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Abstract

Dialog acts can be interpreted as the atomic
units of a conversation, more fine-grained than
utterances, characterized by a specific com-
municative function. The ability to structure a
conversational transcript as a sequence of dia-
log acts—dialog act recognition, including the
segmentation—is critical for understanding di-
alog. We apply two pre-trained transformer
models, XLNet and Longformer, to this task in
English and achieve strong results on Switch-
board Dialog Act and Meeting Recorder Dia-
log Act corpora with dialog act segmentation
error rates (DSER) of 8.4% and 14.2%. To
understand the key factors affecting dialog act
recognition, we perform a comparative anal-
ysis of models trained under different condi-
tions. We find that the inclusion of a broader
conversational context helps disambiguate
many dialog act classes, especially those in-
frequent in the training data. The presence of
punctuation in the transcripts has a massive
effect on the models’ performance, and a de-
tailed analysis reveals specific segmentation
patterns observed in its absence. Finally, we
find that the label set specificity does not affect
dialog act segmentation performance. These
findings have significant practical implications
for spoken language understanding applica-
tions that depend heavily on a good-quality
segmentation being available.

1 Introduction

Human dialog is a never-ending source of di-
versity, abundant with exceptions and surprising
ways to express one’s thoughts. As a commu-
nity, we have spent a massive effort in the past
few decades to help the machine achieve even
the slightest level of understanding of our means
of communication. Remarkably, to some extent,
we have succeeded. A consequence of this fact is
the widespread presence of so-called voice assis-
tants, that is, conversational agents of limited

capabilities, which have gained much popularity
in recent years.

While the main focus of modern dialog research
is placed on these human–machine interactions,
it is the conversation between humans that poses
the greatest challenges to spoken language under-
standing. Consider the task of intent recognition—
in a goal-oriented dialog, where the human expects
their machine interlocutor to have only limited
understanding capabilities, one can reasonably
expect there to be a single, self-contained and
straightforward utterance expressing the person’s
request. Siegert and Krüger (2018) show in a sub-
jective evaluation of Alexa users that they consider
such a conversation ‘‘more difficult’’ than talking
to a human. With a simpler dialog structure, it is
natural to approach intent recognition as a multi-
class classification task, by classifying each utter-
ance’s underlying intent.

The same task of intent recognition becomes
much more complex when the dialog involves two
or more humans. Their conversations are riddled
with various disfluencies, such as discourse mark-
ers, filled pauses, or back-channeling (Charniak
and Johnson, 2001). Shalyminov et al. (2018) pro-
pose multitask training for a disfluency detection
model capable of spotting hesitations, preposi-
tional phrase restarts, clausal restarts, and correc-
tions. Spontaneous dialogs are also characterized
by much more dynamic structure than written
text data. Kempson et al. (2000, 2016) show that
dialog may be viewed as a sequence of incre-
mental contributions—called split utterances—
rather than complete sentences, and propose the
Dynamic Syntax paradigm, claiming that standard
syntactic models are insufficient to capture dialog.
Another study (Purver et al., 2009) finds that up
to 20% of utterances in the British National Cor-
pus (Burnard, 2000) dialogs fit the definition of
split utterances, with about 3% of them being
cross-speaker utterance completions. Eshghi et al.
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Figure 1: An illustration of dialog acts in a Switchboard conversation. Note how the speaker turns may consist
of multiple dialog acts, indicating a different function for each utterance. Dialog act annotation allows us to
segment the conversation into meaningful units that can be used for downstream processing in spoken language
understanding (SLU) applications.

(2015) propose to view backchannels and other
discourse markers as feedback in conversation
that is a core component of its semantic structure,
rather than a nuisance in downstream processing.
This point is further argued by Purver et al. (2018),
who propose incremental models for detecting
miscommunication phenomena in human–human
conversations. Clearly, an attempt to determine a
person’s intent grows beyond a turn-level clas-
sification task in such scenarios.

Dialog acts are vital to understanding the struc-
ture of the dialog. One of their modern definitions
states that they are atomic units of conversation,
which are more fine-grained than utterances and
more specific in their function (Pareti and Lando,
2018). The part of utterance that forms a dialog act
is also known as a functional segment. Recently,
the definition, taxonomy, and annotation process
of dialog acts has been standardized through an
ISO norm (Bunt et al., 2012, 2017, 2020). Earlier
studies on this topic typically used custom-tailored
dialog act sets—notably, this category includes the
Dialog Act Markup in Several Layers (DAMSL)
scheme (Core and Allen, 1997), which was later
adopted and modified to annotate the Switchboard
corpus (Jurafsky et al., 1997; Stolcke et al., 2000),
illustrated in Figure 1. Interestingly, dialog acts
are related to the philosophy of language speech
acts theory introduced initially by Austin (1962),
in the sense that they view utterances as actions
performed by the speakers.

Dialog act recognition typically entails two
tasks: dialog act segmentation (DAS) and dialog
act classification (DAC). In this work, we address
both of them jointly and refer to their combination
further as dialog act recognition. At the time of the
conception of the first widely studied corpus for
this task, the Switchboard Dialog Act (SWDA),
DAS was considered a problem too difficult to ad-
dress, and the pioneering research focused solely
on the classification of dialog acts given the or-
acle segmentation (Stolcke et al., 2000). More
recent work attempts to retrieve the segmenta-
tion through conditional random fields (CRFs)
or recurrent neural networks (RNNs). However,
these models still suffer from a significant mar-
gin of error, as shown by Zhao and Kawahara
(2019) and later in Section 5.1. It is worth not-
ing that in some downstream applications, the
availability of high-quality segmentation is valu-
able regardless of any classification errors: Some
examples include intent classification (Pareti and
Lando, 2018), semantic clustering (Bergstrom and
Karahalios, 2009), or temporal sentiment analysis
(Clavel and Callejas, 2015), all of which heavily
depend on the segmentation.

