiro et al., 2016), word clouds
(Lertvittayakumjorn et al., 2020), and a parse tree
(Yao et al., 2021). Meanwhile, the influence func-
tions method, used in Koh and Liang (2017) and
Zylberajch et al. (2021), identifies training exam-
ples which influence the prediction by analyzing
how the prediction would change if we did not
have each training point. This is another post-hoc
explanation method as it takes place after predic-
tion. It is similar to the other two example-based
explanation methods used in (Khanna et al., 2019;
Han and Ghosh, 2020).

Presenting Explanations. It is important to
carefully design the presentation of explanations,
taking into consideration the background knowl-
edge, desires, and limits of the feedback providers.
In the debugging application by Kulesza et al.
(2009), lay users were asked to provide feedback

to email categorizations predicted by the system.
The users were allowed to ask several Why ques-
tions (inspired by Myers et al., 2006) through
either the menu bar, or by right-clicking on the
object of interest (such as a particular word).
Examples include ‘‘Why will this message be
filed to folder A?’’, ‘‘Why does word x matter
to folder B?’’. The system then responded by
textual explanations (generated using templates),
together with visual explanations such as bar plots
for some types of questions. All of these made
the interface become more user-friendly. In 2015,
Kulesza et al. proposed, as desirable principles,
that the presented explanations should be sound
(i.e., truthful in describing the underlying model),
complete (i.e., not omitting important informa-
tion about the model), but not overwhelming (i.e.,
remaining comprehensible). However, these prin-
ciples are challenging especially when working
on non-interpretable complex models.

2.2.2 Collecting Feedback
After seeing explanations, humans generally de-
sire to improve the model by giving feedback
(Smith-Renner et al., 2020). Some existing work
asked humans to confirm or correct machine-
computed explanations. Hence, the form of
feedback fairly depends on the form of the ex-
planations, and in turn this shapes how to update
the model too (discussed in Section 2.2.3). For
text classification, most EBHD papers asked
humans to decide which words (WO) in the ex-
planation (considered important by the model)
are in fact relevant or irrelevant (Kulesza et al.,
2010; Ribeiro et al., 2016; Teso and Kersting,
2019). Some papers even allowed humans to ad-
just the word importance scores (WS) (Kulesza
et al., 2009, 2015). This is analogous to specify-
ing relevancy scores for example-based explana-
tions (ES) in Zylberajch et al. (2021). Meanwhile,
feedback at the level of learned features (FE) (i.e.,
the internal neurons in the model) and learned
rules (RU) rather than individual words, was asked
in Lertvittayakumjorn et al. (2020) and Ribeiro
et al. (2018b), respectively. Additionally, hu-
mans may be asked to check the predicted labels
(Kulesza et al., 2009; Smith-Renner et al., 2020)
or even the ground truth labels (collectively noted
as LB in Table 1) (Koh and Liang, 2017; Khanna
et al., 2019; Han and Ghosh, 2020). Targeting
the table question answering, Cho et al. (2019)
asked humans to identify where in the table and
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the question the model should focus (AT). This is
analogous to identifying relevant words to attend
for text classification.

It is likely that identifying important parts in
the input is sufficient to make the model accom-
plish simple text classification tasks. However,
this might not be enough for complex tasks that
require reasoning. Recently, Yao et al. (2021)
asked humans to provide, as feedback, composi-
tional explanations to show how the humans would
reason (RE) about the models’ failure cases. An
example of the feedback for a hate speech de-
tection is ‘‘Because X is the word dumb, Y is
a hateful word, and X is directly before Y , the
attribution scores of both X and Y as well as the
interaction score between X and Y should be in-
creased’’. To acquire richer information like this
as feedback, their framework requires more exper-
tise from the feedback providers. In the future, it
would be interesting to explore how we can collect
and utilize other forms of feedback, for example,
natural language feedback (Camburu et al., 2018),
new training examples (Fiebrink et al., 2009), and
other forms of decision rules used by humans
(Carstens and Toni, 2017).

2.2.3 Updating the Model
Techniques to incorporate human feedback
into the model can be categorized into three
approaches.

