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Abstract

A question answering system that in addition to
providing an answer provides an explanation
of the reasoning that leads to that answer has
potential advantages in terms of debuggabil-
ity, extensibility, and trust. To this end, we pro-
pose QED, a linguistically informed, extensible
framework for explanations in question answer-
ing. A QED explanation specifies the relation-
ship between a question and answer according
to formal semantic notions such as referential
equality, sentencehood, and entailment. We de-
scribe and publicly release an expert-annotated
dataset of QED explanations built upon a sub-
set of the Google Natural Questions dataset,
and report baseline models on two tasks—post-
hoc explanation generation given an answer,
and joint question answering and explanation
generation. In the joint setting, a promising
result suggests that training on a relatively
small amount of QED data can improve ques-
tion answering. In addition to describing the
formal, language-theoretic motivations for the
QED approach, we describe a large user study
showing that the presence of QED explana-
tions significantly improves the ability of un-
trained raters to spot errors made by a strong
neural QA baseline.

1 Introduction

Question answering (QA) systems can enable
efficient access to the vast amount of informa-
tion that exists as text (Rajpurkar et al., 2016;
Kwiatkowski et al., 2019; Clark et al., 2019; Reddy
et al., 2019, among others). Modern neural systems

∗Work done during internship at Google.
†Work done at Google.

have made tremendous progress in QA accuracy
in recent years (Devlin et al., 2019). However,
they generally give no explanation or justification
of how they arrive at an answer to a question.
Models that in addition to providing an answer
can explain their reasoning may have significant
benefits pertaining to trust and debuggability
(Doshi-Velez and Kim, 2017; Ehsan et al., 2019).

Critical questions then, are what constitutes an
explanation in question answering, and how we
can enable models to provide such explanations.
In an effort to make progress on these questions, in
this paper we (1) introduce QED,1 a linguistically
grounded definition of explanations for extractive
QA; and (2) describe an expert-annotated corpus
of QED annotations based on the Natural Ques-
tions (Kwiatkowski et al., 2019) dataset. The QED
corpus has been released publicly.2

Figure 1 shows a QED example. Given a ques-
tion and a passage, QED represents an explanation
as a combination of discrete, human-interpretable
steps: (1) identification of a sentence implying
an answer to the question, (2) identification of
noun phrases in both the question and answering
sentence that refer to the same thing, and (3) con-
firmation that the predicate in the sentence entails
the predicate in the question once referential
equalities are abstracted away.

This choice of explanation makes use of
core semantic relations—referential equality and
entailment—and thus has well-understood formal
properties. In addition, we found that this way
of decomposing explanations has high coverage

1QED stands for the Latin ‘‘quod erat demonstrandum’’
or ‘‘that which was to be shown’’.

2https://github.com/google-research
-datasets/QED.
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Figure 1: QED explanations decompose the question-
passage relationship in terms of referential equality and
predicate entailment.

(77% on the Natural Questions corpus3) and can
be readily extended to other forms of question
answering. (See Section 6.) Since QED decom-
poses the QA process into distinct subproblems,
we also believe that it should enable research
directions aimed at extending or improving upon
extant QA systems.

In what follows, we present a definition of
QED explanations. We then describe the dataset
of QED annotations (7638/1353 train/dev exam-
ples), including discussion of the distribution of
linguistic phenomena exhibited in the data. We
move to propose four potential tasks, of varying
complexity, related to the QED framework, and
use the QED annotations to train and evaluate
different models on two of these. Additionally,
we describe a rater study which shows how the
presence of QED explanations can help users
identify errors made by an automated QA system.

2 Annotation Definition

We now describe the form of QED annotations.
The treatment in this section is somewhat
informal; for formal definitions see Appendix A.

2.1 Basic Definitions

We will use the following example to illustrate
the approach:

3Instances with annotated short answers, omitting table
passages.

Question: how many seats in university of
michigan stadium
Passage: Michigan Stadium, nicknamed ‘‘The
Big House’’, is the football stadium for
the University of Michigan in Ann Arbor,
Michigan. It is the largest stadium in the United
States and the second largest stadium in the
world. Its official capacity is 107,601.

The annotator is presented with a question/
passage pair. Annotation then proceeds in the
following four steps:

(1) Single Sentence Selection. The annotator
identifies a single sentence in the passage that
entails an answer to the question assuming that
coreference and bridging anaphora (see later in
this section) have been resolved in the sentence.4

In the above example, the following sentence
entails an answer to the question, and would be
selected by the annotator:

Its official capacity is 107,601.

This follows because given the passage con-
text, ‘‘Its’’ refers to the same thing as the NP
‘‘university of michigan stadium’’ in the question,
and the predicate in the sentence, ‘‘X’s official
capacity is 107,601’’, entails the predicate in the
question ‘‘how many seats in X’’.

(2) Answer Selection. The annotator highlights
a short answer span (or spans) in the answer
sentence. In the above example the annotator
would mark the following (answer shown with
[=A . . . ]):

Its official capacity is [=A 107,601].

(3) Identification of Question–Sentence Noun
Phrase Equalities. The annotator marks refer-
entially equivalent noun phrases, or noun phrases
that refer to the same thing, in the question and
the answer sentence. This includes reference not
only to individuals and other proper nouns, but
also to generic concepts.

In our example the annotator would mark the
following two noun phrases (marked with the [=1
. . . ] annotations) as referentially equivalent:

4If it is not possible to find a sentence that satisfies
these properties—typically because the answer requires
inference beyond coreference/bridging that involves multiple
sentences—the annotator marks the example as not possible.
See Section 3.
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how many seats in [=1 university of
michigan stadium]

[=1 Its] official capacity is [=A
107,601].

