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Abstract

Modern natural language understanding mod-
els depend on pretrained subword embeddings,
but applications may need to reason about
words that were never or rarely seen during
pretraining. We show that examples that de-
pend critically on a rarer word are more chal-
lenging for natural language inference mod-
els. Then we explore how a model could learn
to use definitions, provided in natural text, to
overcome this handicap. Our model’s under-
standing of a definition is usually weaker than
a well-modeled word embedding, but it recov-
ers most of the performance gap from using a
completely untrained word.

1 Introduction

The reliance of natural language understanding
models on the information in pre-trained word em-
beddings limits these models from being applied
reliably to rare words or technical vocabulary. To
overcome this vulnerability, a model must be able
to compensate for a poorly modeled word embed-
ding with background knowledge to complete the
required task.

For example, a natural language inference (NLI)
model based on pre-2020 word embeddings may
not be able to deduce from “Jack has COVID” that
“Jack is sick.” By providing the definition, “COVID
is a respiratory disease,” we want to assist this
classification.

We describe a general procedure for enhancing a
classification model such as natural language infer-
ence (NLI) or sentiment classification, to perform
the same task on sequences including poorly mod-
eled words using definitions of those words. From
the training set T of the original model, we con-
struct an augmented training set T ′ for a model
that may accept the same token sequence option-
ally concatenated with a word definition. In the
case of NLI, where there are two token sequences,

the definition is concatenated to the premise se-
quence. Because T ′ has the same form as T , a
model accepting the augmented information may
be trained in the same way as the original model.

Because there are not enough truly untrained
words like “COVID” in natural examples, we probe
performance by scrambling real words so that their
word embedding becomes useless, and supplying
definitions. Our method recovers most of the per-
formance lost by scrambling. Moreover, the pro-
posed technique removes biases in more ad hoc
solutions like adding definitions to examples with-
out special training.

2 Related Work

We focus on NLI because it depends more deeply
on word meaning than sentiment or topic classi-
fication tasks. Chen et al. (2018) pioneered the
addition of background information to an NLI
model’s classification on a per-example basis, aug-
menting a sequence of token embeddings with fea-
tures encoding WordNet relations between pairs of
words, to achieve a 0.6% improvement on the SNLI
(Bowman et al., 2015) task. Besides this explicit
reasoning approach, implicit reasoning over back-
ground knowledge can be achieved if one updates
the base model itself with background informa-
tion. Lauscher et al. (2020) follows this approach
to add information from ConceptNet (Speer et al.,
2018) and the Open Mind Common Sense corpus
(Singh et al., 2002) through a fine-tuned adapter
added to a pretrained language model, achieving
better performance on subsets of NLI examples
that are known to require world knowledge. Talmor
et al. (2020) explore the interplay between explic-
itly added knowledge and implicitly stored knowl-
edge on artificially constructed NLI problems that
require counting or relations from a taxonomy.

In the above works, explicit background infor-
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mation comes from a taxonomy or knowledge base.
Only a few studies have worked with definition
text directly, and not in the context of NLI. Tissier
et al. (2017) used definitions to create embeddings
for better performance on word similarity tasks,
compared to word2vec (Mikolov et al., 2013) and
fastText (Bojanowski et al., 2017) while maintain-
ing performance on text classification. Their work
pushes together embeddings of words that co-occur
in each other’s definitions. Recently, Kaneko and
Bollegala (2021) used definitions to remove biases
from pretrained word embeddings while maintain-
ing coreference resolution accuracy. In contrast,
our work reasons with natural language definitions
without forming a new embedding, allowing atten-
tion between a definition and the rest of an exam-
ple.

Alternatively, Schick and Schütze (2020) im-
proved classification using rare words by collecting
and attending to all of the contexts in which they
occur in BookCorpus (Zhu et al., 2015) combined
with Westbury Wikipedia Corpus.1 Like the meth-
ods above that use definitions, this method con-
structs a substitute or supplementary embedding
for a rare word.

