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Abstract

It is well known that rerankers built on pre-
trained transformer models such as BERT have
dramatically improved retrieval effectiveness
in many tasks. However, these gains have
come at substantial costs in terms of efficiency,
as noted by many researchers. In this work, we
show that it is possible to retain the benefits
of transformer-based rerankers in a multi-stage
reranking pipeline by first using feature-based
learning-to-rank techniques to reduce the num-
ber of candidate documents under consider-
ation without adversely affecting their qual-
ity in terms of recall. Applied to the MS
MARCO passage and document ranking tasks,
we are able to achieve the same level of ef-
fectiveness, but with up to 18× increase in ef-
ficiency. Furthermore, our techniques are or-
thogonal to other methods focused on acceler-
ating transformer inference, and thus can be
combined for even greater efficiency gains. A
higher-level message from our work is that,
even though pretrained transformers dominate
the modern IR landscape, there are still im-
portant roles for “traditional” LTR techniques,
and that we should not forget history.

1 Introduction

Pretrained transformers such as BERT (Devlin
et al., 2019) have dramatically increased retrieval
effectiveness in many tasks across a multitude of
domains (Lin et al., 2020a). Nevertheless, in a stan-
dard “retrieve-then-rerank” setup, the application
of pretrained transformer-based rerankers incurs
large computational costs and long query laten-
cies, making those rerankers unrealistic for many
real-world applications. For example, according to
the ColBERT paper (Khattab and Zaharia, 2020),
reranking 1000 hits from the MS MARCO pas-
sage dataset takes 32.9 seconds per query. Other
researchers have noted the computational costs of
transformer-based rankers (Hofstätter and Hanbury,
∗ Equal contribution

2019), and this realization has compelled the field
to explore other approaches, for example, simpli-
fied models (Hofstätter et al., 2020; Soldaini and
Moschitti, 2020; Mitra et al., 2020; MacAvaney
et al., 2020; Gao et al., 2020; Jiang et al., 2020) and
learned dense representations (Xiong et al., 2020;
Lin et al., 2020b).

We are also motivated by the desire to reduce
the computational costs of ranking with transform-
ers, but from a different perspective. Based on the
observation that neural networks in general (and
transformers in particular) have largely supplanted
feature-based learning to rank (LTR) in modern
information retrieval, we ask the question: What, if
anything, does “traditional” feature-based learning
to rank have to offer in the age of muppets?1 The
subtext of this question is that we, as a field, should
not forget our own history.

There are two obvious approaches to try and
answer this question. The first is to simply con-
sider transformer-based features (e.g., BERT score,
ColBERT score, etc.) as yet another feature within
a learning-to-rank framework—for example, with
gradient boosted decision trees (Wang et al., 2020).
This is not the route that we take, because this ap-
proach has less bearing on our desire to increase the
efficiency of transformer-based models. Instead,
we take the alternative approach of using learning-
to-rank techniques as a “filtering” stage in a multi-
stage ranking architecture to reduce the number
of candidates under consideration by BERT. More
concretely, we find that a design based on this idea
achieves the same level of effectiveness as a stan-
dard retrieve-and-rerank approach using BERT, but
is up to 18× faster. Other effectiveness–efficiency
tradeoffs are possible, giving developers a rich de-
sign space to build systems tailored to different
application scenarios.

The contribution of this work is to demon-
1Muppets being a whimsical way to refer to BERT and related
transformer models.
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strate that by inserting a “filtering” learning-to-rank
stage prior to BERT-based reranking, we can con-
trol effectiveness–efficiency tradeoffs in a manner
that makes deployments in real-world applications
more practical. We emphasize that this work is
orthogonal to other methods that directly attempt
to accelerate inference, e.g., via knowledge distil-
lation, early exits, model simplifications, etc. It is
likely that our gains are cumulative with respect to
these enhancements.