(4) Extraction of an Entailment Pattern. As a
final, automatic step, an entailment pattern can be
extracted from the annotated example by abstract-
ing over referentially equivalent noun phrases. In
the above example the entailment pattern would
be as follows:

how many seats in X
X’s official capacity is [=A 107,601].

2.2 Two Extensions
There are two extensions to the above approach,
coreference in answers, and bridging in referential
equalities:

Coreference in Answers. Consider the follow-
ing example:

Question: who won wimbledon in 2019
Passage: Simona Halep is a female tennis
player. She won Wimbledon in 2019.

In this case the single sentence She won Wimble-
don in 2019 would be selected by the annotator in
step 1, as once coreference is resolved, this entails
the answer to the question. The QED annotation
would be as follows:

who won [=1 wimbledon] in [=2 2019]

[=A She (=C Simona Halep)] won [=1
Wimbledon] in [=2 2019]

In this case the answer ‘‘She’’—the substring
in the original sentence—is not sufficient, as it
involves an unresolved anaphor. Because of this,
the annotator would mark the fact that ‘‘She’’
refers to ‘‘Simona Halep’’ earlier in the passage,
using the (=C . . . ) notation.

Bridging in Referential Equalities. Bridging
anaphora (Clark, 1975) are frequently encoun-
tered in the QA passages in our data, and in
Wikipedia more broadly. Consider the following:

Question: who won america’s got talent season
11
Passage: The 11th season of America’s Got
Talent, an American talent show competition,
began broadcasting in the United States during
2016. Grace VanderWaal was announced as the
winner on September 14, 2016.

It is clear from the context surrounding the
sentence ‘‘Grace VanderWaal was announced as
the winner on September 14, 2016’’ that the noun
phrase ‘‘the winner’’ refers to ‘‘the winner of
America’s Got Talent Season 11’’, and hence
the sentence provides an answer to the question.
It is helpful to imagine that there is an implicit
prepositional phrase ‘‘of America’s Got Talent
Season 11’’ modifying ‘‘the winner’’. In this case
the annotation would be the following:

who won [=1 america’s got talent
season 11]

[=A Grace VanderWaal] was an-
nounced as [=B the winner (of =1)]
on September 14, 2016.

Here the annotation [=B the winner (of =1)]
indicates that the phrase marked [=1 . . . ] in
the query is a bridged modifier to the phrase the
winner, through the preposition ‘‘of’’.

Sometimes, there is no phrase like ‘‘the win-
ner’’ above, but the referent is clearly an implicit
argument of the supporting sentence. In this case
we treat it as a bridge into the entire sentence.

2.3 A Note on Terminology
In defining QED we use the terms ‘‘predicate’’
and ‘‘entailment’’ in ways that may seem unfa-
miliar, but are not unrelated to the typical senses
of those terms in linguistics. Canonically speak-
ing, one thinks of a predicate as the semantic
correlate of a verb in a sentence, and usually con-
taining information about its argument structure.
By taking a less structured notion of the term,
as everything in a sentence surrounding a set of
salient referring expressions, we are able to strike
a balance between completely unstructured text,
and more elaborate, structured representations
that tend to be brittle.

The sense of entailment we intend then follows
from this definition. A sentence entails an answer
to a question if, having resolved and abstracted
away referential equalities between the two, one
can identify an answer to the question in the
sentence.

3 QED Annotations for the
Natural Questions

We now describe QED annotations over the Nat-
ural Questions (NQ) dataset (Kwiatkowski et al.,
2019). We first describe the annotation process,
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then describe agreement statistics and statistics of
types of referential expressions. For discussion of
the assumptions we make and future extensions
to QED, please see Section 6.3.

We focus on questions in the NQ corpus that
have both a passage and short answer marked by
the NQ annotator. We exclude examples where the
passage is a table. A QED annotator was presented
with a question/paragraph pair. Before performing
the core QED annotation, annotators first deter-
mine whether: (1) there is a valid short answer
within the paragraph (note that they can overrule
the original NQ judgment), and there is a valid
QED explanation for that answer; (2) there is a
valid short answer within the paragraph, but there
is no valid QED explanation for that answer; or (3)
there is no valid short answer within the passage
(hence the original NQ annotation is judged to
be an error). Ten percent of all examples fell into
category (3). Of the remaining 90% of examples
that contained a correct short answer, 77% fell
into category (1), and 23% fell into category (2).

Three QED annotators5 annotated 7638 train-
ing examples (5154/1702/782 in categories
1/2/3 respectively), and 1353 dev examples
(1019/183/151 in categories 1/2/3), without repli-
cation. We estimate that annotators averaged
approximately 2 minutes per instance. Addi-
tionally, early stages of annotation consisted of
regular adjudication among annotators to establish
a consensus on QED’s guidelines.

3.1 Agreement Statistics

All three annotators marked a common set of
100 examples drawn from the development set.
We compute average pairwise agreement by
comparing each annotator against the other two,
and averaging across all pairs. Average classi-
fication of instances was 73.9%. If this seems
low, it is because one annotator was more con-
servative interpreting QED’s single sentence
assumption, and pairwise accuracy breakdown
was thus 81.2/72.3/68.1%. Given the high number
of ‘‘debatable’’ instances reported in the Natural
Questions paper, this divergence is unsurpris-
ing, however. Average pairwise F1 on mention
identification/mention alignment, conditioned on
both annotators labeling instances as amenable to
QED, was 88.4 and 84.1, respectively.