To the best of our knowledge, the DAS per-
formance of transformer models (Vaswani et al.,
2017) has not yet been investigated. Transformers
recently demonstrated state-of-the-art performance
across a range of natural language processing
(NLP) tasks when combined with language model
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pre-training (Devlin et al., 2019; Yang et al.,
2019; Liu et al., 2019; Beltagy et al., 2020).
A major obstacle in applying transformer models
to DAS is their O(n2) computational complexity
with respect to the input sequence length, making
it infeasible to process conversations longer than
a couple of hundred tokens. Thus, there are few
transformer applications to segmentation tasks—
for example, Glavas and Somasundaran (2020)
employed transformers for topic segmentation, but
they assume that text had already been segmented
and use the sentence representations instead of
word representations as input to transformers.

To address the transformers’ limitations, we
investigate two approaches. In the first one, we
use XLNet (Yang et al., 2019), a model based on
the TransformerXL architecture (Dai et al., 2019),
which is capable of processing the input sequence
in windows while propagating the activations of
the intermediate layers across as additional inputs
in the following window. In the second approach,
we use Longformer (Beltagy et al., 2020), which
processes the whole sequence in a single pass,
but for each token attends only to neighboring N
other tokens, reducing the complexity to O(mn),
which is linear with respect to the input length.

Furthermore, we ask several questions to better
understand the factors affecting dialog act recog-
nition and design the experiments accordingly:

• What is the significance of seeing a larger
context in dialog act recognition? Contex-
tual dialog act models have been considered
before, but they were either classification
models with oracle segmentation or segmen-
tation models that look at a limited number
of past turns (see Sections 2.3 and 2.4).

• How strongly does text formatting, that is, the
presence of punctuation and capitalization,
affect the segmentation quality? This ques-
tion is of significant practical importance—
speech transcripts are often obtained through
an automatic speech recognition system, and
many of them do not offer enhanced text
formatting capabilities.

• How do the size and the specificity of the
dialog act label set affect the recognition
difficulty? In some applications, the segmen-
tation itself might be more important than
having a dialog act label—for example, when

clustering utterances to discover the expres-
sions with similar meaning. Would a large,
detailed dialog act label set still be beneficial
for such scenarios? Are dialog act labels nec-
essary at all, or is it sufficient to know when
they begin and end?

2 Related Work

2.1 Switchboard Dialog Act
The most widely studied dialog act dataset is
Switchboard (SWDA) (Jurafsky et al., 1997,
1998). It consists of telephone conversations, first
manually segmented into turns and utterances—
later formally called functional segments (Bunt
et al., 2012), that is, the units of dialogue act
annotation. Bunt et al. (2012) define them as a
minimal stretch of behavior with one or more
communicative functions. The total word count is
about 1.4M. The conversations have 1454 words
on average, and the longest one has 3122 words.
The Switchboard annotators originally used the
DAMSL labeling scheme (Core and Allen, 1997)
with 220 dialog acts and clustered them after an-
notation into a reduced label set. There seems to be
no consensus on the reduced label set size—some
of the studies using a 42-label set are Quarteroni
et al. (2011); Liu et al. (2017a); Ortega and Vu
(2018); Kumar et al. (2018), others use a 43-label
set (Ortega and Vu, 2017; Raheja and Tetreault,
2019; Zhao and Kawahara, 2019; Dang et al.,
2020).

2.2 Meeting Recorder Dialog Act
Meeting Recorder Dialog Act (MRDA) (Shriberg
et al., 2004) is a corpus of 75 meetings that took
place at the International Computer Science In-
stitute. The conversations involve more than two
speakers and are significantly longer than those in
SWDA. The mean word count is about 11k, and
the longest dialog has 22.5k words. There are 850k
words in total, making MRDA approximately half
the size of SWDA. The dialog act labeling scheme
is different from that in SWDA—the annotators
used a 51-act set that significantly overlaps with
SWDA-DAMSL (we refer to that as the full set).
These acts were later clustered, with two gran-
ularity levels, into a general set of 12 acts and
a basic set of 5 acts. The basic set is reduced
to the following classes: Statement, Question,
Backchannel, Disruption, and Floor-Grabber. We
refer the reader to Shriberg et al. (2004) for a
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detailed comparison of dialog act classes between
SWDA and MRDA.

2.3 Dialog Act Classification

There are two main groups of studies: The first as-
sumes that the segmentation is known and consid-
ers dialog act recognition as a pure classification
task. The original SWDA authors first take such
an approach with a hidden Markov model (HMM)
(Jurafsky et al., 1998). Others have introduced
CRFs to solve this task (Quarteroni et al., 2011).
Some authors found that considering the context
explicitly in RNN models helps dialog act classi-
fication (Ortega and Vu, 2017; Liu et al., 2017a;
Kumar et al., 2018; Raheja and Tetreault, 2019;
Dai et al., 2020). Also, it has been shown that
incorporating acoustic/prosodic features helps as
well to some extent (Ortega and Vu, 2018; Si et al.,
2020). Colombo et al. (2020) report the best
result to date for SWDA classification—an accu-
racy of 85%, obtained by a sequence-to-sequence
(seq2seq) GRU model with guided attention. For
MRDA, the best classification accuracy is 92.2%
reported by Li et al. (2019), achieved with a dual-
attention hierarchical bidirectional gated recurrent
unit (BiGRU) with a CRF on top. These approaches
are not directly comparable with ours, as they
assume an oracle segmentation of the transcript.