2 Methods

2.1 Multi-Stage Ranking

We adopt a standard formulation of multi-stage
ranking, which comprises a candidate generation
stage H0 (also called first-stage retrieval), followed
by a pipeline of rerankers, denoted H1 to HN . Can-
didate generation is typically accomplished via key-
word search against an inverted index, which re-
trieves k0 hits from the corpus. Each subsequent
stage Hn receives a ranked list Rn−1 comprising
kn−1 candidates from the previous stage, reranks
these candidates, and then passes the results to the
next stage. The output of the last stage serves as
the final ranked list, e.g., to be shown to the user or
to be evaluated using standard tools.

In this work, we compare two designs of multi-
stage ranking architectures:

BoW + BERT As a baseline, we consider the
retrieve-and-rerank approach originally proposed
by Nogueira and Cho (2019), which has emerged
as the standard architecture for applying pretrained
transformers to ranking. We notate a specific con-
figuration of this design as BoW(k0) + BERT,
where k0 denotes the number of candidates from
bag-of-words retrieval that are then reranked by
BERT. A commonly used default is BoW(1000) +
BERT (Nogueira and Cho, 2019).

In addition, we also examine the docTTTTT-
query document expansion technique (Nogueira
et al., 2019b; Nogueira and Lin, 2019) based on
predicting queries for which a text would be rele-
vant (henceforth, just d2q for short). The predicted
queries are concatenated to the end of the original
text; this greatly improves BoW retrieval. We call
this variant BoWd2q and denote the corresponding
pipeline BoWd2q(1000) + BERT.

BoW + LTR + BERT This represents our pro-
posed design of introducing a filtering stage before
BERT to reduce the number of candidates under

consideration. We notate a specific configuration of
this design as BoW(k0) + LTR(k1) + BERT, where
k0 denotes the number of candidates from bag-of-
words retrieval. Our LTR stage then reranks these
k0 hits to generate a new ranking of k1 hits that are
passed to the BERT stage. Similar to BoWd2q, the
LTR variant that extracts features from the docu-
ment expansions is called LTRd2q.

Given this setup, our research question then be-
comes an effectiveness–efficiency exploration of
BoW + BERT vs. BoW + LTR + BERT (including
d2q variants). We want to know, given effective-
ness parity as a requirement, what degree of latency
reduction we can achieve. To answer this question,
we adopt the standard setting of LTR as supervised
machine learning, where our objective is to max-
imize recall. We use features extracted from our
LTR module to train a model and then apply infer-
ence on candidates from the BoW stage, passing
on only the most promising ones for (expensive)
neural reranking.

2.2 Learning-to-Rank Features

Our LTR features fall into four categories:
term-based, score-based, proximity-based, and
translation-based. These features are inspired by
previous studies on LTR (Qin and Liu, 2013; Gal-
lagher et al., 2020) and summarized in Table 1.
An enumeration of all features is presented in Ap-
pendix A.

Term-based features Following previous work,
we compute different term statistics including term
frequency (TF), inverse document frequency (IDF),
log term probability, and inverse collection term
frequency. Furthermore, existing retrieval models
such as BM25 are used to compute the relevance
score of a term, and these scores can also be used
as term-based features combining different types of
statistics. To aggregate term-based statistics for all
terms in a query, a number of different aggregation
functions are used, e.g., max, min, sum, mean,
median, and the ratio between max and min.

Score-based features Term-based statistics are
not sufficient as document-level statistics such as
document length are also crucial for retrieval effec-
tiveness. Traditional BoW retrieval models (e.g.,
BM25, Query Likelihood, Divergence From Ran-
domness) have proposed effective ways of combin-
ing term-based and document-based statistics, so
we also include the retrieval scores of these models
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Feature Category # Examples

Term-based 54 Max of IDF, Max of TF
Score-based 14 BM25, DFR
Proximity-based 15 Co-occurrences, BM25-TP
Translation-based 4 translation probability

Table 1: Summary of LTR features.

as features. Note that when we use sum as the ag-
gregation function for term-based statistics, we are
essentially computing the retrieval model score.