5Three of the authors of this paper.

3.2 Types of Referential Expressions

The referential equality annotations are a major
component of QED. Figure 2 shows some full
QED examples from the corpus, and Figure 3
shows some example referential equalities from
the corpus. In this section, in an effort to gain
insight about the types of phenomena present, we
describe statistics on types of referential equali-
ties. We subcategorize referring expressions into
the following types:6

Proper Names Examples are ‘‘How I met your
Mother’’ or ‘‘the cbs television sitcom how i met
your mother’’.

Non-Anaphoric Definite NPs These are
expressions such as ‘‘the president of the United
States’’ or ‘‘the next Maze Runner film’’. The
majority involve one or more common nouns
(e.g., ‘‘president’’, ‘‘film’’) together with a proper
name, thereby defining a new entity that is in
some sense a ‘‘derivative’’ of the underlying
proper name.

Anaphoric Definite NPs These are definite
NPs, most often from within the passage rather
than the question, that require context to be inter-
preted. Examples are ‘‘the series’’ referring to an
earlier mention of ‘‘the Vampire Diaries’’ within
the passage, or ‘‘the winner’’ referring to ‘‘the
winner of America’s got Talent Season 11’’.

Generics Examples are ‘‘a dead zone’’ in the
question ‘‘what causes a dead zone in the ocean’’,
or ‘‘Dead zones’’ in the passage sentence ‘‘Dead
zones are low-oxygen areas caused by . . . ’’.

Pronouns Examples are it, they, he, she.

Bridging Referential expressions in the passage
sentence that use bridging (see Section 2.2).

Miscellaneous All referential expressions not
included in the categories above.

Table 1 shows the frequency distribution of
per-instance referential equality counts. Figure 4
shows an analysis of 100 referential equality
annotations from QED, with a breakdown by
type of referring expression in the question and
passage. Proper names, non-anaphoric definites,

6For formal discussion, see Carlson (1977), Krifka (2003),
Abbott (2004), and Mikkelsen (2011), among others.
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Figure 2: Examples from the QED dataset, grouped according to different types of referential equalities.

and generics dominate expression types in the
question (73, 16, and 6 examples, respectively).
Expressions in the sentence are more diverse, with
a much greater proportion of anaphoric definites,
pronouns, and bridging examples (21, 9, and 5
cases, respectively). Finally, as an indication of
the difficulty of the referential equality task, we
note that in only 12% of all referential equalities
in the 100 examples in Figure 4 is there an exact
string match (after lower-casing of both question
and passage) between the question and passage
referential expression.

4 Tasks and Models

The QED data, which we release publicly, can be
used as part of wide range of QA tasks and models.
After discussing some of these tasks, we assess
how well two recent neural architectures, one
structured and one sequence-to-sequence, perform
on two of them.

4.1 QED-based Tasks

Each QED example is a (q, d, c, a, e) tuple where q
is a question from the NQ dataset, d is a Wikipedia

794



Figure 3: Referential equalities from the QED corpus.

page, c is a passage within d,7 a is a short answer
within c, and e is a QED explanation. A formal
definition of e can be found in Appendix A. In
brief, it consists of a sentence, which is a span
within c, as well as a set of referential equalities.
Each referential equality is a pair consisting of a
question span together with a passage span (or a
bridging position in the passage). Additionally,
where an answer span a falls outside of the
selected sentence, the explanation contains an
answer coreference span.

We use E to refer to set of evaluation examples
(either the development or test set). We focus our
modeling efforts on the following two tasks, in
order of increasing complexity:

Task 1: Explanation Prediction given Short
Answer Given a (q, d, c, a) 4-tuple, make a
prediction ê = f(q, d, c, a) where f is a
function that maps a (q, d, c, a) tuple to an
explanation. We might, for example, define
f(q, d, c, a) = argmaxe p(e|q, d, c, a; θ) under
some model p(. . .). The evaluation measure is then∑

(q,d,c,a,e)∈E l1(e, f(q, d, c, a)) where l1(e, ê) is a
per-example evaluation measure indicating how
close ê is to e.

7Passages are the same as NQ long answers.

Referential Link Count
0 1 2 3

Instances 54 649 294 6

Table 1: Referential link count frequency distribu-
tion in a random sample of 1000 instances. When
there are 0 links, the explanation consists only of
a selected sentence.

Figure 4: Counts for 100 randomly drawn referen-
tial equality annotations from the QED corpus, sub-
categorized by expression type in the question (Qu.)
and passage (Ps.). P/N/A/G/Pn/B/M refer to Proper/Def
(non-ana)/Def(ana)/Generic/Pronoun/Bridge/Misc.

Task 2: Joint Answer and Explanation
Prediction Given a (q, d, c) triple, predict
(â, ê) = f(q, d, c), where f is a function that
maps it to a short-answer/explanation pair.
We might, for example, define f(q, d, c) =
argmaxa,e p(a, e|q, d, c; θ) under some model
p(. . .). The evaluation measure is

∑
(q,d,c,a,e)∈E

l2((a, e), f(q, d, c)) where l2 is some per-example
measure.

By extension, one can conceive of a task in
which one must also predict a passage c, in addi-
tion to an answer and an explanation. One could
even integrate QED with a version of the open-
domain QA task, which also entails retrieval of
documents d. Given QED’s linguistic generality,
the data may also be useful as auxiliary input for
training models that are not explicitly interested
in evaluating explanation generation.