2.4 Dialog Act Segmentation
and Recognition

More interesting in the context of our work are the
studies that consider dialog act segmentation and
recognition. One of the first attempts was made by
Ang et al. (2005) with decision trees and HMMs
for the MRDA corpus. CRF has been successfully
used in this task (Quarteroni et al., 2011). The
closest work to ours is by Zhao and Kawahara
(2019), where a BiGRU model is used to segment
and classify dialog acts in SWDA jointly. The
model is considered as a sequence tagger with
an optional CRF layer or in an encoder–decoder
setup. It also integrates previous dialog act pre-
dictions for ten previous turns using an attention
mechanism. Notably, the main differences from
our setup are that Zhao and Kawahara (2019):

1. consider prediction for a single turn at a time,
whereas our dialog-level contextual models
process multiple turns at the same time, which
allows to include both past and future context
into prediction;

2. use exclusively lowercase text without punc-
tuation, whereas we study setups both with
and without the punctuation and truecasing;

3. limit the vocabulary at 10000 words, whereas
we use sub-word tokenizers with no such lim-
itation—this results in the model being able to
leverage another 10000 less-frequent words
in SWDA, which would have otherwise been
replaced by an out-of-vocabulary symbol;

4. connect dialog act continuations (the seg-
ments labeled in SWDA with a +) to the
previous turn when interrupted, for example,
by a backchannel—we view that opera-
tion as a work-around for their models to
be able to see the relevant future context,
whereas our proposed models require no such
pre-processing.

Finally, we provide a more detailed analysis of the
effect of context on the recognition outputs; we
also investigate the effect of punctuation and label
set specificity, which is not discussed in that work.

2.5 The Effect of Context and Punctuation

In Liu et al. (2017b), the authors process each di-
alog act segment in parallel streams using a CNN
and combine the sequence of sentence represen-
tations using an LSTM to exploit the context.
The influence of context is explored in Bothe
et al., (2018) by using an LSTM on the segment
representations. Here, dialog act classification is
achieved in two stages: learning segment repre-
sentations and dialog act classification using an
LSTM. The usage of punctuation marks as fea-
tures, and other heuristics such as the number
of words in the segment, n-grams, the dialog act
of the next segment, and others, is explored in
Samuel et al. (1998) and Verbree et al. (2006).
However, the effect of each of these heuristics,
especially punctuation marks, is not analyzed. To
the best of our knowledge, there are no studies
that attempt to understand the role of context,
punctuation, or label set specificity on dialog act
recognition in-depth.

3 Methods

3.1 Transformers

The transformer architecture is shown to pro-
duce state-of-the-art results on several NLP tasks
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(Vaswani et al., 2017; Devlin et al., 2019). It con-
sists of repeated blocks of a self-attention layer
and a feed-forward layer. The self-attention layer
processes the entire input sequence and learns
to attend to the relevant tokens by computing
the cross-token similarity in the input sequence.
The similarity computation is implemented with
a dot-product followed by a softmax operation.
Each token’s representation in the self-attention
layer output is passed through a feed-forward layer
before the next self-attention layer. However, as
the self-attention layer processes all tokens of
the input sequence simultaneously, it is invariant
to the input sequence’s token order. The order-
ing information is preserved by adding positional
embeddings to the input token embeddings. Po-
sitional embeddings include one vector per token
position and are learned during model training
together with other model parameters.

One major limitation of transformer models is
their scalability to longer inputs, as the complex-
ity of each self-attention layer is O(n2) where n
is the input sequence length. More recent work
addresses this limitation in several ways: 1) prop-
agation of context between segments of long
sequence (Dai et al., 2019; Yang et al., 2019),
2) local attention (Ye et al., 2019; Beltagy et al.,
2020; Wu et al., 2020; Zaheer et al., 2020), 3)
sparse attention (Kitaev et al., 2020; Tay et al.,
2020; Zaheer et al., 2020), and 4) efficient atten-
tion operation (Wang et al., 2020; Katharopoulos
et al., 2020; Shen et al., 2021). In this work, we
explore two of these models for dialog act recog-
nition: XLNet (Yang et al., 2019) which is based
on the propagation of context, and Longformer
(Beltagy et al., 2020) which uses local attention.

3.2 XLNet
XLNet (Yang et al., 2019) is a transformer
model trained with a masked language model
criterion. It consists of 12 (base) or 24 (large)
self-attention layers. It is based on TransformerXL
(Dai et al., 2019), which enables it to process text
sequences in windows while propagating the con-
text in the forward direction. We leverage this
property to process conversational transcripts ef-
ficiently. Furthermore, XLNet is pre-trained as
an autoregressive language model that maximizes
the expected likelihood over all permutations of
the input sequence factorization order. It is in-
teresting to note that this model, unlike BERT,
uses relative positional encodings that do not

need to be learned, making it possible to pro-
cess sequences of arbitrary lengths. Even then, the
quadratic computational complexity necessarily
renders such processing infeasible, making win-
dowed processing a more practical choice.