3 Methods

3.1 Critical words
The enhanced training set T ′ will be built by pro-
viding definitions for words in existing examples,
while obfuscating the existing embeddings of those
words. If a random word of the original text is ob-
fuscated, the classification still may be determined
or strongly biased by the remaining words. To
ensure the definitions matter, we select carefully.

To explain which words of a text are important
for classification, Kim et al. (2020) introduced the
idea of input marginalization. Given a sequence of
tokens x, let x−i represent the sequence without
the ith token xi. They marginalize the probability
of predicting a class yc over possible replacement
words x̃i in the vocabulary V as

p(yc|x−i) =
∑
x̃i∈V

p(yc|x̃i,x−i)p(x̃i|x−i) (1)

and then compare p(yc|x−i) to p(yc|x) to quantify
the importance of xi. The probabilities p(x̃i|x−i)
are computed by a language model.

1http://www.psych.ualberta.ca/
˜westburylab/downloads/westburylab.
wikicorp.download.html

We simplify by looking only at the classification
and not the probability. Like Kim et al. (2020), we
truncate the computation of p(yc|x̃i,x−i) to words
such that p(x̃i|x−i) exceeds a threshold, here .05.
Ultimately we mark a word xi as a critical word if
there exists a replacement x̃i such that

argmaxyp(y|x̃i,x−i) 6= argmaxyp(y|x) (2)

and
p(x̃i|x−i) > .05. (3)

Additionally we require that the word not appear
more than once in the example, because the mean-
ing of repeated words usually impacts the classifi-
cation less than the fact that they all match. Table 1
shows an example.

Premise A young man sits, looking out of
a train [side→ Neutral, small→
Neutral] window.

Hypothesis The man is in his room.
Label Contradiction

Table 1: An SNLI example, with critical words shown
in italics and replacements shown in brackets.

A technicality remains because our classifica-
tion models use subwords as tokens, whereas we
consider replacements of whole words returned
by pattern.en. We remove all subwords of xi
when forming x−i, but we consider only replace-
ments x̃i that are a single subword long.

3.2 Definitions

We use definitions from Simple English Wiktionary
when available, or English Wiktionary otherwise.2

Tissier et al. (2017) downloaded definitions from
four commercial online dictionaries, but these are
no longer freely available online as of January
2021.

To define a word, first we find its part of speech
in the original context and lemmatize the word
using the pattern.en library (Smedt and Daele-
mans, 2012). Then we look for a section labeled
“English” in the retrieved Wiktionary article, and
for a subsection for the part of speech we identi-
fied. We extract the first numbered definition in this
subsection. In practice, we find that this method
usually gives us short, simple definitions that match
the usage in the original text.

2We use the 2018-02-01 dumps.

http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
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When defining a word, we always write its defi-
nition as “word means: definition.” This common
format ensures that the definitions and the word
being defined can be recognized easily by the clas-
sifier.

3.3 Enhancing a model
Consider an example (x, yc) ∈ T . If the example
has a critical word xi ∈ x that appears only once
in the example, and x̃i is the most likely replace-
ment word that changes the classification, we let
x′ denote the sequence where xi is replaced by
x̃i, and let y′c = argmaxyp(y|x′). If definitions
hi and h′i for xi and x̃i are found by the method
described above, we add (x,hi, yc) and (x′,h′i, y

′
c)

to the enhanced training set T ′.
In some training protocols, we scramble xi and

x̃i in the examples and definitions added to T ′, re-
placing them with random strings of between four
and twelve letters. This prevents the model from
relying on the original word embeddings. Table 2
shows an NLI example and the corresponding ex-
amples generated for the enhanced training set.