An open question in explainability is how
we can build and evaluate models that generate
faithful explanations, where the explanation truly
reflects the model’s underlying reasoning (Jacovi
and Goldberg, 2020). Accurate models for the
above tasks, even if they do not generate faithful
explanations, may still have considerable utility.
However, faithful models have several desirable
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characteristics (see Sections 5 and 6); we view
them as a major avenue for future work.

4.2 A SpanBERT Model
The first model we consider for Tasks 1 and 2
uses the SpanBERT coreference resolution model
(Joshi et al., 2020; Lee et al., 2017) to identify ref-
erential equalities, extends the model with a QA
component, and heuristically selects supporting
sentences to produce a final QA+QED output.

Representation Assume an example contains a
question q of m tokens q1 . . . qm and a passage c
consisting ofn tokens c1 . . . cn. We denote the title
of the Wikipedia page separately as the sequence
t of k tokens t1 . . . tk. The model uses SpanBERT
to jointly encode the the concatenation of these
token sequences,

[CLS]t1 . . . tk[S1]q1 . . . qm[S2]c1 . . . cn[SEP]

as an input document.8

Coreference Given some document d and a can-
didate mention x, corresponding to a span within
d, defineY(x) to be the set of potential antecedents
for x. Each antecedent is either a span in the docu-
ment with start-point before x in the document, or
ε signifying thatx does not have an antecedent. We
can then define a distribution over the antecedent
spans Y(x) as p(y|x,D) = es(x,y)∑

y′∈Y(x) e
s(x,y′) where

s(x, y)=

{
0 if y=ε;
sm(x)+ sm(y)+ sc(x, y) otherwise

sm(x)=FFNNm(gx)

sc(x, y)=NNc(gx, gy)

where gx and gy are span representations obtained
by concatenating the SpanBERT representations
of the first and last token in each mention span.
The scoring functions sm and sc represent men-
tion and joint span match scores respectively.
Whereas sm is a simple feedforward net, sc is
a more complex scoring function that has been
optimized to the coreference task. We refer the
reader to Lee et al. (2017) for more details.

Lee et al. (2017) describe a method for training
the model based on log-likelihood, and a beam
search method that uses the scores sm(. . .) and
sc(. . .) to filter candidate mention, antecedent
pairs into the final set considered by the loss func-
tion. The final output from the coreference model

8We use [S1] = ‘‘.’’ and [S2] = ‘‘?’’ as separators.

is a hard clustering of the potential mentions into
coreference clusters.

Given the constraints of QED referential equal-
ities, we restrict sc to only score coreferential links
between the query and the passage or between
the query and the title (all other values for sm
or sc are set to −∞). We model bridges as links
between a query passage the title.

We finally post-process the cluster outputs of
the coreference component as follows: For each
cluster we output the first mention in the cluster
that appears in the question with the first mention
in the cluster of references that appears in the
passage, once cluster mentions are sorted.9 If
there is no cluster mention in the passage, we
assume the passage reference is a bridge.

QA The answer scoring component computes
answer candidate representations gz using the
same candidate mention scoring network as the
coreference model, FFNNm, as well as a feed-
forward network, FFNNq, that scores candidate
answer spans relative to a representation of the
question. The score of an answer z is then
computed as

sa(z) = FFNNm(gz) + FFNNa(gz, gq).

Thus, the only new parameters belong to a single
hidden layer feed-forward net FFNNa that specif-
ically targets the question-answer relationship.
Apart from the use of shared candidate men-
tion scoring parameters, no further dependence
is introduced between the answer and referential
equality predictions.

Sentence Selection We perform sentence selec-
tion heuristically by choosing the sentence
containing the first cluster output by the corefer-
ence model. Any subsequent coreference cluster
containing a document mention outside of this
sentence is dropped in the final prediction. If no
referential link is predicted, we take the supporting
sentence to be the one containing the answer span.

Training For Task 1, we consider an untrained
model and a fine-tuned model, both of which
omit the QA component described above. In the
former, we do not use expert annotated QED data
but instead use the CoNLL OntoNotes coreference

9This is necessary because it is technically possible
for a cluster to contain more than two mentions before
post-processing.
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dataset (Pradhan et al., 2012) to train the pretrained
SpanBERT model. We only score document
mentions in the sentence containing the answer.

For the fine-tuned model, we mark short
answers with special tokens before computing the
SpanBERT document representation. Then, we
further train the model with the training portion of
QED data. We used SpanBERT ‘‘large’’, with a
maximum span width of 16 tokens, a top span ratio
of 0.2, 30 max antecedents per mention. In fine-
tuning, we used an initial learning rate of 3 · 10−4

and trained for 3 epochs on the QED training set.
For Task 2, we train the QA and Coreference

components in a multitask fashion, by minimizing
the weighted sum of the QA and coreference cross
entropy losses. For the QA data, we augment using
passages containing short answers from NQ. Our
best results are obtained with a weight of 5 on
the coreference loss and 2 epochs of training. The
best answer accuracy and QED F1 are obtained
for different base learning rates of 2 · 10−5 and
5 · 10−5 respectively.

4.3 A T5 Model

The second model we consider fine-tunes T5
(Raffel et al., 2020) to predict linearized QA and
QED outputs from an input document. We briefly
describe the linearization approach here, and refer
the reader to Appendix B for a worked example.

Input Representation Similar to the Span-
BERT model and as depicted immediately above,
we pass the concatenation of question, title, and
document tokens as input to T5, in that order.10

Each input instance is either a QA- or QED-
specific instance, which is indicated to T5 by
appending a task-specific token to the end of the
input.