3.3 Longformer

Longformer (Beltagy et al., 2020) is based on
a modification of the self-attention layer that
reduces the computational complexity by limit-
ing the context available to each input token. It
splits the attention into two components—local
and global. The local component is a sliding win-
dow of fixed size for each self-attention layer,
dramatically reducing long sequences’ computa-
tional complexity. The global component allows
select tokens to attend to the entire sequence. We
do not use it in this work—unlike in text clas-
sification, where [CLS] uses global attention, or
question answering, where the question tokens
use global attention (Beltagy et al., 2020), there
are no clear candidates for it in dialog act recog-
nition. Following Beltagy et al. (2020), we use
RoBERTa (Liu et al., 2019) (BERT with carefully
tuned hyperparameters) as the base model to avoid
the costly pre-training process. This model’s lim-
itation is that it cannot process token sequences
longer than those seen during training (4096 to-
kens for the pre-trained model open-sourced by
Beltagy et al. [2020]). We investigate Longformer
because we consider its sliding window atten-
tion mechanism as a natural extension over the
XLNet’s window-processing mechanism.

4 Experimental Setup

4.1 Model Training

For both transformer models, we use pre-trained
sub-word tokenizers and weights, as provided
by HuggingFace1—allenai/longformer-base-4096
for Longformer and xlnet-base-cased for XLNet.
These are the base variants with 12 self-attention
layers. To adapt the models to the DAS task,
we put a token classification layer on top of
the transformer and train it with a per-token
cross-entropy loss. We fine-tune each model on
the training portion of the dataset—1003 calls
for SWDA and 51 meetings for MRDA. We use
the validation set (112 SWDA calls; 12 MRDA
meetings) to select the best model for each variant

1https://huggingface.co/.
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and the test set (19 SWDA calls; 12 MRDA
meetings) for the final evaluation.

The baseline BiGRU model is trained in the
same setup as described in Zhao and Kawahara
(2019). For both XLNet and Longformer, we
compare their performance to BiGRU by training
them as turn-level models that see only a single
speaker turn without additional context. In a sepa-
rate experiment, to measure the effect of providing
the surrounding dialog context, we train them
as broad-context models processing either full
transcripts (Longformer) or chunks (XLNet). All
reported metrics are the mean values from three
runs with different random seeds (42, 43, 44).

We train each model with a single GeForce
GTX 1080 Ti GPU, which allowed us to construct
batches of 6 chunks with 512 tokens each for XL-
Net training. The same setup might not be optimal
for Longformer, as only the first 512 positional
embeddings would have been fine-tuned. There-
fore, we train it with 4096 token windows and an
effective batch size of 6, using gradient accumu-
lation. All models are trained for ten epochs with
an Adam optimizer, a learning rate of 5e-5, and
a learning schedule linearly decreasing its value
towards 0. We evaluate the model on the valida-
tion set after each epoch and select the model that
achieved the best F1 macro score to report the test
set results.

4.2 Data Preparation
To transform the SWDA2 and MRDA3 conversa-
tional transcripts into model inputs, we perform
several steps. First, we remove all annotator com-
ments from the SWDA text. We evaluate each
model in two variants, with/without punctuation
and truecasing, to investigate how strongly it
affects the performance. When punctuation and
truecasing are used, they are always the ground
truth. To create a single sequence out of speaker
turns, we concatenate them with a unique TURN
token in between that does not participate in
loss computation but explicitly indicates that the
speaker has changed.

Following Zhao and Kawahara (2019), we en-
code the dialog act labels using an E joint coding
scheme. In the E scheme, each word comprising a
dialog act is assigned a label; the E label indicates

2We use the SWDA distribution available here: http://
compprag.christopherpotts.net/swda.html.

3We use the MRDA distribution available here: https://
github.com/NathanDuran/MRDA-Corpus.

an end of the dialog act, and the I label indicates
a token other than an ending. The joint coding
also specializes the E label for each dialog act
class in the label set, allowing to perform dialog
act recognition. The I label is shared between
all dialog act classes. BERT models typically
use sub-word tokenization—byte-pair encoding
(Gage, 1994; Sennrich et al., 2016) for Long-
former and SentencePiece (Kudo and Richardson,
2018) for XLNet. When a word is split into mul-
tiple tokens, we assign the dialog act label only
to the first token and discard the following to-
kens’ predictions (i.e., they do not participate in
loss computation and are ignored when reading
predictions during inference).

For SWDA, we use the 42 dialog act labels
(as Abandoned-or-Turn-Exit act is merged with
Uninterpretable) encoded into 43 labels in total,
including the I label. We experiment with all
the label sets available in MRDA—basic with 5
labels, general with 12 labels, and full with 51
labels (6, 13, and 52 respectively when counting
the I label). Unless otherwise specified, we always
use the 5-label set for MRDA and 42 labels for
SWDA.

Some SWDA dialog acts are extended across
turns with a + label, for example, when somebody
interrupted with a backchannel. We respect that
by assigning an I label to the last token in the in-
terrupted turn, thus creating a multiturn functional
segment.

For inference, the calls are processed in sliding
windows. With XLNet, we use a window size
of 512 tokens without overlap. We compare the
predictions with and without the context propaga-
tion across windows to understand its importance.
With Longformer, we do not need to explicitly
construct the windows, as each token’s attention
is limited to a local context of 256 neighboring
tokens on each side.

4.3 Metrics

To measure the model performance, we use stan-
dard micro and macro weighted F1 metrics, as well
as metrics explicitly evaluating the segmentation
quality (Granell et al., 2010; Zhao and Kawahara,
2019):

• Dialog Act Segmentation Error Rate (DSER)
measures the percentage of reference seg-
ments that were not recognized with perfect
boundaries, disregarding the dialog act label.
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• Segmentation Word Error Rate (SegWER)
is additionally weighted by the number of
words in a given segment.

• Dialog Act Error Rate (DER) is computed
similarly to DSER but also considers whether
the dialog act label is correct.

• Joint Word Error Rate (JointWER) is a word
count weighted version of DER.

