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Abstract

A desirable property of a reference-based
evaluation metric that measures the content
quality of a summary is that it should estimate
how much information that summary has in
common with a reference. Traditional text
overlap based metrics such as ROUGE fail
to achieve this because they are limited to
matching tokens, either lexically or via em-
beddings. In this work, we propose a metric to
evaluate the content quality of a summary
using question-answering (QA). QA-based
methods directly measure a summary’s in-
formation overlap with a reference, making
them fundamentally different than text over-
lap metrics. We demonstrate the experimen-
tal benefits of QA-based metrics through an
analysis of our proposed metric, QAEval.
QAEval outperforms current state-of-the-art
metrics on most evaluations using benchmark
datasets, while being competitive on others
due to limitations of state-of-the-art models.
Through a careful analysis of each compo-
nent of QAEval, we identify its performance
bottlenecks and estimate that its potential
upper-bound performance surpasses all other
automatic metrics, approaching that of the
gold-standard Pyramid Method.1

1 Introduction

Evaluating the content quality of a summary is a
fundamental task of text summarization. As such,
it has received the attention of researchers for
the past two decades (Lin, 2004; Nenkova and
Passonneau, 2004; Hovy et al., 2006; Louis and

1Code is available at https://github.com/CogComp
/qaeval-experiments.

Nenkova 2013; Zhao et al., 2019, among others).
The most popular approaches are reference-based
metrics, which treat a human-written reference
summary as the gold standard and score a candi-
date summary based on how similar its content is
to the reference.

It is desirable to have reference-based evalu-
ation metrics that calculate this similarity score
based on how much information the two summa-
ries have in common. The vast majority of
previous automatic evaluation metrics compare
two summaries based on matching their tokens,
either through some lexical (Lin, 2004; Hovy et al.,
2006; Tratz and Hovy, 2008) or embedding-based
similarity (Zhang et al., 2020; Zhao et al., 2019).
Although they capture a valuable quality signal,
these methods match tokens that do not express the
same information and instead end up comparing
the similarity of two summaries based on the
topics they discuss (Deutsch and Roth, 2020).

In this work, we propose a metric to evaluate
the content quality of a summary using question-
answering (QA). Metrics within a QA evaluation
framework represent the information of a refer-
ence summary using QA pairs, then estimate how
much of this information is contained in a can-
didate summary by calculating the proportion of
questions it can answer. Because the questions can
only be answered if the candidate summary con-
tains the corresponding information, QA-based
metrics directly measure the information overlap,
providing a summary quality signal that is not
effectively captured by text overlap based metrics.

We build upon previous work in this direction
(Eyal et al., 2019) and propose and analyze a more
general QA-based metric, which we call QAEval
(§3.1). We experimentally show the benefit of
QAEval, both with current state-of-the-art meth-
ods and by estimating its potential upper-bound
performance.
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We show that with current question-generation
and question-answering models, QAEval achieves
state-of-the-art correlations to human judgments
on benchmark datasets when used to evaluate
summarization systems (by averaging scores over
dozens of summaries), outperforming all other
automatic metrics and equalling the gold-standard
Pyramid Method (Nenkova and Passonneau, 2004,
§8). When used to rank individual summaries, the
metric is equal to or better than other metrics on
summaries that are very similar to the ground-truth
and is competitive on others due to shortcomings
of current state-of-the-art models (§7).

Through a careful analysis of each component
of QAEval (§5-§7), we identified 2 performance
bottlenecks: (1) the QA model and (2) the task of
verifying if the predicted answer is correct (§7),
whose noise likely explains the lower summary-
level performance in some scenarios. Based on a
manually annotated set of 2.9k QA pairs, we show
that with human-level QA and answer verification
performance, the summary-level upper-bound cor-
relations of QAEval are better than all other au-
tomatic metrics and approach the gold-standard
Pyramid Method. In combination with state-of-
the-art correlation results, this strongly indicates
that QA-based evaluation metrics are a promising
direction for future research.

The contributions of this work include (1) a pro-
posal of QAEval, a more general QA-based metric
for evaluating the content of summaries, (2) ex-
perimental evidence that demonstrates QAEval’s
state-of-the-art performance on benchmark data-
sets, (3) an analysis that identifies the QA model
and answer verification as the performance bottle-
necks, and (4) an estimate that QAEval’s upper-
bound summary-level performance in scenarios in
which it currently lags behind is high, approach-
ing that of the gold-standard manual evaluation
metric, the Pyramid Method.

2 Related Work

By far the most popular automatic methods for
evaluating the content of a summary do so by
comparing the tokens of the candidate and the
reference. The de facto metric ROUGE (Lin,
2004) calculates a precision and recall score on
the summaries’ lexical overlap. Recent methods
BERTScore (Zhang et al., 2020) and Mover-
Score (Zhao et al., 2019) instead compare tokens

based on the similarity of their contextual word
embeddings.

Because these text overlap metrics do nothing
to specifically measure how much information is
common between two summaries, their scores are
polluted by spurious matches between tokens that
do not express the same information. In contrast,
QA-based evaluation metrics do directly compare
summaries based on their information.

The gold-standard for manually comparing two
summaries’ information overlap is the Pyramid
Method (Nenkova and Passonneau, 2004). It
uses a domain-expert to identify spans of text
between the candidate and reference summaries
that express the same information, known as sum-
mary content units (SCUs). Because the Pyramid
Method’s final score is calculated exclusively
on the number of common SCUs, it is a purely
information-based evaluation.

While there have been efforts to crowd source
the Pyramid Method (Shapira et al., 2019), fully
automatic approximations PEAK (Yang et al.,
2016) and PyrEval (Gao et al., 2019) have also
been proposed, with PyrEval reporting the best
performance. PyrEval identifies and matches
SCUs by decomposing sentences into clauses,
then calculating the similarity of the clauses based
on their phrase embeddings. This style of metric
has been met with less success than text overlap
metrics.