(1) Directly adjust the model parameters (M).
When the model is transparent and the explanation
displays the model parameters in an intelligible
way, humans can directly adjust the parameters
based on their judgements. This idea was adopted
by Kulesza et al. (2009, 2015) where humans
can adjust a bar chart showing word importance
scores, corresponding to the parameters of the
underlying Naive Bayes model. In this special
case, steps 2 and 3 in Figure 1 are combined into a
single step. Besides, human feedback can be used
to modify the model parameters indirectly. For
example, Smith-Renner et al. (2020) increased a
word weight in the Naive Bayes model by 20%
for the class that the word supported, according to
human feedback, and reduced the weight by 20%
for the opposite class (binary classification). This
choice gives good results, although it is not clear
why and whether 20% is the best choice here.

Overall, this approach is fast because it does not
require model retraining. However, it is important

to ensure that the adjustments made by humans
generalize well to all examples. Therefore, the
system should update the overall results (e.g., per-
formance metrics, predictions, and explanations)
in real time after applying any adjustment, so the
humans can investigate the effects and further
adjust the model parameters (or undo the adjust-
ments) if necessary. This agrees with the correct-
ability principles proposed by Kulesza et al.
(2015) that the system should be actionable and
reversible, honor user feedback, and show incre-
mental changes.

(2) Improve the training data (D). We can use
human feedback to improve the training data and
retrain the model to fix bugs. This approach in-
cludes correcting mislabeled training examples
(Koh and Liang, 2017; Han and Ghosh, 2020),
assigning noisy labels to unlabeled examples (Yao
et al., 2021), removing irrelevant words from
input texts (Ribeiro et al., 2016), and creating aug-
mented training examples to reduce the effects
of the artifacts (Ribeiro et al., 2018b; Teso and
Kersting, 2019; Zylberajch et al., 2021). As this
approach modifies the training data only, it is
applicable to any model regardless of the model
complexity.

(3) Influence the training process (T). Another
approach is to influence the (re-)training pro-
cess in a way that the resulting model will behave
as the feedback suggests. This approach could be
either model-specific (such as attention supervi-
sion) or model-agnostic (such as user co-training).
Cho et al. (2019) used human feedback to super-
vise attention weights of the model. Similarly, Yao
et al. (2021) added a loss term to regularize expla-
nations guided by human feedback. Stumpf et al.
(2009) proposed (i) constraint optimization, trans-
lating human feedback into constraints governing
the training process and (ii) user co-training, using
feedback as another classifier working together
with the main ML model in a semi-supervised
learning setting. Lertvittayakumjorn et al. (2020)
disabled some learned features deemed irrelevant,
based on the feedback, and re-trained the model,
forcing it to use only the remaining features. With
many techniques available, however, there has
not been a study testing which technique is more
appropriate for which task, domain, or model ar-
chitecture. The comparison issue is one of the
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open problems for EBHD research (to be dis-
cussed in Section 4).

2.2.4 Iteration

The debugging workflow (explain, feedback, and
update) can be done iteratively to gradually im-
prove the model where the presented explanation
changes after the model update. This allows hu-
mans to fix vital bugs first and finer bugs in later
iterations, as reflected in Ribeiro et al. (2016)
and Koh and Liang (2017) via the performance
plots. However, the interactive process could be
susceptible to local decision pitfalls where lo-
cal improvements for individual predictions could
add up to inferior overall performance (Wu et al.,
2019). So, we need to ensure that the update in the
current iteration is generally favorable and does
not overwrite the good effects of previous updates.

2.3 Experimental Setting

To conduct experiments, some studies in Table 1
selected human participants (SP) to be their feed-
back providers. The selected participants could
be people without ML/NLP knowledge (Kulesza
et al., 2010, 2015) or with ML/NLP knowledge
(Ribeiro et al., 2018b; Zylberajch et al., 2021)
depending on the study objectives and the com-
plexity of the feedback process. Early work even
conducted experiments with the participants in-
person (Stumpf et al., 2009; Kulesza et al., 2009,
2015). Although this limited the number of par-
ticipants (to less than 100), the researchers could
closely observe their behaviors and gain some
insights concerning human-computer interaction.