Proximity-based features Traditional retrieval
models assume terms are independent and ignore
their relationships, but the proximity among query
terms often serves as an important relevance signal.
Thus, we include features that directly capture the
proximity of query terms, such as the counts of
ordered and unordered co-occurrence of bigrams
within different window sizes. We compute the
scores of proximity-based retrieval functions, such
as SDM (Metzler and Croft, 2005; Gallagher et al.,
2020) and BM25-TP (Lu et al., 2015; Gallagher
et al., 2020), as our features.

Translation-based features Capturing semantic
relationships between a query and a document is
also crucial to improving retrieval accuracy. To
incorporate such features, we can use a transla-
tion model (Boytsov and Nyberg, 2020; Boytsov
and Kolter, 2021) to measure the log translation
probability between queries and documents. The
conditional probability we need p(q|dn) is gener-
ated by the IBM Model 1 translation model, and
the final query–document feature is the sum of all
individual conditional query probabilities.

The extraction of all LTR features is performed at
the level of tokens. In particular, both queries and
documents are tokenized into a multi-field repre-
sentation. They include: (1) the raw field, which
consists of the original tokens; (2) the stemmed
field, which includes the stemmed tokens; (3) the
subword field, which breaks tokens into subwords;
and (4) the d2q field, which includes the stemmed
tokens from the concatenated docTTTTTquery pre-
dictions (for the d2q variants). For each query–
document pair, feature extraction is repeated over
all applicable fields. In total, there are 83 differ-
ent features (per field) plus four translation-based
features that are only available in the raw and sub-
word fields. Table 1 summarizes our features and
provides examples for each feature category.

3 Experimental Setup

Data We use the MS MARCO passage ranking
dataset (Bajaj et al., 2018) for training and testing.
The training set contains ∼500K queries while the
development and test sets contain ∼7K queries
each. On average, each query has only one positive
example; negative examples are taken from BM25
results that are not otherwise judged as relevant.
Since it is inefficient to use all the negative samples,
we downsample to 20 negative examples per query
and combine them with all the positive examples
to arrive at the training data.

We additionally test on the MS MARCO doc-
ument ranking task (Bajaj et al., 2018) in a zero-
shot manner. For this, we segment each document
into multiple passages as the neural models cannot
process long documents. Specifically, we use the
sliding window strategy of Pradeep et al. (2021),
where the window length is ten sentences with a
stride of five sentences. Retrieval is performed at
the passage level, and the document score is com-
puted based on the highest relevance score among
its passages.

Implementation We use Anserini (Yang et al.,
2018), an open-source IR toolkit built on Lucene, to
build the indexes and retrieve top-ranked candidate
passages. For first-stage retrieval, we use BM25,
with parameters (k1 = 0.82 and b = 0.68) based
on the authors’ recommendations to optimize for
recall@1000. The retrieved candidate passages are
then sent to feature extraction through Anserini’s
Python interface, Pyserini (Lin et al., 2021).2

For our LTR module, we use the LambdaMART
algorithm implemented in LightGBM3 as our
model. The hyperparameters are tuned to achieve
the highest recall@200 on the development set.
Specifically, num_leaves is 200, learning_rate is 0.1,
min_data_in_leaf is 50, max_bin is 255. We fix early
stopping patience to 200 and use up to 1000 trees.
Finally, we utilize batch processing and multi-
threading to accelerate the processing. This helps
us leverage contemporary multi-core CPUs.

For the final-stage neural reranker, we experi-
ment with BERT-large and T5-base in the PyGag-
gle library fine-tuned on the MS MARCO passage
data.4 We simply use checkpoints provided by
the library, as our work is not specifically focused

2https://github.com/castorini/pyserini
3https://github.com/microsoft/LightGBM
4https://github.com/castorini/pygaggle

https://github.com/castorini/pyserini
https://github.com/microsoft/LightGBM
https://github.com/castorini/pygaggle
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Configuration N MRR@10 NDCG@10 Latency

BoW(1k) + BERT 1000 0.379 0.441 9.63s
BoW(10k) + LTR(100) + BERT 100 0.381 0.443 1.32s (7×)
BoW(10k) + LTRd2q(20)+ BERT 20 0.382 0.442 0.53s (18×)