Note that these metrics are strict: If a 3-word
turn with a single Statement act is recognized as an
Acknowledgment on the first word and Statement
on the next two, the micro F1 score is 66.6%, the
macro F1 score is 55.5%, but the error rate metrics
are all at 100%.

For reference, when reading the dialog act
metrics, the SWDA and MRDA test sets have, re-
spectively, 4500 and 16702 functional segments.
For reading micro and macro F1 scores, SWDA
and MRDA test sets have 29.8K and 100.6K
words.

5 Results

In this section, we present the results of our exper-
imental evaluation. Each result table is first split
into lower and nolower sections, which, respec-
tively, stand for a lowercase transcript with no
punctuation, and an original case transcript with
punctuation symbols. For both scenarios, we al-
ways show the results on both MRDA and SWDA
datasets.

5.1 Single Turn Context Models

We start our experiments by investigating how
much improvement we can achieve by replacing
a simple but established BiGRU baseline model
with one of the transformer models. The baseline is
trained in the same setup as in Zhao and Kawahara
(2019).4 To make the comparison fair, we train
the XLNet and Longformer on single turn inputs
so that the model does not see any dialog context.
The same is true during inference. The results are
shown in Table 1.

Both transformer models offer substantial im-
provements over the BiGRU baseline in all sce-

4During replication, we discovered an issue in the exper-
imental results reported in that paper—the segment insertion
errors were not counted, which artificially lowered the error
rates. We contacted the authors and agreed that the results we
report for their model are the correct ones.

narios. In most evaluations, XLNet achieves the
best results, outperforming Longformer by a small
margin, compared to the improvement over
BiGRU. Because these experiments do not test the
model’s ability to handle long-range context, these
results suggest that XLNet’s pre-training proce-
dure is more suitable for dialog act recognition
than that of Longformer.

5.2 Broad Context Models

In the second experiment, we investigate how
long-document transformers perform in dialog act
recognition. As a baseline (Turns), we re-use the
best model from Section 5.1 (XLNet) processing
dialog transcript on a turn-by-turn basis without
additional context. The other proposed models
process the whole transcript in sliding windows.
XLNet uses a window of 512 tokens with a step
size of 512 tokens. This window traversal strat-
egy is not optimal—the tokens on the window
boundaries cannot attend to other tokens close by
but belonging to another window. XLNet+prop
partially addresses this issue by propagating the
intermediate activations between the windows.
Longformer uses a window of 512 tokens with
a step size of 1 token, which is possible thanks
to its special local attention pattern. Therefore, it
fully avoids XLNet’s traversal strategy issue. The
results are in Table 2.

All broad context models outperform the turn-
level baseline across all metrics, except the turn-
level SWDA nolower baseline in the JointWER
metric. XLNet+prop emerges as the best model in
all configurations with minor gains over XLNet.
Similarly, as in Section 5.1, we observe consistent
improvements in all setups when using XLNet
instead of Longformer. However, we cannot
conclude that XLNet uses the context more ef-
fectively, as its performance on context-less turn
prediction was also better than that of Longformer.
Besides the attention patterns, there are other dif-
ferences between the models, such as the pretrain-
ing conditions and positional encoding schemes,
which could also explain the observed results.
However, it is an indication that limiting Long-
former’s number of positional embeddings to 4096
is not a limiting factor in its performance.

We compare the runtime of XLNet and Long-
former models. Average inference time with 512
tokens window on SWDA transcripts with an
eight-core Intel Core i9-9980HK CPU takes 2.8
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Case Dataset Model micro f1 macro f1 DSER SegWER DER JointWER

lower MRDA BiGRU 92.66 64.68 41.69 51.56 54.78 59.54
Longformer 94.02 70.25 34.55 41.15 45.74 46.71
XLNet 94.02 69.54 33.62 40.40 45.62 46.38

SWDA BiGRU 92.90 34.16 29.31 40.51 49.59 57.83
Longformer 94.04 41.15 20.27 28.50 40.29 45.45
XLNet 93.99 39.56 19.79 27.12 41.13 45.18

nolower MRDA BiGRU 96.60 79.21 18.28 22.31 27.91 25.67
Longformer 97.08 80.80 16.19 18.05 25.34 20.26
XLnet 97.12 81.71 15.08 17.81 24.01 19.89

SWDA BiGRU 94.47 38.92 14.21 22.31 37.86 44.62
Longformer 95.35 46.87 11.00 16.21 32.31 35.78
XLnet 95.40 46.24 9.98 14.64 31.85 34.67

Table 1: Dialog act recognition performance for BiGRU (baseline), XLNet, and Longformer models on
SWDA and MRDA datasets. The models are processing each speaker turn separately, without seeing
any additional context.

Case Dataset Model micro f1 macro f1 DSER SegWER DER JointWER

lower MRDA Turns† 94.02 69.54 33.62 40.40 45.62 46.38
Longformer 94.65 75.30 32.78 39.70 44.11 45.17
XLNet 94.82 75.49 32.71 38.74 43.78 44.21

+prop 94.89 75.82 32.87 38.32 43.61 43.76
SWDA Turns† 93.99 39.56 19.79 27.12 41.13 45.18

Longformer 95.51 53.70 18.60 25.17 38.60 45.55
XLNet 95.49 53.48 17.74 24.24 37.99 44.88

+prop 95.57 54.86 17.48 24.09 37.51 44.38
nolower MRDA Turns† 97.12 81.71 15.08 17.81 24.01 19.89

Longformer 97.45 85.31 14.52 17.41 22.87 19.45
XLNet 97.57 85.54 14.43 16.59 22.56 18.59

+prop 97.55 85.67 14.15 16.85 22.29 18.92
SWDA Turns† 95.40 46.24 9.98 14.64 31.85 34.67