Output Representation The model is tasked
with predicting either (1) an answer span or (2)
a QED explanation, represented as a sequence of
referential equalities, all separated by a special
token.11 In (2), each referential equality is rep-
resented as the concatenation of two spans: the
tokens in its query mention and the tokens in its
passage mention, separated by ">>". In both (1)
and (2) the four tokens in the passage immediately
following the answer or passage mention are also
appended. These additional tokens are not part of

10We use ">>" as field separators.
11We use "&&" to separate referential equalities.

Mention Mention Sentence
Identification Alignment Accuracy
P R F1 P R F1

SB-onto 59.0 35.6 44.4 47.7 28.8 35.9 97.3
SB-fine-tuned 76.8 68.8 72.6 68.4 61.3 64.6 94.2
T5 73.0 75.8 74.4 63.1 65.5 64.3 95.9

Table 2: SpanBERT (SB) and T5 11B model
performance for Task 1: recovering QED
annotations when the correct answer is given.

the evaluated spans; they serve to uniquely locate
the character offset of the answer or passage men-
tion during evaluation.

Sentence selection proceeds heuristically as in
the SpanBERT model.

Training We trained T5 11B on only the QED
training data, using the standard fine-tuning recipe
with a batch size of 1024, learning rate of 2e−4 and
a dropout rate of 0.1. For Task 1, we trained on the
explanation task, marking short answers using " "
and " " brackets in the input. For Task 2, we mixed
the QA task and the explanation task with equal
weights, and randomly shuffled the instances. We
saw the best results when we trained Task 1 for
7000 steps and Task 2 for 2000 steps.

4.4 Evaluation and Results

We evaluate answer selection, sentence selection,
and the identification of referential equalities. For
answer and sentence selection, we report accuracy
on 90% span overlap F1. For referential equality,
we evaluate both mention identification (the iden-
tification of individual referential expressions in
the question and passage) and referential equality
detection (the identification of pairs of referential
expressions).12 We compute precision, recall, and
F1 measure in both cases.13

Results for Task 1 for both the SpanBERT
and T5 models are reported in Table 2. The table
shows results for both the OntoNotes- and QED-
fine-tuned SpanBERT models, as well as the T5
model trained only on the task of explanation pre-
diction. Of note is that trained models trained on
QED data do considerably better than the model
trained on OntoNotes, indicating that referential

12Where referential equalities involved bridged passage
mentions, we only evaluate the models’ ability to recognize
that they are bridged, since there are many conceivable places
in a sentence into which mentions can be bridged.

13Official evaluation code has been released with the
dataset.
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Mention Mention Answer Sentence
Identification Alignment Accuracy Accuracy
P R F1 P R F1

SB-QED-only 74.0 63.1 68.1 63.6 54.2 58.6 – 88.4
SB-QA-only – – – – – – 73.0 81.5
SB-QA+QED 77.6 64.4 70.4 68.9 57.2 62.5 74.5 90.8
T5-QED-only 71.1 73.3 72.2 59.5 61.4 60.4 – 88.9
T5-QA-only – – – – – – 78.9 88.7
T5-QA+QED 70.3 72.3 71.3 58.3 59.9 59.1 79.2 89.1

Table 3: SpanBERT (SB) and T5 model perfor-
mance for Task 2: recovering answer and QED
annotations given a passage that is known to
contain the answer.

equalities are of a distinct distribution from other
coreference data.

In Table 3 we report results for Task 2.
SB-QED-only refers to the SpanBERT model fine-
tuned only with QED data. SB-QA-only refers to
the SpanBERT model fine-tuned on the NQ QA
data. SB-QA+QED finetunes on both QA and
QED. Similarly, we report results for T5 models.
We find that the T5 model tends to have higher
recall than the SpanBERT model on mention eval-
uations, but that the SpanBERT model is consider-
ably more precise. T5 far outperforms SpanBERT
on answer accuracy, even though it was fine-tuned
without the NQ QA data. Interestingly, in both T5
and SpanBERT models, training on QED data
improves QA performance. While the SpanBERT
model is more complex than the sequence-to-
sequence T5 model, it is considerably more com-
pact (320 million parameters versus 11 billion).

The data contain annotations for answer coref-
erence, in which answer spans outside of the
supporting sentence are referred to by an anaphor
within it. (See Section 2.) The phenomenon is
relatively rare though, and hence there are not
enough data to evaluate performance properly.
We did perform an additional experiment with T5
where, in addition to an answer span, it predicted
its anaphor in the answering sentence where ap-
propriate. The model achieved satisfactory per-
formance, with an F1 of 71%.

5 Rater Study

A major desideratum for explanation generation
models is faithfulness—that is, when the expla-
nations generated by a model truly reflect its
reasoning process (Jacovi and Goldberg, 2020;
Ross et al., 2017). One motivation for this is
that when a model is wrong, faithful explanations
reliably indicate the reason for the error. In the

context of QA, exposing the explanations of a
faithful system should improve users’ ability to
spot incorrect answers. We show that this is true
of a faithful QED system using a rater study.

5.1 Task Setup
Given a question, passage, and a candidate answer
span, raters were tasked with assessing whether
the candidate answer was correct or incorrect, and
indicating the confidence of their assessment.