By contrast, some used a crowdsourcing plat-
form, Amazon Mechanical Turk5 in particular, to
collect human feedback for debugging the mod-
els. Crowdsourcing (CS) enables researchers to
conduct experiments at a large scale; however,
the quality of human responses could be vary-
ing. So, it is important to ensure some quality
control such as specifying required qualifications
(Smith-Renner et al., 2020), using multiple an-
notations per question (Lertvittayakumjorn et al.,
2020), having a training phase for participants,
and setting up some obvious questions to check if
the participants are paying attention to the tasks
(Egelman et al., 2014).

5https://www.mturk.com/.

Finally, simulation (SM), without real humans
involved but using oracles as human feedback in-
stead, has also been considered (for the purpose
of testing the EBHD framework only). For exam-
ple, Teso and Kersting (2019) set 20% of input
words as relevant using feature selection. These
were used to respond to post-hoc explanations,
that is, top k words selected by LIME. Koh and
Liang (2017) simulated mislabeled examples by
flipping the labels of a random 10% of the training
data. So, when the explanation showed suspicious
training examples, the true labels could be used to
provide feedback. Compared to the other settings,
simulation is faster and cheaper, yet its results
may not reflect the effectiveness of the framework
when deployed with real humans. Naturally, hu-
man feedback is sometimes inaccurate and noisy,
and humans could also be interrupted or frus-
trated while providing feedback (Amershi et al.,
2014). These factors, discussed in detail in the
next Section, cannot be thoroughly studied in only
simulated experiments.

3 Research on Human Factors

Though the major goal of EBHD is to improve
models, we cannot disregard the effect on feed-
back providers of the debugging workflow. In
this Section, we compile findings concerning how
explanations and feedback could affect the hu-
mans, discussed along five dimensions: model
understanding, willingness, trust, frustration, and
expectation. Although some of the findings were
not derived in NLP settings, we believe that they
are generalizable and worth discussing in the
context of EBHD.

3.1 Model Understanding
So far, we have used explanations as means to help
humans understand models and conduct informed
debugging. Hence, it is important to verify, at least
preliminarily, that the explanations help feedback
providers form an accurate understanding of how
the models work. This is an important prerequisite
towards successful debugging.

Existing studies have found that some expla-
nation forms are more conducive to developing
model understanding in humans than others.
Stumpf et al. (2009) found that rule-based and
keyword-based explanations were easier to un-
derstand than similarity-based explanations (i.e.,
explaining by similar examples in the training
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data). Also, they found that some users did not
understand why the absence of some words could
make the model become more certain about its pre-
dictions. Lim et al. (2009) found that explaining
why the system behaved and did not behave in a
certain way resulted in good user understanding of
the system, though the former way of explanation
(why) was more effective than the latter (why not).
Cheng et al. (2019) reported that interactive expla-
nations could improve users’ comprehension on
the model better than static explanations, although
the interactive way took more time. In addition,
revealing inner workings of the model could fur-
ther help understanding; however, it introduced
additional cognitive workload that might make
participants doubt whether they really understood
the model well.

3.2 Willingness
We would like humans to provide feedback for
improving models, but do humans naturally want
to? Prior to the emerging of EBHD, studies found
that humans are not willing to be constantly asked
about labels of examples as if they were just simple
oracles (Cakmak et al., 2010; Guillory and Bilmes,
2011). Rather, they want to provide more than
just data labels after being given explanations
(Amershi et al., 2014; Smith-Renner et al., 2020).
By collecting free-form feedback from users,
Stumpf et al. (2009) and Ghai et al. (2021) discov-
ered various feedback types. The most prominent
ones include removing-adding features (words),
tuning weights, and leveraging feature combina-
tions. Stumpf et al. (2009) further analyzed cat-
egories of background knowledge underlying the
feedback and found, in their experiment, that it
was mainly based on commonsense knowledge
and English language knowledge. Such knowl-
edge may not be efficiently injected into the model
if we exploit human feedback that contains only
labels. This agrees with some participants in
Smith-Renner et al. (2020), who described their
feedback as inadequate when they could only
confirm or correct predicted labels.

Although human feedback beyond labels con-
tains helpful information, it is naturally neither
complete nor precise. Ghai et al. (2021) observed
that human feedback usually focuses on a few
features that are most different from human ex-
pectation, ignoring the others. Also, they found
that humans, especially lay people, are not good at
correcting model explanations quantitatively (e.g.,

adjusting weights). This is consistent with the
findings of Miller (2019) that human explanations
are selective (in a biased way) and rarely refer
to probabilities but express causal relationships
instead.