Longformer 96.58 57.73 8.76 12.98 30.73 36.41
XLNet 96.57 57.91 8.40 12.28 30.67 36.42

+prop 96.65 58.17 8.39 12.34 30.21 35.90

Table 2: Dialog act recognition performance of large-context models—Longformer and XLNet.
XLNet+prop means that the intermediate activations are passed between the processed segments
during inference. †The best turn-level model, i.e., the XLNet, is used as a baseline (Turns).

seconds for Longformer and 14.7 seconds for
XLNet, making Longformer about five times
faster when deployed on a CPU. Figure 2 shows
the time it takes for dialog act prediction on a 1750
words call sw2229 from SWDA—for smaller win-
dows of 32 and 64, the models take similar time to
run, but as the window size increases, Longformer
becomes quicker than XLNet. To summarize,
Longformer might be more suitable for practi-

cal applications, even if it achieves slightly worse
recognition results.

An analysis of confusion patterns in the most
performant model (nolower XLNet+prop) does
not reveal any new insights in SWDA compared
with past works—the most confused label pair
is Statement-opinion and Statement-non-opinion.
For the same model in MRDA, we observe the
Question label has the highest F-score of 98.32%,
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Figure 2: Prediction time for SWDA call sw2229 by Longformer and XLNet with different window sizes. The
left-side plot shows the mean time it takes to predict a single window, and the right-side plot shows the time
needed to process the full dialog. Window sizes larger than 512 imply sub-windowing for Longformer, which in
this experiment has learned only 512 positional embeddings.

Case Dataset Tagset micro f1 macro f1 DSER SegWER DER JointWER

lower MRDA 51 91.90 30.94 32.93 39.15 58.62 63.90
12 94.07 48.39 35.51 40.56 48.72 49.42

5∗ 94.89 75.82 32.87 38.32 43.61 43.76
1 96.74 95.23 32.85 38.94 – –

SWDA 42∗ 95.57 54.86 17.48 24.09 37.51 44.38
1 98.20 97.45 17.51 24.32 – –

nolower MRDA 51 93.85 40.65 13.88 17.38 45.22 49.11
12 96.57 64.51 14.21 17.42 27.62 26.96
5∗ 97.55 85.67 14.15 16.85 22.29 18.92
1 98.76 98.21 14.55 16.52 – –

SWDA 42∗ 96.65 58.17 8.39 12.34 30.21 35.90
1 99.22 98.89 8.37 12.18 – –

Table 3: XLNet+prop segmentation and recognition results for different label sets granularities; in
MRDA: full (51), general (11), basic (5), and pure segmentation (1); in SWDA basic (42) and pure
segmentation (1). DER and JointWER are not defined for pure segmentation. All experiments are
performed using full dialog context, with identical hyperparameters, except for the output layer size.
The asterisk (*) denotes the label sets typically used in other works.

followed by 94.38% for Statements. Backchan-
nels are the most confused label, with 17% of
them being classified as Statements, and 19% of
predicted Backchannels being in fact Statements.
Also, a significant portion of Disruptions (25%)
and Floor-grabbers (28%) are confused with the
I label and, respectively, 20% and 14% of them
are predicted as an I label. This indicates that
these dialog acts are the most difficult to segment
correctly—which might be due to only 66.5%
average inter-annotator agreement on MRDA
segmentation (Shriberg et al., 2004). Lastly,
13% of predicted Floor-grabbers are in fact
Disruptions.

6 Discussion

This section presents a detailed analysis of vari-
ous factors affecting dialog act segmentation and
recognition performance. In particular, we look
into the effects of label set specificity, punctuation,
and context.

6.1 The Effect of Label Set Specificity

Because MRDA provides different label set sizes,
it is tempting to see how that affects the recog-
nition performance. Furthermore, we investigate
a special case where we perform pure segmenta-
tion—that is, the dialog act labels are stripped, and
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Mis-segmented dialog acts Count DSER (turn) [%] DSER (dialog) [%] Abs. gain [%]

Rhetorical-Questions 12 58.3 16.7 −41.7
Other 15 53.3 20.0 −33.3
Action-directive 30 50.0 23.3 −26.7
Repeat-phrase 21 19.0 4.8 −14.3
Hedge 23 17.4 4.3 −13.0
Response-Acknowledgement 28 14.3 3.6 −10.7
Statement-non-opinion 1494 23.0 13.7 −9.3
No-answers 26 19.2 11.5 −7.7
Wh-Question 56 12.5 5.4 −7.1
Open-Question 16 6.2 0.0 −6.2
Mis-classified dialog acts Count DER (turn) [%] DER (dialog) [%] Abs. gain [%]
Yes-answers 73 100.0 17.8 −82.2
Open-Question 16 100.0 25.0 −75.0
Repeat-phrase 21 100.0 33.3 −66.7
Wh-Question 56 91.1 30.4 −60.7
Conventional-closing 84 65.5 10.7 −54.8
Response-Acknowledgement 28 89.3 35.7 −53.6
Rhetorical-Questions 12 108.3 58.3 −50.0
Collaborative-Completion 20 100.0 55.0 −45.0
Backchannel-in-question-form 21 57.1 19.0 −38.1
Summarize/reformulate 25 100.0 72.0 −28.0

Table 4: Top 10 SWDA dialog acts that benefit from dialog-level context availability in pure
segmentation and dialog act recognition. The columns denoted by (turn) and (dialog) represent numbers
for turn-level XLNet and dialog-level XLNet+prop.

there remains a single generic E token at the end of
each segment. For SWDA, we compare 42-label
set performance with pure segmentation. All ex-
periments are performed using the XLNet+prop
model, which was the best model in Section 5.2.
The results are shown in Table 3.