Original A blond man is drinking from a
public fountain. / The man is
drinking water. / Entailment

Scrambled
word

a blond man is drinking from
a public yfcqudqqg. yfcqudqqg
means: a natural source of water;
a spring. / the man is drinking
water. / Entailment

Scrambled
alternate

a blond man is drinking from
a public lxuehdeig. lxuehdeig
means: lxuehdeig is a transparent
solid and is usually clear. win-
dows and eyeglasses are made
from it, as well as drinking
glasses. / the man is drinking wa-
ter. / Neutral

Table 2: Adding background information to examples
from SNLI

4 Experiments

4.1 Setup
We consider the SNLI task (Bowman et al., 2015).
We fine-tune an XLNet (base, cased) model (Yang
et al., 2019), because it achieves near state-of-the-
art performance on SNLI and outperforms Roberta
(Liu et al., 2019) and BERT (Devlin et al., 2019)

on later rounds of adversarial annotation for ANLI
(Nie et al., 2020). For the language model probabil-
ities p(x̃i|x−i), pretrained BERT (base, uncased)
is used rather than XLNet because the XLNet prob-
abilities have been observed to be very noisy on
short sequences.3

One test set SNLIfullcrit is constructed in the same
way as the augmented training set, but our main
test set SNLItruecrit is additionally constrained to use
only examples of the form (x,hi, yc) where yc is
the original label, because labels for the examples
(x′,h′i, y

′
c) might be incorrect. All of our derived

datasets are available for download.4

In each experiment, training is run for three
epochs distributed across 4 GPU’s, with a batch
size of 10 on each, a learning rate of 5× 10−5, 120
warmup steps, a single gradient accumulation step,
and a maximum sequence length of 384.

4.2 Results

Table 3 compares the accuracy of various training
protocols.

Protocol SNLItruecrit

Original 85.1%
No scrambling, no defs 84.6%
No scrambling, defs 85.2%
Scrambling, no defs 36.9%
Scrambling, defs 81.2%
Scrambling, subs 84.7%
Train on normal SNLI, test on
scrambled no defs

54.1%

Train on normal SNLI, test on
scrambled defs

63.8%

Train on unscrambled defs, test
on scrambled defs

51.4%

Table 3: Accuracy of enhancement protocols

Our task cannot be solved well without read-
ing definitions. When words are scrambled but no
definitions are provided, an SNLI model without
special training achieves 54.1% on SNLItruecrit . If
trained on T ′ with scrambled words but no defini-
tions, performance drops to 36.9%, reflecting that
T ′ is constructed to prevent a model from utilizing
the contextual bias.

With definitions and scrambled words, per-
formance is slightly below that of using the orig-
inal words. Our method using definitions applied

3https://github.com/huggingface/transformers/issues/4343
4https://figshare.com/s/edd5dc26b78817098b72
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to the scrambled words yields 81.2%, compared to
84.6% if words are left unscrambled but no defi-
nitions are provided. Most of the accuracy lost by
obfuscating the words is recovered, but evidently
there is slightly more information accessible in the
original word embeddings.

If alternatives to the critical words are not in-
cluded, the classifier learns biases that do not
depend on the definition. We explore restricting
the training set to verified examples T ′true ⊂ T ′ in
the same way as the SNLItruecrit , still scrambling the
critical or replaced words in the training and testing
sets. Using this subset, a model that is not given the
definitions can be trained to achieve 69.9% perfor-
mance on SNLItruecrit , showing a heavy contextual
bias. A model trained on this subset that uses the
definitions achieves marginally higher performance
(82.3%) than the one trained on all of T ′. On the
other hand, testing on SNLIfullcrit yields only 72.3%
compared to 80.3% using the full T ′, showing that
the classifier is less sensitive to the definition.

Noisy labels from replacements do not hurt
accuracy much. The only difference between the
“original” training protocol and “no scrambling, no
defs” is that the original trains on T and does not in-
clude examples with replaced words and unverified
labels. Training including the replacements reduces
accuracy by 0.5% on SNLItruecrit , which includes
only verified labels. For comparison, training and
testing on all of SNLI with the original protocol
achieves 90.4%, so a much larger effect on accu-
racy must be due to harder examples in SNLItruecrit .