3.3 Trust

Trust (as well as frustration and expectation, dis-
cussed next) is an important issue when the system
end users are feedback providers in the EBHD
framework. It has been discussed widely that ex-
planations engender human trust in AI systems
(Pu and Chen, 2006; Lipton, 2018; Toreini et al.,
2020). This trust may be misplaced at times. Show-
ing more detailed explanations can cause users to
over-rely on the system, leading to misuse where
users agree with incorrect system predictions
(Stumpf et al., 2016). Moreover, some users may
over trust the explanations (without fully under-
standing them) only because the tools generating
them are publicly available, widely used, and
showing appealing visualizations (Kaur et al.,
2020).

However, recent research reported that explana-
tions do not necessarily increase trust and reliance.
Cheng et al. (2019) found that, even though ex-
planations help users comprehend systems, they
cannot increase human trust in using the systems
in high-stakes applications involving lots of quali-
tative factors, such as graduate school admissions.
Smith-Renner et al. (2020) reported that explana-
tions of low-quality models decrease trust and sys-
tem acceptance as they reveal model weaknesses
to the users. According to Schramowski et al.
(2020), despite correct predictions, the trust still
drops if the users see from the explanations that the
model relies on the wrong reasons. These studies
go along with a perspective by Zhang et al. (2020b)
that explanations should help calibrate user per-
ceptions to the model quality, signaling whether
the users should trust or distrust the AI. Although,
in some cases, explanations successfully warned
users of faulty models (Ribeiro et al., 2016), this
is not easy when the model flaws are not obvi-
ous (Zhang et al., 2020b; Lertvittayakumjorn and
Toni, 2019).

Besides explanations, the effect of feedback
on human trust is quite inconclusive accord-
ing to some (but fewer) studies. On one hand,
Smith-Renner et al. (2020) found that, after lay
humans see explanations of low-quality models
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and lose their trust, the ability to provide feedback
makes human trust and acceptance rally, reme-
dying the situation. In contrast, Honeycutt et al.
(2020) reported that providing feedback decreases
human trust in the system as well as their per-
ception of system accuracy no matter whether the
system truly improves after being updated or not.

3.4 Frustration

Working with explanations can cause frustration
sometimes. Following the discussion on trust, ex-
planations of poor models increase user frustration
(as they reveal model flaws), whereas the ability
to provide feedback reduces frustration. Hence,
in general situations, the most frustrating condi-
tion is showing explanations to the users without
allowing them to give feedback (Smith-Renner
et al., 2020).

Another cause of frustration is the risk of de-
tailed explanations overloading users (Narayanan
et al., 2018). This is especially a crucial issue
for inherently interpretable models where all the
internal workings can be exposed to the users.
Though presenting all the details is comprehensive
and faithful, it could create barriers for lay users
(Gershon, 1998). In fact, even ML experts may feel
frustrated if they need to understand a decision tree
with a depth of ten or more. Poursabzi-Sangdeh
et al. (2018) found that showing all the model
internals undermined users’ ability to detect flaws
in the model, likely due to information overload.
So, they suggested that model internals should be
revealed only when the users request to see them.

3.5 Expectation

Smith-Renner et al. (2020) observed that some
participants expected the model to improve after
the session where they interacted with the model,
regardless of whether they saw explanations or
gave feedback during the interaction session.
EBHD should manage these expectations prop-
erly. For instance, the system should report
changes or improvements to users after the model
gets updated. It would be better if the changes can
be seen incrementally in real time (Kulesza et al.,
2015).

3.6 Summary

Based on the findings on human factors reviewed
in this Section, we summarize suggestions for
effective EBHD as follows.

Feedback Providers. Buggy models usually
lead to implausible explanations, adversely af-
fecting human trust in the system. Also, it is not
yet clear whether giving feedback increases or
decreases human trust. So, it is safer to let the de-
velopers or domain experts in the team (rather than
end users) be the feedback providers. For some
kinds of bugs, however, feedback from end users
is essential for improving the model. To maintain
their trust, we may collect their feedback implic-
itly (e.g., by inferring from their interactions with
the system after showing them the explanations
(Honeycutt et al., 2020)) or collect the feedback
without telling them that the explanations are of
the production system (e.g., by asking them to
answer a separate survey). All in all, we need dif-
ferent strategies to collect feedback from different
stakeholders.