We do not observe a strong effect of the label
set size on segmentation performance; the pure
segmentation model is practically on par with the
dialog act recognition model. This is indicated by
little change in DSER and SegWER metrics across
the label sets in each experimental scenario. On
the other hand, the label set size has a major effect
on the classification performance, reflected in F1,
DER, and JointWER. We offer two explanations
for that. Firstly, the larger label sets have more
imbalanced classes, e.g., in the 51 labels set, 43%
of acts are statements, and the 18th most frequent
class is already below 1% of all acts. Secondly,
we suspect that the inter-annotator agreement is
worse for the large label set, but the MRDA
authors only reported it for the five label set (80%
agreement).

6.2 The Effect of Dialog Context

To understand how the dialog context helps im-
prove the models, we analyze the predictions of
turn-level XLNet and dialog-level XLNet+prop.
In particular, we find the subset of turns in which
the turn-level model made either segmentation or
classification errors, but the dialog-level model
recognized everything correctly (427 turns, which
is 16.3% of turns in the SWDA test set). This
subset contains 752 dialog acts and suffers mostly
from misclassification errors: 19.8% of these di-
alog acts are mis-segmented with an equal share
of over- or under- segmentation, but as many as
75.8% of them have been misclassified.

We take a closer look at the differences between
the two models’ errors by considering the whole
test set again and investigating which dialog acts
benefitted the most from dialog-level context. To
find them, we first have to perform segment-level
alignment (since segment boundaries could be
misrecognized) using the Levenshtein algorithm.
For this purpose, we assume that the reference and
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Full stop Excl. mark Q. mark None

Backchannel 2120 (18.4) 4 (50.0) 0 (0) 28 (60.7)
Disruption 115 (93.9) 2 (100.0) 6 (100.0) 2216 (43.1)
Floor-grabber 257 (75.5) 0 (0) 0 (0) 1152 (49.7)
Question 10 (20.0) 0 (0) 1231 (8.9) 0 (0)
Statement 9445 (14.5) 79 (8.9) 51 (60.8) 2 (100.0)

Table 5: Punctuation vs. dialog act counts for MRDA dataset. Percentage of errors for a given
act and punctuation are shown in parentheses (the lower, the better the recognition).

predicted segments are equal when they start and
end at the same words for pure segmentation and
additionally check that their dialog act label is the
same for recognition.

Surprisingly, we find that the strongest turn-
level model (XLNet) never correctly recognized
more than half of the label set (24 dialog act classes,
many of which are infrequent), whereas this num-
ber significantly drops for the dialog-level model
(4 classes: Declarative-Wh-Question, Dispreferred-
answers, Self-talk, Hold-before-answer-agreement).
The top 10 dialog acts with improved recognition
performance, which occurred at least 10 times in
SWDA test set, are shown in Table 4. The turn-
level model lacked the necessary context to cor-
rectly classify Yes-answers, Agree-Accept, and
Response-Ackonwledgment, mistaking them mostly
for Ackonwledge-Backchannel. The model fre-
quently hypothesized Yes-No-Question in place
of Wh-Question. Other highly contextual dialog
acts such as Repeat-phrase, Rhetorical-Questions,
Backchannel-in-question-form, or Summarize-
reformulate also largely improved.

In terms of segmentation performance differ-
ences, the improvements with dialog context are
consistent across various kinds of dialog acts: both
short (Response-Acknowledgment, No-answers)
andlong (Statement-non-opinion, Action-directive);
questions (Rhetorical-Questions, Wh-Question,
Open-Question) and statements.

6.3 The Effect of Punctuation – MRDA

We have previously observed from Table 3 that
removing the capitalization and punctuation has
a significant effect on the dialog act recognition.
It suggests a strong correlation between punctu-
ation and dialog acts. For example, a Question
dialog act segment might often end with a ques-
tion mark that could serve as a cue for the model.
In this subsection, we show the correlations be-

tween dialog acts and punctuation for MRDA and
SWDA datasets. Table 5 presents dialog act vs.
punctuation statistics for the MRDA dataset with
5 labels. Each cell contains the frequency of a
dialog act and punctuation occurring together and
the percentage of our model errors in parenthesis.

We can observe that the frequency of various
punctuation symbols is skewed for each dialog
act. For example, segments with Statement and
Backchannel dialog act labels most often contain
full stop, those with Question dialog act label con-
tain question mark. Similarly, Floor-grabber and
Disruption labeled sentences contain no punctua-
tion. Given that correlations between dialog acts
and punctuation exist, we expect the models to
leverage punctuation as a cue for prediction. Fewer
errors (in bold) when punctuation is highly corre-
lated with dialog acts confirm our hypothesis. For
example, dialog act Question has a minimal per-
centage of errors when a question mark is present
in the input segment. Upon further investigation,
we found that the ending boundary is consistently
recognized correctly when a question mark exists,
and any errors that occur are at the segment’s
beginning. Also, the high error percentages for
dialog acts Disruption and Floor-grabber could
be explained due to their similar distributions of
ending punctuation.