A total of 354 raters, all of whom are US
residents and native English speakers, were di-
vided into three disjoint pools to perform the task
in three distinct test settings: The None group
of raters (n= 121) was presented with a ques-
tion, passage, and a highlighted answer span. The
Sentence group (n= 117) was provided with
additional highlighting of the sentence justifying
the answer, with no distinction made between
referential equalities and predicates. The QED
group (n= 116) was provided with additional
highlighting to indicate referential equalities be-
tween spans in the question and spans in the
passage. On average, a given rater provided judg-
ments for 41 questions.

We constructed the data for the study by taking
a random set of 50 correct answers, and 50 incor-
rect guesses from the NQ baseline model (Alberti
et al., 2019), on the Natural Questions dev set. So
as to ensure that the task was sufficiently chal-
lenging, correct instances were the gold answer
spans on question/passage pairs where the model
produced a false negative—that is, where an
answer existed in the passage, but the model was
not confident about it. Incorrect instances were
false positive guesses from the model, where an
answer did not exist in the passage but the model
was confident that one did.

Explanations, where present, were manually
annotated to simulate the inferences of a hypo-
thetical model that used a QED-style reasoning
process. When an item’s answer was correct, the
explanation shown was simply its corresponding
QED explanation. When the answer was incorrect,
referential equalities were identified using coun-
terfactual reasoning; they indicate equivalences
that would have to hold if the answer were correct.

Representative examples from the set of rater
study items are shown in Figure 5. Note that
although referential equalities were manually
chosen for incorrect examples, they are not out-
landish: They tend to correspond with closely
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Figure 5: Three example items from the rater study. In the referential equality error example, the answer is
incorrect because the White House and the State Capitol Building are not the same. In the predicate entailment
error example, the answer is incorrect because the sentence mentions the number of people over 65, whereas the
question asks for the number of people over 50.

related referents, but that are not equivalent
upon further inspection. More generally, incorrect
answers in the rater study tend to be incorrect
for very subtle reasons; this is a result of the
aforementioned answer selection process.

All raters were told that highlighting was the
output of ‘‘an automated question answering
system’’ that was incorrect ‘‘about half of the
time.’’ They were advised not to use external
knowledge sources or web search to make their
judgments. Raters who saw explanations were also
told that the system made use of the highlighted
explanation to produce its candidate answers.

5.2 Results

Average rater accuracies for each test setting are
presented in Table 4. We see that, in aggregate,
QED explanations improved accuracy on the task
over and above the other test settings, and gave
the most improvement on the identification of
answers that were incorrect. These improvements
translate to incorrect answers resulting from both
predicate and reference model errors.

Somewhat surprisingly, highlighting just the
sentence containing the answer improved accu-
racy more than including referential equality
highlighting on instances that were correct.
This may be because raters’ propensity to mark

Accuracy F1
All Corr Incorr/Pred/Ref Incorr

None 67.5 90.4 44.3/43.9/44.7 57.6
Sentence 69.7 92.4 47.1/46.1/48.0 60.9
QED 70.2 90.6 49.7/48.2/51.0 62.5

Table 4: Rater study results. Corr and Incorr are
accuracies of raters in each group on correct and
incorrect instances respectively, with incorrect
instances further broken into Pred(icate) and
Ref(erence) model errors. F1 is on the task of
identifying incorrect instances.

instances correct decreases as the complexity of
explanations increases, from None (73.1%) to
Sentence (72.6%) to QED (70.5%).

Also clear from Table 4 is that rater accuracy is
much lower on incorrect instances. Even though
raters were told that the answers presented were
incorrect half of the time, they judged the answers
to be correct roughly 71% of the time.14

Figure 6 provides another perspective on
the disparity in judgments on correct/incorrect

14While this confirmation bias presents an interesting
challenge for future work, it is not a shortcoming of our
results: Raters were not trained to do well on the task, as we
aimed to approximate how users interact with automated QA
systems.
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Figure 6: Sorted, per-question evaluation accuracies from different rater study settings, with 95% binomial
confidence intervals. The ‘‘evaluation accuracy’’ for a question is the proportion of raters who judged it correctly.
Left three plots correspond to trials with incorrect answers highlighted; right three plots to trials with correct
answers highlighted. Dashed red lines correspond to the average accuracy for each setting, identical to the numbers
in Table 4.

instances summarized in Table 4. Highest per-
question accuracies in the incorrect pool were
still lower than the average accuracy on all cor-
rect instances, and the lowest accuracy on incor-
rect instances is far lower than that of any of
the correct instances. The wide distribution of
accuracies on incorrect instances (σ ≈ 0.50)
seen in Figure 6 was also reflected in the rater
pool (σ ≈ 0.45). The challenging nature of in-
correct instances speaks to the promise of impro-
vements from QED explanations.

5.3 Effectiveness of explanations
How statistically significant are the results re-
ported in Table 4? The 14,115 test instances were
spread across 354 raters and 100 questions. We use
the rstanarm R package (Goodrich et al., 2020)
to fit a generalized linear mixed model (GLMM)
that estimates the log-odds of rater accuracy on
the basis of fixed effects (instance correctness and
explanation type), while controlling for random
effects of rater and question. (See Gelman and
Hill (2006) for further discussion of GLMMs.)
Ultimately we are interested in the magnitude
and statistical properties of the model under the
various test settings.