BoW(1k) + T5 1000 0.380 0.443 5.60s
BoW(10k) + LTR(100) + T5 100 0.382 0.445 0.92s (6×)
BoW(10k) + LTRd2q(20) + T5 20 0.382 0.444 0.46s (12×)

BoWd2q(1k) + BERT 1000 0.389 0.454 9.63s
BoWd2q(10k) + LTRd2q(50) + BERT 50 0.389 0.454 0.83s (12×)

BoWd2q(1k) + T5 1000 0.386 0.453 5.60s
BoWd2q(10k) + LTRd2q(50) + T5 50 0.388 0.454 0.63s (9×)

Table 2: The effectiveness and efficiency of different pipeline configurations on the MS MARCO passage ranking
task. The effectiveness of the pipelines with additional LTR modules are statistically indistinguishable from the
baselines without the LTR modules.

on final-stage neural reranking. Previous evalua-
tions (Nogueira and Cho, 2019; Nogueira et al.,
2020; Pradeep et al., 2021) have already verified
that these two models serve as competitive base-
lines. We pad all the token sequences in the batch
to have the same length and truncate them if their
lengths exceed 512 tokens.

Latency Measurements When measuring la-
tency, we used two different servers. The latency
of first-stage retrieval and the LTR filtering mod-
ule is measured on a server equipped with 2 Intel
Xeon Platinum 8160 CPUs. The index is located
on a local SSD partition. The neural model latency
is measured using a 6 core server with a single
Tesla V100 GPU. All latency measurements ex-
clude the time to load data and models. Compo-
nent results are summed to yield end-to-end query
latency, which we normalize into a speedup value
when comparing different conditions.

4 Results and Analysis

4.1 Results on Passage Ranking

Evaluation results on MS MARCO passage rank-
ing are shown in Table 2 for the various pipeline
configurations based on the notation introduced in
Section 2. N represents the number of candidates
reranked by the final neural reranker, which con-
sumes most of the query time. Note that in these ex-
periments, our goal is to obtain effectiveness parity
(i.e., same level of effectiveness) while accelerating
inference (i.e., reducing query latency).

The first row in each block of the table represents
a baseline configuration, with N set to the common
value of 1000. We present six LTR pipelines, where
we choose the smallest N (and different k’s) that

can reach MRR@10 parity with the baseline. We
conduct two-tailed paired t-tests to confirm that
there are no significant effectiveness differences
between results before and after inserting LTR as
the filtering stage. Depending on the pipeline setup,
we only need to perform neural inference on 20
to 100 candidates—precisely because of our LTR
filtering. We report the per-query latency for each
configuration and compute a speedup by normal-
izing against the latency of each baseline. Based
on which neural model we use and whether we use
d2q, we observe speedups ranging from 6× to 18×.
That is, we can achieve comparable effectiveness
with these increases in speed. Note that our base-
line BoW + BERT latency is already more than
3× faster than the values reported by Khattab and
Zaharia (2020) (∼33s) using the same configura-
tion, primarily due to batch tokenization and other
engineering optimizations, so the LTR pipelines
are compared against a well-optimized baseline.

Table 3 shows the query latency breakdown for
a few representative models. Note that latency is
dominated by final-stage neural reranking latency,
which scales linearly, so smaller N values (in Ta-
ble 2) are more desirable. However, this is balanced
by the introduction of LTR overhead, both feature
extraction as well as the prediction latency itself.
Nevertheless, this is a worthwhile tradeoff as we
observe large speedups overall. Since T5-base is
faster than BERT-large, the effect of the LTR over-
head is relatively larger and thus the speedup is
lower. We can see that increasing the initial k0 for
BoW from 1k to 10k is acceptable as LTR overhead
remains modest.