Explanations. We should avoid using forms
of explanations that are difficult to understand,
such as similar training examples and absence of
some keywords in inputs, unless the humans are
already trained to interpret them. Also, too much
information should be avoided as it could overload
the humans; instead, humans should be allowed
to request more information if they are interested,
for example, by using interactive explanations
(Dejl et al., 2021).

Feedback. Given that human feedback is not
always complete, correct, or accurate, EBHD
should use it with care, for example, by relying on
collective feedback rather than individual feed-
back and allowing feedback providers to verify
and modify their feedback before applying it to
update the model.

Update. Humans, especially lay people, usually
expect the model to improve over time after they
give feedback. So, the system should display im-
provements after the model gets updated. Where
possible, showing the changes incrementally in
real time is preferred, as the feedback providers
can check if their feedback works as expected
or not.

4 Open Problems

This Section lists potential research directions and
open problems for EBHD of NLP models.
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4.1 Beyond English Text Classification

All papers in Table 1 conducted experiments only
on English datasets. We acknowledge that qual-
itatively analyzing explanations and feedback in
languages at which one is not fluent is not easy, not
to mention recruiting human subjects who know
the languages. However, we hope that, with more
multilingual data publicly available (Wolf et al.,
2020) and growing awareness in the NLP com-
munity (Bender, 2019), there will be more EBHD
studies targeting other languages in the near future.

Also, most existing EBHD works target text
classifiers. It would be interesting to conduct more
EBHD work for other NLP tasks such as reading
comprehension, question answering, and NLI, to
see whether existing techniques still work effec-
tively. Shifting to other tasks requires an under-
standing of specific bug characteristics in those
tasks. For instance, unlike bugs in text classifi-
cation, which are usually due to word artifacts,
bugs in NLI concern syntactic heuristics between
premises and hypotheses (McCoy et al., 2019).
Thus, giving human feedback at word level may
not be helpful, and more advanced methods may
be needed.

4.2 Tackling More Challenging Bugs

Lakkaraju et al. (2020) remarked that the evalu-
ation setup of existing EBHD work is often too
easy or unrealistic. For example, bugs are obvious
artifacts that could be removed using simple text
pre-processing (e.g., removing punctuation and
redacting named entities). Hence, it is not clear
how powerful such EBHD frameworks are when
dealing with real-world bugs. If bugs are not dom-
inant and happen less often, global explanations
may be too coarse-grained to capture them while
many local explanations may be needed to spot
a few appearances of the bugs, leading to ineffi-
ciency. As reported by Smith-Renner et al. (2020),
feedback results in minor improvements when the
model is already reasonably good.

Other open problems, whose solutions may help
deal with challenging bugs, include the following.
First, different people may give different feedback
for the same explanation. As raised by Ghai et al.
(2021), how can we integrate their feedback to ob-
tain robust signals for model update? How should
we deal with conflicts among feedback and train-
ing examples (Carstens and Toni, 2017)? Sec-
ond, confirming or removing what the model has

learned is easier than injecting, into the model, new
knowledge (which may not even be apparent in the
explanations). How can we use human feedback to
inject new knowledge, especially when the model
is not transparent? Lastly, EBHD techniques have
been proposed for tabular data and image data
(Shao et al., 2020; Ghai et al., 2021; Popordanoska
et al., 2020). Can we adapt or transfer them across
modalities to deal with NLP tasks?