6.4 The Effect of Punctuation – SWDA

Given the large label set size of SWDA, we have
no straightforward means of visualizing the corre-
lation of punctuation and dialog acts. In order to
understand the relationship between punctuation
and dialog acts in SWDA, we show the top 10 most
affected dialog acts in segmentation and recogni-
tion in Table 6. We observe that punctuation is key
in recognizing discourse markers such as incom-
plete utterances, restarts, or repairs that are often
labeled as Uninterpretable. Without punctuation,
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Mis-segmented dialog acts Count DSER (lc) [%] DSER (nlc) [%] Abs. gain [%]

Rhetorical-Questions 12 58.3 16.7 −41.7
Uninterpretable 366 42.9 6.8 −36.1
Hedge 23 39.1 4.3 −34.8
Quotation 18 66.7 44.4 −22.2
Other 15 40.0 20.0 −20.0
Statement-non-opinion 1494 30.7 13.7 −17.0
Agree-Accept 213 22.1 7.0 −15.0
Statement-opinion 832 29.7 15.9 −13.8
Declarative-Yes-No-Question 38 18.4 5.3 −13.2
Open-Question 16 12.5 0.0 −12.5

Table 6: Top 10 SWDA dialog acts that benefit from punctuation and truecasing availability in pure
dialog act segmentation. The columns denoted by (l) and (nl) represent numbers for dialog-level context
XLNet lower and nolower models, respectively.

Figure 3: Top: Ground truth segmentation. Bottom:
Segmentation predicted with lower transcripts.

these discourse markers are frequently merged
into a neighboring dialog act by the model. It also
partially explains the improvements in segmen-
tation of Statements and some less frequent acts
such as Hedge, since they are often found next to
Uninterpretable (see Figure 3).

In many cases, the lack of commas takes away a
cue to insert a dialog act boundary from the model.
Examples are shown in Figure 4. We hypothesize
that prosody or other cues found in the acoustic
signal could mitigate that effect, given the useful-
ness of such features in dialog act classification
works (Ortega and Vu, 2018; Si et al., 2020).

Another way to look at the differences in the
segmentation structure is to compare the distribu-
tions of punctuation symbols found in the middle
of the segments (i.e., the punctuation symbols
other than the ones ending the previous and the
current dialog act). We present them in Table 7.
We see that the nolower model uses the punctu-
ation as cues for determining segment boundary
and retains a very similar distribution to the ground
truth segmentation. On the other hand, the lower

Figure 4: Top: ground truth segmentation. Bottom:
segmentation predicted with lower transcripts.

Segmentation Full stop Comma Q. mark Segments

ground truth 71 3637 2 4500
nolower 77 3679 2 4433
lower 155 3737 7 4323

Table 7: The number of punctuation symbols
found in the middle of dialog acts, depending on
the applied segmentation. nolower and lower are
predicted using XLNet with dialog-level context.
The presence of punctuation in nolower variant
provides the model with the necessary cues to
preserve a similar distribution to the ground truth.

model, which cannot see the punctuation, tends to
under-segment the transcripts. This is consistent
with our previous analyses.

7 Conclusions

We investigated how two transformer models
capable of dealing with long sequences, XLNet
and Longformer, can be applied to dialog act
recognition. We used the well-studied SWDA and
MRDA corpora and compared the performance
with an established BiGRU baseline. First, we
showed that the pre-trained transformers offer a
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substantial improvement with respect to to BiGRU
when processing individual speaker turns, with-
out any additional context. Then, we proposed
adapting the transformers to consider a broader
dialog context through turn concatenation with
the TURN token, the use of joint coding, and local
attention patterns or windowed processing. With
this improvement, we achieved strong segmen-
tation results on SWDA and MRDA dialog act
recognition with DSER of 8.4% and 14.2% on
the original transcripts and competitive results on
lowercase transcripts with no punctuation (17.5%
and 32.9%).

We found that XLNet was able to get the most
out of the additional dialog context. We observed
that the additional context is the most benefi-
cial for segmentation while also improving the
classification performance. On a practical note,
Longformer allowed for approximately five times
quicker inference on a modern CPU.

Across all of our experiments, it was evi-
dent that punctuation and original character cases
were crucial for both segmentation and classifi-
cation performance. No other factor influences
the results as much—the best lowercase-transcript
model (broad context XLNet+prop) still lags be-
hind the simplest unmodified-transcript model
(turn-context BiGRU). We analyzed the effect
of punctuation and found that it is often correlated
with some dialog act classes. The model leverages
punctuation as a cue, especially to insert segment
boundaries, but to a lesser extent also to classify
dialog acts (e.g., question marks in questions).

By considering different dialog act label sets
available in MRDA and a pure segmentation task,
we found that XLNet’s segmentation performance
does not depend on the dialog act labels, further
with segmentation experiments on SWDA. Re-
gardless of the label set size (or whether the task
is pure segmentation), the model performs just as
well.

Finally, we found that the addition of broader
context is beneficial for the model to learn rare
dialog act classes—without it, more than 50%
of dialog act classes were never correctly recog-
nized even once in SWDA. With the inclusion
of context, that number decreased to less than
10%.

Our findings have significant practical im-
plications for applications that depend on text
segmentation, such as the automatic discovery of

intents and processes in a given domain or build-
ing graphs describing conversational flow from
unstructured transcripts. We have shown that the
dialog act labels do not have to be specific in order
to be able to retrieve good segmentation automat-
ically. This can significantly ease the annotation
efforts, removing the need to memorize large label
sets for the annotators. Furthermore, we show that
the current pre-trained transformer models suffer
from limitations when punctuation is not avail-
able. They tend to under-segment the text, often
merging disfluencies with neighboring dialog acts.
While these phenomena would likely affect, for
example, systems trying to measure the semantic
similarity of two segments, we expect that even the
segmentation predicted on lower-case text would
be useful in practical applications. It is interesting
to see whether automatically retrieved punctuation
can mitigate the gap between manual annotation
and no punctuation; we consider this a promising
candidate for future work.

To foster further research in this direction, we
make our code available under the Apache 2.0
license.5
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