Table 5 shows the fixed effect coefficient and
standard deviations for each setting. The pres-
ence of QED explanations in the Incorrect setting
increased the log-odds of rater accuracy by 0.25,
with a posterior predictive p-value of 0.015 that

Parameter Coefficient (SD)

(Intercept) −0.31 (0.15)
+ Incorrect+Sentence 0.15 (0.11)
+ Incorrect+QED 0.25 (0.11)
+ Correct+None 2.94 (0.21)
+ Correct+Sentence 3.04 (0.13)
+ Correct+QED 2.69 (0.13)

Table 5: Generalized linear mixed model fixed
effect coefficients, showing mean and standard
deviation of 10k MCMC samples. The Intercept
corresponds to the Incorrect+None setting.

this effect is greater than zero. The comparable
effect for Sentence explanations was 0.15, with a
posterior predictive p-value of 0.08. The rater and
question random effects had standard deviations
of 0.63 and 0.90 respectively, reflecting again the
high variance of questions shown in Figure 6.

As we saw earlier, the effects of explanations
in the Correct setting was reversed: The Sentence
explanations caused a small, statistically insignifi-
cant increase in log-odds, while QED explanations
caused a statistically significant drop in log-odds.

6 Discussion

6.1 QED versus other Explanation Types

QED exists in between relatively unstructured ex-
planation forms on the one hand, such as attention
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Figure 7: Examples from NQ that go beyond the current definition of QED. Highlighting resembles QED
highlighting. In the multi-hop instance, we require an additional sentence to link the entity mentions in the
question to the answer sentence. In the yes/no question, the supporting sentence justifies a ‘‘No’’ answer because
it contradicts the question predicate. In the set-valued question, multiple sentences provide partial answers to the
question, and the resulting answer is the union of all of these.

distributions (Wiegreffe and Pinter, 2019; Jain
and Wallace, 2019; Mohankumar et al., 2020) or
sequential outputs (Camburu et al., 2018, 2020;
Narang et al., 2020; Kumar and Talukdar, 2020)
and more elaborate, discrete semantic representa-
tions that can in theory be applied to explainable
QA (Abzianidze et al., 2017; Wolfson et al., 2020).

6.2 QED and Faithfulness

A major goal for future work is to develop faithful
QA models with the QED framework. As Section 5
suggests, models that are not only right for the right
reasons, but also wrong for the right reasons, can
help users identify subtle errors. Other motivations
include model debuggability: Since faithful mod-
els should reveal weaknesses in their reasoning,
they may enable more targeted intervention.

QED is a promising style of explanation to this
end, because it makes use of fundamental seman-
tic variables, like reference (Russell, 1905; Clark
and Marshall, 1981; Tomasello et al., 2007). We
can say, definitively, that in order for a sentence
to answer a question about a thing, its meaning
must involve that thing in a very particular sense.

Posed counterfactually, when you break referen-
tial equality, you break answerhood, and the same
argument follows for predicate entailment. This
is a hallmark of a good explanation (Pearl, 2019;
Lipton, 2001).

6.3 Scoping and Extension to other
Question Types

The instantiation of QED presented in the current
work is limited to extractive wh-questions whose
answers are entailed by single sentences. We
feel this scoping is well justified, because (1)
a significant portion of NQ falls under QED’s
current purview; (2) previous work and data
analysis suggests QED can be readily extended
to accommodate these other types (Hearst, 1992;
Miltsakaki et al., 2004; Lamm et al., 2018; Tandon
et al., 2019); and (3) close study of the single
sentence case is a necessary condition for these
other question types.

In Figure 7, we present several representative
NQ instances that require more machinery than
QED provides at present. Let us consider how
QED might be extended to handle each of these.
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Multi-hop QA For multi-hop questions, ref-
erential equalities involve longer, text-mediated
paths from entity references in the question to an
ultimate sentence entailing its answer (Yang et al.,
2018).

Yes/No QA Answering Yes/No questions
requires identifying sentences in a text that
entail or contradict the premise presented in the
question.

Set-valued QA Set-valued QA requires assem-
bling QED explanations for a set of answers to the
question, and returning the union of the (unique)
answers found.

Looking further afield from these question
types above, which are less frequent in NQ but
nevertheless attested there, it becomes clear that
QA writ large is much broader than even a dataset
of NQ’s scale suggests (Rogers et al., 2020). The
generality of QED as a model for how elements of
questions can link up with textual evidence sug-
gests that QED would likely be complementary
to, rather than at odds with, efforts to understand
these broader senses of QA.

7 Conclusions

We have described QED, a framework for expla-
nations in question answering, and we have
introduced a dataset of QED annotations. The
framework is grounded in referential equality,
and entailment. In addition we have described
baseline models for two QED-based tasks, and a
rater study utilizing QED annotations.

Future work should consider the development
of models based on QED, especially those that
provide faithful explanations, and extensions of
QED beyond the single-sentence assumption.

References

Barbara Abbott. 2004. Definiteness and Indefi-
niteness. The Handbook of Pragmatics, 122.
https://doi.org/10.1002/9780470756959
.ch6

Lasha Abzianidze, Johannes Bjerva, Kilian
Evang, Hessel Haagsma, Rik van Noord, Pierre
Ludmann, Duc-Duy Nguyen, and Johan Bos.
2017. The Parallel Meaning Bank: Towards a
multilingual corpus of translations annotated
with compositional meaning representations.

In Proceedings of the 15th Conference of
the European Chapter of the Association for
Computational Linguistics: Volume 2, Short
Papers, pages 242–247, Valencia, Spain.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/E17
-2039

Chris Alberti, Kenton Lee, and Michael Collins.
2019. A BERT baseline for the natural ques-
tions. arXiv preprint arXiv:1901.08634.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
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A A Formal Definition of
QED Annotations

An annotator is presented with a question q
that consists of m tokens q1 . . . qm, along with
a passage c consisting of n tokens c1 . . . cn.