Several recent works also use QA to evalu-
ate summaries. Narayan et al. (2018) use QA as
part of a human evaluation to measure how much
important document information was maintained
by the summary. FEQA (Durmus et al., 2020) and
QAGS (Wang et al., 2020) automate evaluating
the faithfulness of a summary. Faithfulness and
content quality are related, yet distinct, concepts.
Quality is a measure of whether the summary
contains the correct information, whereas faith-
fulness measures whether the information is con-
sistent with the input, regardless of its importance.
FEQA and QAGS compare summaries to the input
documents, whereas we compare summaries to
references. Because the datasets used in our exper-
iments are extractive summaries or have relatively
high faithfulness ratings (Fabbri et al., 2020), we
assume faithfulness is not an issue for simplicity.

Then, the most closely related work to ours is
Eyal et al. (2019), who also use QA to evaluate
the content of summaries via their metric APES.
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They create fill-in-the-blank questions by remov-
ing named entities from the reference summary
and use a reading comprehension model to predict
which entity was removed using the candidate
summary.

There are several differences between their
work and ours. Our proposed metric QAEval is
more general than APES because QAEval asks and
answers questions about noun phrases, whereas
APES is restricted to named entities. APES may
fail to accurately score summaries that do not
have a sufficient number of named entities. Then,
our evaluation of QAEval is more comprehensive:
The experiments in Eyal et al. (2019) were limited
to evaluating APES on 8 input instances from
TAC’11,2 whereas our experiments are run on 92
instances from benchmark content quality datasets
TAC’08 and ’09 as well as 100 instances from the
CNN/DailyMail dataset (Nallapati et al., 2016;
Fabbri et al., 2020). Since our evaluation is more
comprehensive and we demonstrate our metric has
a high upper-bound performance, we believe it is a
more convincing argument that QA-based metrics
are a promising direction of future research. Fur-
ther, we perform an extensive evaluation on the
individual components of the metric. We compare
our metric’s performance to APES’ in §8 and §9.

3 QA-Based Evaluation

The standard line of research for evaluating the
content quality of a summary is based on compar-
ing the text of a candidate summary to a reference
summary. Metrics that follow this approach
include ROUGE, Basic Elements (Hovy et al.,
2006), AutoSummENG (Giannakopoulos et al.,
2008), METEOR (Denkowski and Lavie, 2014),
BERTScore (Zhang et al., 2020), MoverScore
(Zhao et al., 2019), and many more.

It is desirable to evaluate a summary based
on the quality of the summary’s information. For
reference-based metrics, this means measuring the
overlap in information between the candidate and
reference summary. However, there is evidence
that suggests text overlap metrics do not success-
fully accomplish this (Deutsch and Roth, 2020).
They match tokens which do not express the same
information and end up comparing the similarity
of two summaries based on the topics they discuss.

2https://tac.nist.gov/.

We argue that a much better method of com-
paring the information content of two summaries
is through QA. In an ideal QA-based evaluation
framework, all of the reference summary’s infor-
mation is represented by a set of QA pairs, and the
candidate summary’s recall of this information is
measured by answering the questions against the
candidate. The questions should only be answer-
able if the information necessary to answer them is
present in the candidate. Therefore, this approach
is fundamentally different from text overlap meth-
ods because it explicitly measures how much of
the reference’s information is contained in the
candidate.

While we cannot yet achieve this ideal QA-
based metric (our QA-based representations may
be incomplete, our QA models are imperfect, etc.),
we next propose a specific instantiation of this
framework that represents our best effort at reach-
ing this goal with today’s state-of-the-art models.

3.1 QAEval

At the core of this work is a reference-based
summarization evaluation metric that estimates
the content quality of a summary, which we call
QAEval. The metric represents the information of
a reference summary by a set of question-answer
pairs that are automatically generated from the ref-
erence. Then, QAEval estimates how much of this
information is in a candidate summary by using a
learned QA model to answer the questions against
the candidate. The predictions from the QA model
are verified as correct or incorrect, then the final
score of the metric calculates what proportion of
the questions were answered correctly.

Below, we describe the individual steps of the
evaluation metric in more detail. Then, each com-
ponent of QAEval is analyzed individually in
Sections 5, 6, and 7 in order to identify any perfor-
mance bottlenecks, followed by an overall evalua-
tion of the metric in Section 8 and a reproduction of
the experiments of Eyal et al. (2019) in Section 9.

Answer Selection The first step in generating
questions from the reference summary is to pick a
set of phrases that represents answers to questions
that will later be generated. The answers should be
chosen such that they will generate questions that
cover as much of the information of the summary
as possible. We evaluate how much semantic
content is represented by several different answer
selection strategies in §5.
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Question Generation Once the answers have
been selected, a learned model is used to generate
a question for each answer. The input to the
question-generation model is a sentence which
contains an answer phrase that is demarcated by
special tokens. The output is a question which is
answerable by that phrase.

Following Durmus et al. (2020), the generation
model is a fine-tuned BART model (Lewis et al.,
2020) trained on 55k human-written question-
answer pairs collected by Demszky et al. (2018).
The quality of the generated questions and the
impact of using model-generated questions in-
stead of human-written questions on downstream
correlations is measured in §6.

Question Answering Given a set of QA pairs
generated from the reference summary, a QA
model is used to answer the questions against the
candidate summary. Since there are no summa-
rization datasets with labeled QA pairs, the QA
model must be trained on a different dataset. Fur-
ther, because it is almost always the case that the
candidate summary will not contain some refer-
ence summary information, it is necessary for the
model to decide whether a question is answerable
to reduce noise from spurious answers. There-
fore, the QA model is trained on the SQuAD 2.0
dataset (Rajpurkar et al., 2018) which contains
unanswerable questions.

The QA model is a pre-trained ELECTRA-
Large model (Clark et al., 2020) fine-tuned on
SQuAD 2.0. The input to the model is the can-
didate summary and a question. The output is a
span of text that contains the answer or a null
string if the question is not answerable, depending
on which is more probable under the model. We
estimate the answering performance of the QA
model on the summarization data and estimate
the improvement in downstream correlations
that would be expected if the QA model had
human-level performance in §7.