The most time-consuming step in LTR is feature
extraction, and within that, loading the forward in-
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Model Retrieval
Feature

Extraction
LTR

Prediction
Neural

Reranking Total
BoW(1k) + BERT 15 - - 9610 9630
BoW(10k) + LTR(100) + BERT 120 180 40 980 1320

BoW(1k) + T5 15 - - 5580 5600
BoW(10k) + LTR(100) + T5 120 180 40 584 920

Table 3: Detailed breakdown of latency (ms/query) for a few representative pipeline configurations on the MS
MARCO passage ranking task.
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Figure 1: MRR@10 as a function of N , the number of
candidates reranked by the final neural reranker, on the
MS MARCO passage ranking task.

dex for each document is the most expensive single
step. Our experiments show that the number of fea-
tures does not affect latency substantially because
we only need to load the document once; once
in cache, individual feature extraction is very fast.
Note that we have not spent much effort optimizing
feature extraction (which is relatively inefficient
Java code) and that more engineering effort, for
example, optimizations proposed by Asadi and Lin
(2013), are likely to further increase speedups.

Figure 1 shows the MRR@10 for our five models
as a function of N (number of candidates reranked
by the final neural reranker), shown on the x-axis
(log scale). Effectiveness of the BoW + BERT base-
line at N = 1000 is represented as the horizontal
line—the effectiveness level we are targeting. Note
that for some configurations, we needed to adjust
the k1 for the LTR stage in order to meet the desired
N . We can see that our pipelines reach the target
MRR@10 with much smaller values of N ; reduc-
ing expensive neural reranking is where most of
our speedups come from. After adding d2q predic-
tions, we are able to achieve our target MRR@10
with an even smaller value of N .

Figure 2 shows the trade-offs between MRR@10
and query latency (the x-axis). Each curve repre-
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Figure 2: MRR@10 vs. reranking latency on the MS
MARCO passage ranking task.

sents a sweep over N values; we only focus on
the case when N is relatively small (< 300). We
can see that BoW + LTR + BERT is not helpful
if the desired per-query latency is less than 0.5s,
because the LTR system itself introduces overhead
and leaves little time for neural reranking. For ref-
erence, without neural reranking, BoW + LTR only
reaches 0.25 MRR@10 while consuming 0.34s;
in contrast, spending 0.43s with BoW + BERT
achieves 0.28 MRR@10. Between 0.5s and 2s, the
effectiveness gap between BoW + BERT and BoW
+ LTR + BERT increases.

Until now, we have focused on targeting effec-
tiveness parity. What if we’re willing to sacrifice
effectiveness? Figure 3 uses the BoW + LTR +
BERT configuration as an example to show possi-
ble speedups and corresponding MRR@10 values
if we accept lower effectiveness. We use the latency
of BoW(1000) + BERT as our reference point to
calculate speedups. For example, in one setting,
we can achieve 0.36 MRR@10 using only 20 can-
didates (N = 20) and enjoy 17× speedup without
using d2q (see Table 2).

We also conduct ablation experiments to investi-
gate the importance of the four feature categories
used in our LTR module. We use BoW(10k) +
LTR(100) + BERT as our base model and assess
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Figure 3: MRR@10 vs. speedup for different N , the
number of candidates reranked by the final neural
reranker, on the MS MARCO passage ranking task.

Configuration Recall@100 MRR@10

Full Model 0.781 0.382
− Score-based 0.780 (−0.09%) 0.381 (−0.24%)
− Term-based 0.771 (−1.27%) 0.379 (−0.74%)
− Proximity-based 0.767 (−1.76%) 0.379 (−0.96%)
− Translation-based 0.743 (−4.82%) 0.371 (−3.01%)

Table 4: Feature importance ablation results on the MS
MARCO passage ranking task.

feature importance by removing each category of
features from the LTR module and measuring the
effectiveness of the ablated reranker. Table 4 shows
the absolute scores and relative differences in terms
of recall@100 and MRR@10.

From these results, we can see that the score-
based features appear to be the least important cate-
gory of features in our model, likely because there
is a lot of redundant information between score-
based and term-based features. They use different
arithmetic formulas to manipulate the same raw
signals: term frequency, document frequency, etc.
Compared with term-based features, score-based
features are fewer in number. Removing score-
based features has much less impact than removing
term-based features.

Translation-based features appear to be the most
important feature category: they make the biggest
difference in effectiveness with the smallest num-
ber of features. The translation model bridges the
query–document gap by modeling alternative ex-
pressions of query terms and enables a document
to match query terms that are not present in the
document (i.e., semantic matching).