4.3 Analyzing and Enhancing Efficiency

Most selected studies focus on improving correct-
ness of the model (e.g., by expecting a higher F1 or
a lower bias after debugging). However, only some
of them discuss efficiency of the proposed frame-
works. In general, we can analyze the efficiency
of an EBHD framework by looking at the effi-
ciency of each main step in Figure 1. Step 1 gen-
erates the explanations, so its efficiency depends
on the explanation method used and, in the case
of local explanation methods, the number of lo-
cal explanations needed. Step 2 lets humans give
feedback, so its efficiency concerns the amount
of time they spend to understand the explanations
and to produce the feedback. Step 3 updates the
model using the feedback, so its efficiency relates
to the time used for processing the feedback and
retraining the model (if needed). Existing work
mainly reported efficiency of steps 1 or step 2. For
instance, approaches using example-based expla-
nations measured the improved performance with
respect to the number of explanations computed
(step 1) (Koh and Liang, 2017; Khanna et al.,
2019; Han and Ghosh, 2020). Kulesza et al. (2015)
compared the improved F1 of EBHD with the F1
of instance labeling given the same amount of
time for humans to perform the task (step 2).
Conversely, Yao et al. (2021) compared the time
humans need to do EBHD versus instance label-
ing in order to achieve the equivalent degree of
correctness improvement (step 2).

None of the selected studies considered the ef-
ficiency of the three steps altogether. In fact, the
efficiency of steps 1 and 3 is important especially
for black box models where the cost of post-hoc
explanation generation and model retraining is
not negligible. It is even more crucial for iter-
ative or responsive EBHD. Thus, analyzing and
enhancing efficiency of EBHD frameworks (for
both machine and human sides) require further
research.
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4.4 Reliable Comparison Across Papers

User studies are naturally difficult to replicate as
they are inevitably affected by choices of user
interfaces, phrasing, population, incentives, and
so forth (Lakkaraju et al., 2020). Further, research
in ML rarely adopts practices from the human–
computer interaction community (Abdul et al.,
2018), limiting the possibility to compare across
studies. Hence, most existing work only considers
model performance before and after debugging or
compares the results among several configurations
of a single proposed framework. This leads to little
knowledge about which explanation types or feed-
back mechanisms are more effective across several
settings. Thus, one promising research direction
would be proposing a standard setup or a bench-
mark for evaluating and comparing EBHD frame-
works reliably across different settings.

4.5 Towards Deployment

So far, we have not seen EBHD research widely
deployed in applications, probably due to its diffi-
culty to set up the debugging aspects outside a re-
search environment. One way to promote adoption
of EBHD is to integrate EBHD frameworks into
available visualization systems such as the Lan-
guage Interpretability Tool (LIT) (Tenney et al.,
2020), allowing users to provide feedback to the
model after seeing explanations and supporting ex-
perimentation. Also, to move towards deployment,
it is important to follow human–AI interaction
guidelines (Amershi et al., 2019) and evaluate
EBHD with potential end users, not just via simu-
lation or crowdsourcing, since human factors play
an important role in real situations (Amershi et al.,
2014).

5 Conclusion

We presented a general framework of explanation-
based human debugging (EBHD) of NLP mod-
els and analyzed existing work in relation to the
components of this framework to illustrate the
state-of-the-art in the field. Furthermore, we sum-
marized findings on human factors with respect
to EBHD, suggested design practices accordingly,
and identified open problems for future studies.
As EBHD is still an ongoing research topic, we
hope that our survey will be helpful for guiding
interested researchers and for examining future
EBHD papers.
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Klaus-Robert Müller, and Wojciech Samek.
2016. Explaining predictions of non-linear
classifiers in NLP. In Proceedings of the 1st

1520

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00440/1983435/tacl_a_00440.pdf by guest on 18 February 2022

https://doi.org/10.1145/3173574.3174156
https://doi.org/10.1145/3173574.3174156
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1609/aimag.v35i4.2513
https://doi.org/10.1609/aimag.v35i4.2513
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300233


Workshop on Representation Learning for
NLP, pages 1–7, Berlin, Germany. Association
for Computational Linguistics. https://
doi.org/10.18653/v1/W16-1601

Yanzhe Bekkemoen and Helge Langseth. 2021.
Correcting classification: A Bayesian frame-
work using explanation feedback to improve
classification abilities. arXiv preprint arXiv:
2105.02653.

Emily Bender. 2019. The #benderrule: On naming
the languages we study and why it matters. The
Gradient.

Umang Bhatt, Alice Xiang, Shubham Sharma,
Adrian Weller, Ankur Taly, Yunhan Jia,
Joydeep Ghosh, Ruchir Puri, José MF Moura,
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