Answer Verification and Scoring Finally,
once the QA model has output predictions for all
of the questions generated from a reference sum-
mary, they are verified as being correct or incorrect
with respect to the ground-truth answers that were
used to generate the questions. We employ the
two standard answer verification methods used
by SQuAD, exact match (EM) and F1 (Rajpurkar
et al., 2016). If the QA model outputs the null

string, the score for that answer is 0. We esti-
mate whether these imperfect answer comparison
strategies negatively impact downstream corre-
lations in §7.

Finally, the metric produces two final scores
that are the total EM and F1 scores divided by the
number of questions, thus calculating the propor-
tion of questions answered correctly. If multiple
reference summaries are available, the scores
are macro-averaged. We refer to the metrics as
QAEval-EM and QAEval-F1.

4 Experimental Methodology

We briefly review the experimental methodology
that is used to evaluate metrics.

Evaluation metrics are used to estimate some
property of a summary that is difficult to directly
measure, such as the quality of its content. In order
to estimate how well the metric approximates the
desired property (i.e., evaluate the evaluation met-
ric), a set of summaries that have been annotated
by human judges for that property is scored by the
metric, and then the correlation between the two
sets of scores is calculated. The summaries are
typically the outputs from multiple summarization
models for the same set of inputs.

There are two standard ways to calculate corre-
lations in the summarization literature: summary-
level and system-level. Assume xji and yji are
two scores of metrics X and Y for the sum-
mary output by system i ∈ {1, . . . , N} on input
j ∈ {1, . . . ,M}. The summary-level correlation
is calculated between the scores for each summary
for the same input, then averaged across inputs:

ρSUM =
1

M

∑
j

CORR

({(
xji , y

j
i

)}N

i=1

)

where CORR(·) calculates some correlation coeffi-
cient, typically Pearson r, Spearman ρ, or Kendall
τ . Summary-level correlation measures how sim-
ilarly X and Y rank summaries per-input. In
contrast, the system-level correlation is calculated
between the scores for each system (typically the
average score across the inputs):

ρSYS = CORR

⎛
⎜⎝
⎧⎨
⎩
⎛
⎝ 1

M

∑
j

xji ,
1

M

∑
j

yji

⎞
⎠
⎫⎬
⎭

N

i=1

⎞
⎟⎠

It measures how similarly X and Y rank summa-
rization systems.
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In this work, we examine how well evaluation
metrics estimate the content quality of a summary
using three English summarization datasets: the
benchmark TAC’08 and ’09 datasets (Dang and
Owczarzak, 2008, 2009) as well as the subset of
the CNN/DM dataset (Nallapati et al., 2016) that
was annotated by Fabbri et al. (2020).

The TAC datasets consist of 48/44 multi-
document summarization instances, each with 4
reference summaries written by human annotators.
Domain-expert judges rated the summaries output
by 58/55 extractive models for each input on a
scale of 1 to 5 based on how well they respond to an
information need included in the task description.
Each summary is also assigned a Pyramid Score
(Nenkova and Passonneau, 2004) using a Pyramid
constructed from the 4 reference summaries. Our
experiments on TAC calculate the correlations of
the metrics to the responsiveness score for the
58/55 model summarizers and 48/44 instances.

The annotations provided by Fabbri et al. (2020)
on the single-document summarization CNN/DM
dataset score the outputs of 16 models across 100
instances. The models are a mixture of extractive
and abstractive approaches, and each instance has
1 reference summary. Fabbri et al. (2020) col-
lected relevance scores from 3 expert annotators
that captures if the summary contains important
content from the input document. Our experiments
report the correlation between the metrics’ scores
and the expert relevance judgments.

5 Answer Selection

In order for a QA-based evaluation metric to
be successful, the QA pairs it uses to probe the
candidate summary must represent a significant
proportion of the reference summary’s infor-
mation. Therefore, in this section, we aim to
understand how much information the QA pairs in
QAEval do represent and whether that may limit
the metric’s performance.

We explore three different answer selection
strategies which pick phrases that are (1) named-
entities, (2) noun phrase chunks, (3) or maximally
sized noun phrases. The maximally-sized noun
phrases in a sentence are identified by traversing
the dependency tree down from the root until a
noun is reached, then selecting the entire subtree
for that noun. Example answers selected by each
strategy are presented in Figure 1.

Figure 1: Example answers selected by the three
strategies. The only SCU marked by annotators for this
sentence is SCU4, which does not include information
about the location of the attacks. Therefore, an answer
selection strategy that chooses ‘‘Baghdad’’ enables
generating a QA pair such as QA3, which probes for
information not included in the Pyramid annotation.

Since there is no well-established method of
measuring how much semantic content is repre-
sented by a set of QA pairs, we instead compare
the content covered by the QA pairs to that
of another semantic representation, the Pyramid
Method SCUs (see §2 for details). This approach
allows us to compare answer selection strategies
to a common point of reference as well as under-
stand what types of information are represented
by each formalism.

In order to compare the content covered by QA
pairs and SCUs, each QA pair is manually mapped
to an SCU based on whether the information that is
being probed by the QA pair is included in the SCU
description. For instance, in Figure 1, QA1 and
QA2 map to SCU4 because they target what was
attacked, which is included in the SCU description,
whereas QA3 would not because the SCU does not
describe the location of the attacks. This mapping
allows us to calculate the proportion of QA pairs
that map to some SCU, called the QA precision,
and the proportion of SCUs that are mapped to by
some QA pair, called the SCU coverage.

To ensure that the generated questions are of
high-quality, one of the authors manually wrote
questions for every answer selected by each strat-
egy for 20 reference summaries across 10 input
document sets from TAC’08, totaling 801 ques-
tions. The same author further mapped every QA
pair to SCUs. The results (averaged over reference
summary) are presented in Table 1.