We also evaluate each feature’s importance by
the total number of splits and the total gain of splits
using a built-in feature in the LightGBM library.

We find that all translation-based features rank in
the top 10 features with the highest number of splits.
This again confirms that matching alternative ex-
pressions is an important factor of why our method
works. The GL2 model from the Divergence From
Randomness family of scoring functions ranks first
in terms of total gain of splits, suggesting that tradi-
tional bag-of-words retrieval models still form the
backbone of learning to rank.

4.2 Results on Document Ranking

To explore the generality of our LTR approach, we
also conduct experiments on the MS MARCO doc-
ument ranking task. We emphasize here that all
experiments are conducted in a zero-shot manner,
over paragraph extracts from the collection, what
is commonly known as the MaxP approach (Ben-
dersky and Kurland, 2009; Dai and Callan, 2019;
Akkalyoncu Yilmaz et al., 2019; Sheetrit et al.,
2020). Both the final-stage neural reranker and our
LTR module are trained on MS MARCO passage
data only. However, comparing our effectiveness
results with the official leaderboard reveals that our
configurations are competitive compared to other
single-stage rerankers.

Results are shown in Table 5, organized in the
same manner as Table 2. Recall again that the
goal here is also to retain effectiveness parity with
respect to the reference reranker (T5 in this case).
We conduct two-tailed paired t-tests to confirm that
there are no statistically significant effectiveness
differences between all model configurations. We
see that in a zero-shot setting, speedups of nearly
3× can be observed.

We have a few explanations of why the speedups
here are not as impressive as in the passage ranking
case. First, because we are not training a corpus-
specific model, the power of the LTR module is
weaker, and hence the pipeline needs to consider
more candidates—larger N means more time in
final-stage neural reranking, and hence less savings.
Additionally, input to the neural models are on av-
erage much longer than the candidates from the
passage corpus. This means that there is more text
and richer signals for the transformers to extract,
which correspondingly means that LTR is more im-
poverished. Furthermore, longer documents trans-
late into more time spent on feature extraction in
LTR. Taken together, all of these issues result in
smaller speedups.
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Configurlation N MRR@100 NDCG@10 Latency

BoW(1k) + T5 1000 0.405 0.470 18.2s
BoW(10k) + LTR(550) + T5 550 0.406 0.474 10.0s (1.8×)
BoW(10k) + LTRd2q(750)+ T5 750 0.405 0.470 13.7s (1.4×)

BoWd2q(1k) + T5 1000 0.409 0.476 18.2s
BoWd2q(1k) + LTRd2q(350)+ T5 350 0.409 0.476 6.4s (2.8×)

Table 5: The effectiveness and efficiency of different pipeline configurations on the MS MARCO document ranking
task. The effectiveness of the pipelines with additional LTR modules are statistically indistinguishable from the
baselines without the LTR modules.

5 Related Work

At a high level, the entire premise of our work is
the point of multi-stage ranking, in that the archi-
tecture evolved to achieve a good balance between
effectiveness and efficiency in end-to-end retrieval.
Motivated by the observation, dating back more
than a decade, that effective techniques are often
computationally expensive, multi-stage retrieval ar-
chitectures control latency by applying expensive
techniques over only the most promising candi-
dates (Wang et al., 2011). This is often operational-
ized as optimizing for recall in the earlier stages
of the pipeline. Specifically in the context of trans-
formers, multi-stage neural pipelines have been ex-
plored in the past by many researchers (Nogueira
et al., 2019a; Soldaini and Moschitti, 2020; Mat-
subara et al., 2020; Pradeep et al., 2021). The
key difference in our work is the (re-)introduction
of “traditional” feature-based learning-to-rank ap-
proaches alongside neural models. This aligns
with our broader goal of investigating how learn-
ing to rank might contribute to modern retrieval
approaches dominated by neural models.