Definitions are not well utilized without spe-
cial training. The original SNLI model, if pro-
vided definitions of scrambled words at test time as
part of the premise, achieves only 63.8%, compared
to 81.2% for our specially trained model.

If the defined words are not scrambled, the
classifier uses the original embedding and ig-
nores the definitions. Training with definitions
but no scrambling, 85.2% accuracy is achieved, but
this trained model is unable to use the definitions
when words are scrambled: it achieves 51.4%.

We have not discovered a way to combine the
benefit of the definitions with the knowledge in
the original word embedding. To force the model
to use both techniques, we prepare a version of
the training set which is half scrambled and half
unscrambled. This model achieves 83.5% on the
unscrambled test set, worse than no definitions.

Definitions are not simply being memorized.
We selected the subset SNLInewcrit of SNLItruecrit

consisting of the 44 examples in which the defined
word was not defined in a training example. The
definition scrambled model achieves 68.2% on this
set, well above 45.5% for the original SNLI model
reading the scrambled words and definitions but
without special training. Remembering a defini-
tion from training is thus an advantage (SNLItruecrit

accuracy was 81.2%), but not the whole capability.
Definition reasoning is harder than simple

substitutions. When definitions are given as one-
word substitutions, in the form “scrambled means:
original” instead of “scrambled means: definition”,
the model achieves 84.7% on SNLItruecrit compared
to 81.2% using the definition text. Of course this
is not a possibility for rare words that are not syn-
onyms of a word that has been well trained, but
it suggests that the kind of multi-hop reasoning in
which words just have to be matched in sequence
is easier than understanding a text definition.

4.3 A hard subset of SNLI

By construction of the SentencePiece dictionary
(Kudo and Richardson, 2018), only the most fre-
quent words in the training data of the XLNet
language model are represented as single tokens.
Other words are tokenized by multiple subwords.
Sometimes the subwords reflect a morphological
change to a well-modeled word, such as a change
in tense or plurality. The language model probably
understands these changes well and the subwords
give important hints. The lemma form of a word
strips many morphological features, so when the
lemma form of a word has multiple subwords, the
basic concept may be less frequently encountered
in training. We hypothesize that such words are
less well understood by the language model.

To test this hypothesis, we construct a subset
SNLItruemulti of the test set, consisting of examples
where a critical word exists whose lemma form
spans multiple subwords. This set consists of 332
test examples. The critical word used may be dif-
ferent from the one chosen for SNLItruecrit . This
subset is indeed harder: the XLNet model trained
on all of SNLI attains only 77.7% on this subset
using no definitions, compared to 90.4% on the
original test set.

In Table 4 we apply various models constructed
in the previous subsection to this hard test set. Ide-
ally, a model leveraging definitions could compen-
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Protocol SNLItruemulti

Normal SNLI on unscrambled 77.7%
Defs & unscrambled on defs &
unscrambled

77.1%

Defs & some scrambling on defs
& unscrambled

73.8%

Defs & scrambled on defs &
scrambled

69.9%

Defs & scrambled on defs & un-
scrambled

62.7%

Table 4: Accuracy on the hard SNLI subset

sate for these weaker word embeddings, but the
method here does not do so.

5 Conclusion

This work shows how a model’s training may be en-
hanced to support reasoning with definitions in nat-
ural text, to handle cases where word embeddings
are not useful. Our method forces the definitions to
be considered and avoids the application of biases
independent of the definition. Using the approach,
entailment examples like “Jack has COVID / Jack
is sick” that are misclassified by an XLNet trained
on normal SNLI are correctly recognized as entail-
ment when a definition “COVID is a respiratory
disease” is added. Methods that can leverage def-
initions without losing the advantage of partially
useful word embeddings are still needed. In an
application, it also will be necessary to select the
words that would benefit from definitions, and to
make a model that can accept multiple definitions.
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