The most significant result we find is that the
NP chunks strategy covers 91% of the semantic
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Strategy Avg #QAs QA Precision SCU Coverage

NER 11.7 83% 57%
NP Chunks 28.8 79% 91%
Max. NPs 17.3 82% 77%

Table 1: The NP chunks answer selection strategy
covers 91% of the information represented by the
Pyramid Method (SCU Coverage) with 21% of
the questions representing new information. From
this, we conclude that the QA pairs generated from
selecting noun chunk answers provides a semantic
representation of the reference summary with very
high-coverage.

information included in the Pyramid Method, with
an additional 21% of the questions targeting new
information the Pyramid Method does not repre-
sent. The other two strategies have much lower
SCU coverages, likely because they result in fewer
generated questions since their QA precisions are
approximately equal to that of NP chunks.

This result is very promising for QA-based
evaluation metrics because it indicates that the
QA pairs cover nearly all of the information that is
used by the Pyramid Method, the best-performing
manual content quality evaluation. Further, they
even cover information the Pyramid Method
does not, suggesting the potential for even better
downstream correlations. Therefore, we conclude
that the information represented by the QA pairs
generated from selecting noun chunk answers is
unlikely to be a factor which limits QAEval’s per-
formance, and we subsequently use that selection
strategy for the rest of our experiments.

Comparing QA Pairs and SCUs Upon com-
paring the information that is represented by one
formalism and not the other, there are some
key differences. The QA pairs miss information
represented by nominal and adjectival modifiers
because that information is contained within the
answer noun phrase. For instance, for sentence [A
Turkish novelist] was arrested, the question asks
about who was arrested, and not about the nation-
ality of the novelist, which the SCUs do include.

In contrast, the SCUs often miss specific details
and generalize over information that the QA pairs
do not. For instance, in Figure 1, although the
SCUs do represent that the church attacks hap-
pened, it does not include information about their
location, whereas this information is targeted by
the QAs pairs.

Figure 2: A typical example of expert-written and
model-generated questions answerable by the phrase in
red. The model questions are often significantly more
verbose than the expert questions, typically copying
the majority of the input sentence.

6 Question Generation

An ideal question generation model should gen-
erate questions that are high enough quality that
they do not impact the overall performance of the
metric. In this section, we compare questions gen-
erated by the learned model to expert-written ques-
tions, both empirically and extrinsically through
downstream correlations to human judgments.

Empirical Analysis Upon comparing the
expert-written questions from §5 to model-
generated questions for the same set of answers,
we observe that a major difference between ques-
tions written by an expert versus a model is the
level of verbosity. The model-generated questions
often copy most of the input sentence over to the
question, including parts of the sentence that may
not be relevant to answering the question. In con-
trast, the questions written by an expert are more
concise and remove the irrelevant details. Exam-
ples of this difference can be seen in Figure 2.

Despite the verbosity, nearly all of the model-
generated questions are understandable to the
authors. However, because they are rather for-
mulaic, the questions sometimes sound unnatural
and could be confusing to a layperson. We did
not find any examples in which the answer was
included in the question.

Downstream Correlation Ideally, a QA-based
evaluation metric would use an expert to write the
questions to ensure that they are all high-quality.
Unfortunately, this does not scale and is very
expensive and time consuming, so the questions
must be model-generated. However, it is impor-
tant to quantify any drop in performance caused
by generating questions from a model rather than
a domain-expert to understand the impact of using
a less-than-ideal approach.

In order to measure any potential drop in
performance, we compared the downstream
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Figure 3: A comparison of the correlations of QAEval-
F1 on a subset of TAC’08 using expert-written and
model-generated questions. Each point represents the
average correlation calculated using 30 samples of
{2, 4, 6, 8, 10} instances, plotted with 95% error bars.
System-level correlations were calculated against the
summarizers’ average responsiveness scores across the
entire TAC’08 dataset. We hypothesize the model
questions perform better due to their verbosity, which
causes more keywords to be included in the question
that the QA model can match against the summary.

correlations of the QA-based metrics to respon-
siveness judgments when using expert-written
and model-generated questions. In both cases, the
question-answering component was done using
the learned model described in §3.1.

This experiment was performed on the subset
of the TAC’08 dataset for which we collected
expert-written questions (see §5). That is, the
summaries from 58 different systems across 10
input instances with 2 references each were scored
using the two setups, and the respective corre-
lations were computed.3 We further simulated
having a smaller number of input instances by
downsampling the data to observe any emerging
trends. The results are plotted in Figure 3.

The downstream summary-level correlations
appear near-identical between the two approaches.
However, surprisingly, the model-generated ques-
tions appear to result in better downstream
correlations at the system-level than the expert-
written questions. As soon as around 6 input
instances are available, the two curves separate
from each other’s margins of error, with the
model-generated questions clearly trending with
a Spearman correlation of at least 0.05 higher.

3Since we do not have expert-written questions for all 4
references across all 48 input clusters, these results are not
strictly comparable to later experiments (e.g., §8).

It is not clear from examining the data why this
is the case. There is no clear pattern that emerges
which could explain why the model-generated
questions result in higher correlations. Our best
hypothesis is that the verbosity of the gener-
ated questions helps the QA model by including
more keywords that can be matched against the
summaries to find an answer.

From these unexpected results, we can con-
clude that the model-generated questions do not
harm the downstream correlations of QAEval at
either the summary- or system-levels. The rest of
the experimentation in this paper will only use
model-generated questions.

7 Question Answering and Verification

The task of the QA model and answer verification
step are to determine whether a question is answer-
able against a summary, predict an answer if it is,
then compare the prediction to the ground-truth
answer to determine if it is correct. In this section,
we evaluate the performance of both components
on the summarization data, first by calculating the
QA performance (§7.1) and then by estimating
the downstream correlation of QAEval if both
components had human-level performance (§7.2).

7.1 Question-Answering Model Performance

Since the QA model is trained on Wikipedia arti-
cles in the SQuAD 2.0 dataset and used to answer
questions generated from the summarization data,
it is expected that the QA performance on the
summarization data will be worse than on the
original training data due to the domain shift.