The computational costs associated with rank-
ing using pretrained transformers can be reduced
in various ways. We can accelerate inference us-
ing smaller or simpler models. Gao et al. (2020)
use distillation to transfer knowledge captured in a
larger model into a smaller model, achieving sub-
stantial speedups with minimal effectiveness loss.
Hofstätter et al. (2020) propose a simpler trans-
former model to capture contextual information
that trades effectiveness for much faster inference.
Additional examples of this approach include Mi-
tra et al. (2020) and MacAvaney et al. (2020). An
alternative is to introduce early-exit optimizations,
as in Soldaini and Moschitti (2020) and Xin et al.
(2020). Further speedups can be gained by making
modifications to the backbone transformer model,
as in Sanh et al. (2020). The key point is that our

proposed LTR filtering module achieves speedups
in a manner that is orthogonal to the methods dis-
cussed here, which focus on directly accelerating
transformer inference. Thus, these approaches can
be combined with our method for even greater effi-
ciency gains.

6 Conclusions

The “retrieve-then-rerank” approach with trans-
formers has been demonstrated to be effective in
many IR tasks, but poor efficiency makes it less
attractive for real-world applications. Our goal
is to increase the efficiency of the entire pipeline
but at the same time maintain the same level of
effectiveness: this is achieved by a feature-based
learning-to-rank module that filters candidates prior
to neural reranking. On the MS MARCO passage
ranking task, we observe up to 18× speedup with-
out degradation in terms of MRR@10. In a zero-
shot setting on the MS MARCO document ranking
task, we can achieve 3× speedup. These results
demonstrate that in this age of muppets dominated
by transformers and other neural models, learning-
to-rank techniques can still be useful. Despite LTR
“falling out of fashion”, we should not “throw the
baby out with the bath water”.

One key point that bears emphasis, and one
promising direction for future research is that our
work can be combined with other approaches that
directly accelerate inference in neural models. We
expect speedups to be cumulative since we tackle
efficiency issues from an orthogonal perspective.
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A Appendix

A.1 Full List of LTR Features

Term-based

Sum of ICTF
Average of BM25 Average of DFR_GL2 Average of DFR_in_expB2 Average of DPH Average of ICTF
Median of BM25 Median of DFR_GL2 Median of DFR_in_expB2 Median of DPH Median of ICTF
Max of BM25 Max of DFR_GL2 Max of DFR_in_expB2 Max of DPH Max of ICTF
Min of BM25 Min of DFR_GL2 Min of DFR_in_expB2 Min of DPH Min of ICTF
MaxMinRatio of BM25 MaxMinRatio of DFR_GL2 MaxMinRatio of DFR_in_expB2 MaxMinRatio of DPH MaxMinRatio of ICTF
Sum of IDF Sum of Normalized TF Sum of TF
Average of IDF Average of LMDir Average of Normalized TF Average of TF Average of TFIDF
Median of IDF Median of LMDir Median of Normalized TF Median of TF Median of TFIDF
Max of IDF Max of LMDir Max of Normalized TF Max of TF Max of TFIDF
Min of IDF Min of LMDir Min of Normalized TF Min of TF Min of TFIDF
MaxMinRatio of IDF MaxMinRatio of LMDir MaxMinRatio of Normalized TF MaxMinRatio of TF MaxMinRatio of TFIDF

Score-based

SCS Probablity Sum Doc Size Query Length Query Coverage Ratio
Unique Term Count in Query Matching Term Count Normalized TFIDF BM25 LMDir
DFR_GL2 DFR_in_expB2 DPH TFIDF

Proximity-based

UnorderedSequentialPairs with gap 3 OrderedSequentialPairs with gap 3 UnorderedQueryPairs with gap 3 OrderedQueryPairs with gap 3 BM25-TP
UnorderedSequentialPairs with gap 8 OrderedSequentialPairs with gap 8 UnorderedQueryPairs with gap 8 OrderedQueryPairs with gap 8 Proximity
UnorderedSequentialPairs with gap 15 OrderedSequentialPairs with gap 15 UnorderedQueryPairs with gap 15 OrderedQueryPairs with gap 15 TP distance

Translation-based

title IBM Model1(raw field) url IBM Model1(raw field) body IBM Model1(raw field) body IBM Model (subword field)