The QED annotation is a triple 〈s, e, a〉 where:

• s is a sentence within the passage c.
Specifically s is a pair s0, s1 indicating that
the sentence spans words cs0 . . . cs1 inclusive.

• e is a sequence of 0 or more ‘‘referen-
tial equality annotations’’, e1 . . . e|e|. Each
member of e specifies that some noun phrase
within the question refers to the same item
in the world as some noun phrase within the
sentence s.

• a is one or more answer annotations
a1 . . . a|a|.

We now describe the form of the e and a
annotations, making reference to the following
example. Subscripts indicate token positions:

Question: who1 won2 wimbledon3 in4 20195
Passage: Simona1 Halep2 is3 a4 female5 tennis6
player7 .8 She9 won10 Wimbledon11 in12 201913
.14

As a preliminary step, given the paragraph c
and sentence s, we use S to refer to the set of all
phrases within s. Our initial definition of S is

S = {(i, j) : s0 ≤ i ≤ j ≤ s1}

We also define the set of question phrases Q
and passage phrases C to be

Q = {(i, j) : 1 ≤ i ≤ j ≤ m}
C = {(i, j) : 1 ≤ i ≤ j ≤ n}

We can then give the following definitions:

Definition 1 Each referential equality annotation
ek for k = 1 . . . |e| is a pair (φk, πk) ∈ Q × S ,
specifying that the phrase φk in the query refers
to the same thing in the world as the phrase πk
within s.

In our example,

e = [((3, 3), (11, 11)), ((5, 5), (13, 13))]

where the first tuple in the sequence corresponds
with the alignment between ‘‘wimbledon’’ in the
question and ‘‘Wimbledon’’ in the passage, and
the second tuple with ‘‘2019’’ in the question and
‘‘2019’’ in the passage.

Definition 2 Each answer annotation ak for
k = 1 . . . |a| is a pair (πk, ξk) ∈ S × C specifying
that the answer is given by phrase πk, and the
full string corresponding to πk after coreference
is resolved is the phrase ξk. If no coreference
resolution is required then πk = ξk.

In our example,

a = [((9, 9), (1, 2))]

corresponding with the alignment of ‘‘She’’ in the
sentence ‘‘She won Wimbledon in 2019’’ with
the mention of ‘‘Simona Halep’’ earlier in the
passage.
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A.1 Extending Annotations to
Include Bridging

Recall the definition of bridging in Section 2.
We extend the formal definition of QED to
include bridging by redefining S to include
implicit phrases introduced in the form of implicit
prepositional phrases, as in the ‘‘winner [of ...]’’.
The modified definition of S includes all phrases
of the following form: (1) Any pair (i, j) such
that s0 ≤ i ≤ j ≤ s1 indicating the subsequence
of words ci . . . cj within the sentence. (2) Any
triple (i, j, p) such that s0 ≤ i ≤ j ≤ s1 and
p is a preposition, indicating the implicit noun
phrase in the sentence that modifies the phrase
ci . . . cj through the preposition p. (3) Any pair
(NULL, p) such that p is a preposition, indicating
the implicit noun phrase modifying the entire
sentence cs0 . . . cs1 through the preposition p.

Given the following example, then:

Question: who1 won2 america’s3 got4 talent5
season6 117
Passage: The1 11th2 season3 of4 America’s5
Got6 Talent7 began8 broadcasting9 in10 the11
United12 States13 during14 201615 .16 Grace17
VanderWaal18 was19 announced20 as21 the22
winner23 on24 September25 1426 ,27 201628 .29

we have that

e = [((3, 7), (22, 23), ‘‘of’’)]

This means that the question span ‘‘america’s
got talent season 11’’ is bridged by the reference
’’the winner’’ in the answering sentence. The
preposition ‘‘of’’ indicates how the question
referent can be attached to the sentence reference:
Putting them together yields ‘‘the winner of
america’s got talent season 11’’.

B T5 Model Linearization

We describe our method for linearizing QED
instances as T5 input and output sequences. Let
us consider the following example:

Question: how many seats in university of
michigan stadium
Passage: Michigan Stadium, nicknamed ‘‘The
Big House’’, is the football stadium for
the University of Michigan in Ann Arbor,
Michigan. It is the largest stadium in the United
States and the second largest stadium in the
world. Its official capacity is 107,601.

Recall that the QED annotation for this example
is as follows

how many seats in [=1 university of
michigan stadium]

[=1 Its] official capacity is [=A
107,601]

The T5 model input are constructed by
concatenating the question, page title, and
paragraph into one sequence, separated by ‘‘>>’’:

how many seats in university of michigan
stadium >> Michigan Stadium >> Michigan
Stadium, nicknamed ‘‘The Big House’’, is the
football stadium for the University of Michigan
in Ann Arbor, Michigan. It is the largest stadium
in the United States and the second largest
stadium in the world. Its official capacity is
107,601.

A task-specific token is prepended to this input
to indicate whether the model should produce
an answer or an explanation. The answer output
sequence is as follows:

107,601 .

where additional material after the special char-
acter " " (as distinct from ">>") is used to disam-
biguate the position of the answer in the passage.
Finally, the explanation would be linearized as
follows:

university of michigan stadium >> Its official
capacity is 107,601

Here, the first phrase corresponds to the question
mention and the second to the passage mention.
The additional material after the passage mention
is meant to uniquely identify its position in the
passage, for evaluation purposes.
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