In order to quantify the size of such a drop, one
of the authors manually answered 2.9k generated
questions from 20 reference summaries across 10
input clusters against 4 different summarizers on
TAC’08 and 2.3k generated questions across 10
input documents against all 16 summarizers on
CNN/DM. For each question and summary pair,
it was first determined whether the summary con-
tained the answer to the question, then, if it did,
a span of text was selected as the answer. Next,
the selected answer was later manually verified as
correctly or incorrectly answering the question.

We compare the QA model’s ability to both
identify if a question is answerable and to select the
correct answer if one exists separately on SQuAD
2.0 and the summarization datasets. This is done
to measure any performance decrease on each
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Figure 4: An example correct answer predicted by the
model that is scored poorly by the EM or F1 QA metrics
(both would assign a score of 0 or near 0). This occurs
because the answer and prediction are drawn from two
different summaries, and the same event is referred to
in different ways in each one.

problem in isolation. We calculated the F1 score
on the model’s predictions on whether the ques-
tion is answerable, plus the standard SQuAD EM
and F1 metrics on only the subset of QA pairs for
which the ground-truth and model agree that the
question is answerable. We do not want to mea-
sure the quality of the predicted answer if the
question is not answerable or the model outputs
no answer.

In addition to EM and F1, we also report the
correct answer accuracy according to the human
annotator. EM and F1 are imperfect answer com-
parison strategies because they may fail to identify
an answer as correct if it is a paraphrase of the
ground-truth. Unlike SQuAD, the ground-truth
answer and model prediction come from differ-
ent source texts, increasing the likelihood that
both answers will be expressed differently (see
Figure 4). Comparing the human annotator accu-
racy to EM and F1 will quantify how well the
automatic answer verification methods work on
the summarization data.

The results are presented in Table 2. In gen-
eral, the QA performance drops for both datasets,
but the decrease is more extreme for TAC’08.
Specifically, we see that the drops in IsAns-F1 are
significant, amounting to decreasing by nearly 40
points from 92.0 on SQuAD to 52.4 on TAC’08
and almost 17 points to 75.3 on CNN/DM. This
result indicates that identifying if a question is
answerable is very challenging for the model,
especially on TAC.

The EM and F1 results across datasets also see
a rather significant drop of around 47–58 points
for TAC and 42–55 for CNN/DM, pointing to a
much worse answering performance by the model

Dataset %IsAns IsAns-F1
Given IsAns

EM F1 Acc

SQuAD 2.0 50.0% 92.0 88.0 94.5 –
TAC’08 14.2% 52.4 56.5 69.5 84.3
CNN/DM 36.3% 75.3 73.8 83.6 86.3

Table 2: The QA performance on the summa-
rization datasets drops significantly compared
to its performance on SQuAD, especially for
TAC’08. This is expected due to the domain
shift, however we suspect the drop is smaller for
CNN/DailyMail because the generated and ref-
erence summaries are far more similar than for
TAC, thus making it easier to answer questions.

when the model correctly predicts that an answer
exists. However, the accuracy according to the
human annotations is closer to the performance on
SQuAD, implying the actual drop in performance
is actually not as significant. The discrepancy
between the EM/F1 scores and human accuracy
judgments means the model’s predictions are fre-
quently correct, but EM and F1 fail to identify them
as such in a significant number of cases, thereby
implying they are noisy answer verification meth-
ods. This problem has been observed for QA
models before (Wang et al., 2020; Chen et al.,
2020), but the issue seems particularly apparent
for when the answer and QA models prediction
come from different texts.

We suspect that the QA model fares better
on CNN/DM than TAC because the CNN/DM
generated summaries are far more similar to the
reference summaries than those in TAC. This is
likely due to several factors: (1) The CNN/DM
task is in some sense easier than the TAC task. The
lead-3 baseline is very strong, so the models can
more easily generate high quality summaries. (2)
The models included in the annotation are more
recent state-of-the-art models compared to those
from TAC and are likely better summarizers. (3)
The task is single-document, so the information
in the reference and generated summaries is more
likely to be expressed the same way.

Since the two summaries being compared are
similar to each other, the generated questions have
a large token overlap with the target summary.
This likely results in the QA model being more
effective at identifying when an answer exists
in the summary and then subsequently correctly
identifying it. We expect this result to hold for
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other popular single-document summarization
datasets.

From this experiment, we conclude that iden-
tifying whether a question is answerable and
subsequently verifying whether the QA models
prediction is correct are potential performance
bottlenecks QAEval.

7.2 Human-Level Performance Comparison

After identifying QA and answer verification
as potentially problematic for QAEval’s perfor-
mance, we now estimate the size of any potential
drop in downstream correlation compared to
using human-level performance for both of those
components.

Using the same human-annotated QA pairs
from the previous section, we calculated the
summary-level correlations of QAEval when it
uses either human annotations for the QA model,
human annotations for the answer verification, or
both. The correlations for these QAEval variants
and several other metrics (discussed in §2) are in
Table 3.

Since this experiment only uses a relatively
small amount of data, none of the correlations dif-
fer by a statistically significant margin, so coming
to definitive conclusions is difficult. However,
some trends do emerge from the data.

For TAC’08, QAEval is competitive to the
other evaluation metrics when it uses a learned
QA model and F1 verification. Then, human-
level performance for both QA and answer
verification provide large improvements in the
downstream correlations, both independently and
when combined. For instance, human QA annota-
tions improve QAEval on TAC by 0.12 and 0.14
Pearson with F1 and human verification, respec-
tively. Human annotations for answer verification
improve QAEval with model and human QA com-
ponents by 0.17 and 0.29 Spearman, respectively.
When both components use human annotations,
the correlations are significantly better than any
of the other automatic metrics and approach those
of the Pyramid Method.

The results on CNN/DM are less clear. There
is no obvious pattern in the data and all of the
model/human combinations result in roughly
the same performances. We suspect that because
the drop in QA performance is less significant
(§7.1), the differences in model and human-level
QA performance is not reflected on CNN/DM as

System TAC’08 CNN/DM
r ρ τ r ρ τ

Pyramid Score .63 .69 .65 – – –
ROUGE-1 .27 .27 .26 .25 .21 .18
ROUGE-2 .34 .40 .38 .13 .09 .06
ROUGE-L .20 .22 .21 .13 .12 .08
ROUGE-SU4 .29 .22 .22 .16 .16 .12
MoverScore .42 .28 .28 .27 .23 .18
APES .35 .38 .37 .08 .09 .07

QAEval
QA Verif.

Model F1 .31 .28 .26 .21 .23 .18
Human F1 .43 .33 .30 .15 .14 .12
Model Human .44 .45 .42 .25 .24 .20
Human Human .58 .62 .59 .22 .21 .17

Table 3: Summary-level correlations calculated
using 4 systems across 10 inputs on TAC and
16 systems across 10 inputs on CNN/DailyMail
compared using answers from a model or a human
and verifying if the answer is correct using F1 or a
human. Because the results are on a small sample
of the dataset, the results are not statistically
significant. However, the trend on TAC is
that human-level performance greatly improves
the results, approaching correlations equal to
the Pyramid Method’s. On CNN/DailyMail, we
suspect the same trend does not appear because
the QA model performs much better than on TAC.

it is on TAC. Further, we empirically observed
that the content of this dataset’s summaries are
more similar in content across models than the
TAC summaries, making them harder to rank
(as demonstrated by the lower correlations),
which would also introduce more variance to the
correlations.

Overall, this is a promising result for the future
potential of QA-based evaluations, especially for
more complex multi-document summarization
tasks which are in some sense harder for met-
rics to evaluate than single-document summaries.
While the current summary-level results on both
datasets may be competitive to other metrics, the
metric’s upper-bound performance is very high
on TAC and is approaching the gold-standard
manual evaluation, the Pyramid Method.

8 Overall Metric Analysis

After analyzing each component of QAEval, we
now turn to calculate the metric’s correlations
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TAC 2008 TAC 2009

Metric System-Level Summary-Level Metric System-Level Summary-Level
r ρ τ r ρ τ r ρ τ r ρ τ

Pyramid Score .90 .88 .70 .59 .59 .50 Pyramid Score .90 .87 .70 .59 .57 .48
ROUGE-1 .79 .80 .60 .49 .48 .39 ROUGE-1 .83 .78 .60 .54 .47 .38
ROUGE-2 .83 .87 .67 .48 .48 .39 ROUGE-2 .76 .84 .67 .50 .50 .40
ROUGE-L .74 .77 .57 .46 .45 .36 ROUGE-L .82 .72 .54 .54 .47 .37
ROUGE-SU4 .80 .83 .63 .49 .48 .39 ROUGE-SU4 .77 .81 .63 .52 .50 .39
PyrEval .81 .79 .59 .31 .31 .25 PyrEval .86 .82 .64 .39 .35 .28
MoverScore .83 .82 .63 .50 .49 .40 MoverScore .82 .80 .63 .51 .52 .42
APES .74 .82 .60 .25 .25 .21 APES .87 .80 .63 .41 .35 .28
QAEval-EM .93 .91 .76 .33 .33 .27 QAEval-EM .70 .87 .69 .42 .38 .30
QAEval-F1 .90 .88 .71 .46 .45 .36 QAEval-F1 .81 .89 .72 .50 .45 .36

Table 4: The Pearson r, Spearman ρ, and Kendall τ correlation coefficients calculated between the
metrics’ scores and expert responsiveness judgments on the TAC’08 (left) and TAC’09 (right) datasets.
QAEval has the highest system-level correlations, even better than the fully manual Pyramid Score,
whereas the summary-level correlations are lower (EM) or competitive (F1) with other metrics. We
believe this supports our hypothesis that the QA model and answer verification are noisy (causing lower
summary-level correlations) but average out to a high-quality metric given enough QA pairs (causing
high system-level correlations). On TAC’09, the QA r values are much lower because of an outlier, and
r is sensitive to outliers. If the outlier is removed, the r values become 0.92 and 0.93 for EM and F1.

to human responsiveness/relevance judgments on
TAC’08, ’09, and CNN/DM (see §4 for more
details about the experimental methodology; an
additional experiment that varies the number of
available references is included in Appendix A).
For this experiment, QAEval uses the NP chunks
answer selection strategy and learned question-
generation and question-answering models and is
therefore a fully automatic metric.

In addition to the QAEval correlations, we
also report those of several baselines and state-
of-the-art metrics, including the Pyramid Score,
several variants of ROUGE, PyrEval, and Mover-
Score (which reports better correlations than
BERTScore), and APES. See §2 for descriptions
of these metrics. Results in bold are the highest
among the automatic metrics. Those underlined
are statistically indistinguishable from the high-
est under a single-tailed permutation test for
correlations with α = 0.05 (Deutsch et al., 2021).

TAC’08 and ’09 The correlations for TAC
are presented in Table 4. First, we see that the
summary-level correlations for the QAEval met-
rics are lower than or comparable to some of the
other automatic metrics. For example, the TAC’08
Pearson’s r for QAEval-EM is 0.33, whereas the
r values for QAEval-F1 and ROUGE-2 are 0.46
and 0.48. Given that the QA model and answer

verification components introduce noise into the
metric, this result is consistent with the analysis
in §7.2 and unsurprising.

However, the system-level results are quite
surprising. The QAEval metrics achieve state-
of-the-art system-level performance on nearly
every correlation coefficient across both datasets,
reaching correlations comparable to the Pyramid
Method itself. For instance, on TAC’08, QAEval-
EM has a Kendall’s τ of 0.76 compared to 0.70 for
the Pyramid Method and 0.67 for the next-highest
automatic metric, ROUGE-2. This pattern largely
holds for TAC’09, with the exception of Pearson’s
r due to an outlier.4

It is unexpected that QAEval should achieve
both state-of-the-art system-level results and
lower summary-level results simultaneously and
that the system-level results are even better than
the Pyramid Method’s.

We believe the discrepancy between the
summary- and system-level results can be ex-
plained by the number of questions that is used
by each evaluation. QAEval estimates the qual-
ity of an individual summary using around 110
questions. In contrast, the system-level scores
are based over 5,000 QA pairs across 48 or 44

4Once removed, the r values are 0.92 and 0.93 for
QAEval-EM and QAEval-F1, higher than any other metric.
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Fabbri et al. (2020)

Metric System-Level Summary-Level
r ρ τ r ρ τ

ROUGE-1 .61 .62 .50 .28 .26 .20
ROUGE-2 .64 .60 .43 .23 .19 .14
ROUGE-L .61 .48 .32 .21 .18 .14
ROUGE-SU4 .62 .56 .38 .23 .19 .15
MoverScore .56 .54 .42 .28 .24 .18
APES .68 .73 .58 .10 .09 .07
QAEval-EM .80 .91 .77 .23 .23 .19
QAEval-F1 .82 .91 .77 .30 .29 .22

Table 5: The QAEval metrics on the CNN/
DailyMail annotations provided by Fabbri et al.
(2020) achieve significantly higher correlations
than the other authomatic metrics, likely due to
the relatively good QA model performance on this
dataset compared to on TAC.

instances. We suspect that when QAEval’s scores
are averaged over such a large number of ques-
tions, the metric is able to overcome any noise
introduced by the QA model or answer verifica-
tion, resulting in a high-quality evaluation. APES,
the other QA-based metric, also exhibits a similar
pattern, supporting this hypothesis.

Then, it is likely that QAEval’s system-level
performance rivals the Pyramid Method’s because
the QA pairs probe for more semantic content
than is represented by the SCUs (§5). The QA
model and answer verification largely perform
the same task as the Pyramid Method annotators:
identify a span of text in the candidate summary
which expresses a specific piece of information.
It is that unlikely the models do this better than
a human, even after the noise is averaged out
across thousands of examples. Therefore, it must
be the case that the semantic representation of
the QA pairs provides better coverage of the
reference summary than the SCUs do, resulting in
comparable overall performance.

CNN/DM The results on the CNN/DM dataset
are shown in Table 5. Compared to TAC, the
improvement in system-level correlations is sig-
nificantly larger. For instance, both QAEval
variants achieve a system-level Spearman 0.91,
whereas the next highest metrics APES and
ROUGE-1 reach 0.73 and 0.62. Unlike for TAC,
the summary-level correlations are either higher
or statistically indistinguishable from the other
metrics.

We hypothesize that the improved performance
on CNN/DM compared to TAC is due to the
QA model’s quality on this dataset. In §7.1, we
demonstrated that the QA performance did drop
on CNN/DM with respect to the model’s results
on the SQuAD data, however that performance
decrease was not nearly as large on CNN/DM
as on TAC. Since the QA model and answer
verification are the performance bottlenecks and
both suffer less on CNN/DM, the QAEval metrics
achieve strong correlations.

This result is evidence to support that QAEval
is a very effective metric for evaluating cur-
rent state-of-the-art systems on today’s popular
summarization datasets.

Comparison to APES Across all three datasets,
QAEval achieves higher or comparable correla-
tions than the other QA-based metric, APES, at
both the summary- and system-levels. We suspect
this is due to at least two reasons. First, their
reading comprehension model likely has lower
performance than the QA model used in QAEval.
The QAEval pretrained model leverages recent
state-of-the-art models that use contextual word
embeddings, which the model of Eyal et al. (2019)
does not use. Second, APES targets named entities
in the summaries, which we demonstrated does
not probe for as much information as using all
noun phrases (§5). If the summaries do not contain
a sufficient number of entities, APES may fail to
accurately score it.

Overall Since the performance of QAEval using
EM and F1 is roughly equal at the system-level,
but F1 is clearly better at the summary-level, we
recommend that future work that evaluates with
QAEval use the F1 variant.

Overall, since evaluation metrics are most com-
monly used in the summarization community to
rank summarization systems, these experimental
results suggest that QAEval is one of the most
effective evaluation metrics to date.

9 APES Experiments

To further compare QAEval to APES, we repro-
duce some of the experiments reported by Eyal
et al. (2019) and compare the results of the two
metrics.

9.1 TAC 2011 Comparison
First, we compare the summary-level correla-
tions of the two metrics and ROUGE to human
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R1 R2 RL RSU4 APES QA-EM QA-F1

Pyr. .73 .73 .70 .74 .61 .47 .61
Resp. .62 .65 .60 .63 .50 .46 .56

Table 6: Summary-level Pearson correlations of
ROUGE, APES, and QAEval to overall respon-
siveness and the Pyramid Score on the 8 in-
stances from TAC’11 that were used in Eyal et al.
(2019). These numbers differ from those re-
ported by Eyal et al. (2019) because they directly
calculate the correlation between the scores for
all of the summaries across all instances (personal
communication with the authors). This differs
from the standard definition of the summary-level
correlation, which calculates a correlation per
input document set (Louis and Nenkova, 2013),
then averages the correlations (Peyrard et al.,
2017; Zhao et al., 2019; Bhandari et al., 2020,
see ρSUM in §4).

judgments on a subset of the TAC’11 dataset.
TAC’11 contains extractive summaries produced
by 51 models on 44 input document sets. How-
ever, Eyal et al. (2019) evaluate on the 8 input
document sets about ‘‘Investigations and Trials’’
for which there were a sufficient number of named
entities. This is because the QA model used by
APES is only trained to predict named entities
as answers. Similarly to TAC’08 and ’09, each
summary has an overall responsiveness score and
a Pyramid score that were annotated by domain
experts.

Table 6 contains the summary-level Pearson
correlations of ROUGE, APES, and QAEval to
the human judgments on the subset of TAC’11.
Although it is difficult to come to conclusions
on this dataset due to its relatively small size, we
observe that APES out-performs QAEval-EM and
under-performs QAEval-F1 using the responsive-
ness score as the ground-truth. Using the Pyramid
score as the ground-truth, APES and QAEval-F1

are equal. However, both QA-based metrics are
lower than the ROUGE variants, which is consis-
tent with both APES and QAEval achieving lower
correlations than ROUGE on TAC’08 and ’09 at
the summary-level. The APES correlations here
are much higher on this subset of TAC’11 than on
the whole of TAC’08 and ’09, supporting that its
performance is higher when the summaries have
a sufficient number of named entities.

Figure 5: The Pearson correlations between the scores
of several ROUGE variants, APES, and QAEval
variants on TAC’08. The results support similar
findings of Eyal et al. (2019), namely, that the ROUGE
metrics are highly correlated to each other but have
low correlation to the QA-based metrics, suggesting
the two types of metrics offer complementary signals.

9.2 Complementary Signals

Then, Eyal et al. (2019) demonstrate that APES
and ROUGE are less correlated to each other than
ROUGE variants are to themselves, suggesting
they offer complementary signals of summary
quality. In Table 5 we show the Pearson cor-
relations between several different variants of
ROUGE, APES, and QAEval on the TAC’08
summaries.

Our results suggest similar conclusions to Eyal
et al. (2019). Specifically, each of the ROUGE
variants is very highly correlated to each other
(≥ .80), whereas the correlations to the QA-based
metrics are lower (≈ .47 for QAEval-EM, .62
for QAEval-F1, and .26 for APES). Interestingly,
APES and QAEval are as correlated to each other
as APES is to ROUGE. We hypothesize that
because the QA models are trained on different
corpora (CNN for APES versus Wikipedia for
QAEval), they learn different signals to answer
questions and are more effective at scoring dif-
ferent summaries. Future work could explore
combining lexical overlap and QA-based methods
into a single metric.

10 Discussion

Limitations Overall, QAEval is limited by its
dependence on using predicate-argument rela-
tions throughout each component of the metric.
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QAEval represents summaries with QA pairs that
target nouns as answers, which is insufficient for
representing all of the summary’s information (as
pointed out in §5). The question generation model
is limited to producing questions that reason
about the arguments of predicates and cannot gen-
erate more abstract questions (e.g., What types
of conflict have there been? for Figure 1). Like-
wise, QA models trained on SQuAD-style ques-
tions can only reason about matches between
predicate-argument relations and cannot answer
more abstract questions even if the generation
model could produce them.

Because of this dependence on predicate-
argument relations, any similarity between sum-
maries that cannot be represented by matching
predicates and arguments can also not be captured
by QAEval. Although this does not appear to be
an issue in our experiments, we anticipate that
using generation and answering models which are
capable of a more sophisticated level of reasoning
will be necessary in the future.

QA-Based versus Text Overlap Although
QAEval has superior or comparable system-
level correlations on the datasets included in our
experimentation, it still lags behind text overlap-
based method ROUGE at the summary-level in
some settings. Therefore, we do not recommend
completely replacing text overlap metrics with
QAEval, nor do we believe that this should
be done even if a QA-based metric achieves
summary-level parity.

Both Eyal et al. (2019) and our work clearly
show evidence that QA-based metrics provide a
summary quality signal that is complementary to
ROUGE (§9.2), yet both ROUGE and QAEval
achieve strong correlations in our experiments.
The quality signals captured by these metrics are
clearly both valuable and different. Evaluating a
summarization model with only one type of met-
ric would miss out on summary quality signals
captured by the other. Therefore, we recommend
future work use both a text overlap metric as
well as a QA-based metric to evaluate their sum-
marization models.

11 Conclusion

In this work, we proposed a QA-based evalua-
tion metric called QAEval. We demonstrated that
QAEval already achieves state-of-the-art system-
level correlations, and we estimate its upper-bound

summary-level performance on multi-document
summaries is quite high. Through a careful anal-
ysis of each component of QAEval, we identified
that the performance bottlenecks are both the
QA model and verifying whether or not the QA
model’s predicted answer is correct. We believe
that these results are strong evidence that QA-
based evaluation metrics are a promising direction
for future research on summarization evaluation.
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A Number of Available References

Previous work has argued that multiple reference
summaries are necessary for metrics to achieve
stable correlations to ground-truth annotations,
especially at the summary-level (Nenkova and
Passonneau, 2004; Louis and Nenkova, 2013).
Since the TAC datasets provide four reference
summaries per input, we are able to measure how
much benefit the additional references provide by
simulating having fewer references.

In order to simulate only having one refer-
ence summary, for each input document set from
TAC’08, we randomly sample one reference,
score all of the peer summaries against only
that reference, and calculate the correlation to the
responsiveness scores. We collect 30 such samples
and report the average correlation. This procedure
is also repeated for two and three references to
understand the impact of each additional refer-
ence. The results are plotted in Figure 6.

At the system level, the Pearson correlations are
largely the same when the metrics are provided
with one or four references. This is in agreement

Figure 6: The system- and summary-level Pearson
correlations as the number of available reference
summaries increases. 95% confidence error bars
shown, but may be too small to see. PyrEval is missing
data because the official implementation requires at
least two references. Even with one reference summary,
QAEval-F1 maintains a higher system-level correlation
than ROUGE.

with Louis and Nenkova (2013), who show
system-level results are relatively stable with
either one or four references. Among the metrics,
the QA-based metrics see the largest improvement
in performance with adding additional references.
QAEval-F1 increases from 0.85 with one refer-
ence compared to 0.90 with four. Despite its drop
in performance with one reference, QAEval-F1 is
still better than ROUGE even with four references
at 0.79. APES improves from 0.66 to 0.74.

When the metrics are compared at the summary
level, it is clear that the correlations for each
metric are less stable. Nearly all of the metrics
greatly benefit from additional references: Pyra-
mid Score improves by 0.09 (+19%), ROUGE by
0.08 (+18%), and QAEval-F1 by 0.15 (+49%).
The large improvement by QAEval-F1 is further
evidence that the noisy question-answering model
averages out to a high-quality responsiveness
estimator when provided with a large number of
QA pairs.

Overall, QAEval does incur a significant per-
formance drop at the summary-level, but since
most comparisons of summarization systems are
done at the system-level, it does not appear that
having multiple references per input is necessary
for good results.
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