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Abstract
Scripts (Schank and Abelson, 1977) capture
commonsense knowledge about everyday ac-
tivities and their participants. Script knowl-
edge has been shown to be useful in a num-
ber of NLP tasks, such as referent prediction,
discourse classification, and story generation.
A crucial step for the exploitation of script
knowledge is script parsing, the task of tag-
ging a text with the events and participants
from a certain activity. This task is challeng-
ing: it requires information both about the
ways events and participants are usually real-
ized in surface language as well as the order
in which they occur in the world. We show
how to do accurate script parsing with a hierar-
chical sequence model. Our model improves
the state of the art of event parsing by over
16 points F-score and, for the first time, accu-
rately tags script participants.

1 Introduction

Script knowledge is a category of common sense
knowledge that describes how people conduct ev-
eryday activities sequentially (Schank and Abelson,
1977). Script knowledge of a specific scenario,
e.g. GROCERY SHOPPING, includes the events that
comprise the scenario, the participants involved,
and the relations between them. Script knowledge
is useful for various downstream NLP applications,
such as referent prediction (Ahrendt and Demberg,
2016; Modi et al., 2017), discourse sense classifica-
tion (Lee et al., 2020), story generation (Zhai et al.,
2019, 2020).

Script parsing identifies pre-defined sets of
script events and participants from surface text (see
Figure 1). For a specific scenario, script parsing es-
sentially boils down to determining what each verb
and each NP (which we term candidate) refers to
in the context of that scenario.

Script parsing is an under-investigated, complex
task. It is highly contextualized and corresponds to

Figure 1: Descriptions of FIXING A FLAT TIRE from InScript.
Script parsing identifies events and participants from surface
text.

each specific scenario. The task is challenging even
for humans: the inter-annotator agreement is quite
modest, at 0.64 and 0.77 Fleiss’ κ for event and
participant parsing, respectively (Modi et al., 2016).
Various factors need to be taken into consideration
for this task. (1) At the local level, the basic seman-
tics of the candidates. (2) At the discourse level, the
sequence of events and participants should sketch
a reasonable agenda for the activity. For example,
the events must occur in a feasible order; when
an NP is a dependent of an adjacent verb, the pre-
dicted participant type must be one that participates
in the predicted event. In Figure 1, the same verb
found was assigned different event classes: found
bike pump as get tools whereas found a small glass
shard as examine tire. One would have to consider
the arguments of the verb, and potentially where it
appears in the story to make the decision: what hap-
pens after ‘check’ as examine tire is not likely to
be get tools. Apart from the modelling difficulties,
annotated corpora are quite limited in size, given
the high cost. Many event / participant classes have
less that 10 instances across these corpora, occa-
sionally missing from a validation set generated by
random split.

We contribute the following to the area of script
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parsing: methodology-wise, (1) we propose a hier-
archical sequence model, which learns patterns in
different granularity levels with different sequence
models. (2) We investigate data augmentation ap-
proaches to this task. In terms of results, (3) we
achieve accurate participant parsing results for the
first time and (4) improve the state of the art in
event parsing by over 16 points F1-score.

2 Related Work

Theoretical considerations of scripts in AI (as de-
scribed by Schank and Abelson, 1977; Barr and
Feigenbaum, 1981) were analyzed in a wide cov-
erage empirical study by Regneri et al. (2010),
who crowdsourced event descriptions of several
everyday activities (scenarios). They applied unsu-
pervised methods to compute a graph representa-
tion of the script’s temporal structure. As a direct
extension, Modi et al. (2016) and Wanzare et al.
(2016) collected the InScript and DeScript cor-
pora of event descriptions and manually annotated
the scenario-specific types of events and partici-
pants to accommodate aligning surface text with
data-driven script knowledge. The goal is to iden-
tify spans of the text that refer to the events and
participants that are typically involved in a script.
For the case of the script about fixing a bike, the
typical events include riding a bike, noticing a flat
tire, getting tools, repairing the tire and testing it.
These events and participants are pre-defined for
each activity and the task is to label the tokens with
these abstract classes, whereby the surface forms
vary.

The model by Ostermann et al. (2017) is the state
of the art for event parsing over InScript which was
formulated as a sequence tagging task. The authors
used a linear CRF to identify the script events. Its
features include syntax, FrameNet (Ruppenhofer
et al., 2006) features, pre-trained word embeddings
and a number of script-related features encoding
script-specific aspects like event order.

Our work shares many similarities with Berant
et al. (2014). To do question answering in the bio-
logical domain, they first build a graph representa-
tion of events, participants and their relations given
a text about a biological process. Token spans that
denote an occurrence of an event are considered
event triggers. However, unlike our approach, these
events are not based on a pre-defined set. They sep-
arately train a model for identifying event triggers
and a model for finding plausible argument candi-

dates. The features used rely on syntax, semantic
roles and some external domain resources. In con-
trast, we propose a model that jointly learns how to
identify as well as label events and participants.

Much of the previous work on inferring script
knowledge from text is focused around complet-
ing an event chain by predicting the missing event
(Chambers and Jurafsky, 2008; Jans et al., 2012;
Pichotta and Mooney, 2014; Rudinger et al., 2015),
the missing text (Bisk et al., 2019) or both (Pichotta
and Mooney, 2016). These approaches consider
surface forms of event verbs and syntactic relation
types of their arguments (subj, obj), while our task
operates on abstract event and participant types.

3 Method

3.1 Data and Pre-processing

Our work is based on two English corpora, InScript
and DeScript. InScript (Modi et al., 2016) includes
around 100 stories about each of 10 daily activi-
ties (scenarios), e.g., GOING GROCERY SHOPPING,
TAKING A BATH, and RIDING IN A PUBLIC BUS.
The corpus annotates surface text with event and
participant classes, and specifies the candidates ac-
cording to their syntactic dependency (see Figure 1
for an excerpt from InScript). DeScript (Wanzare
et al., 2016) includes, among others, 50 process de-
scriptions for each of the 10 scenarios in InScript.
These process descriptions are telegram-style short
phrases, like ‘Find hole in tire. Plug hole. Find tire
pump. Insert tire pump into tire. Pump tire until
full of air’. The events in these texts are annotated
with the same set of labels as InScript. DeScript
has no participant annotations. We mainly perform
experiments on InScript, whereas DeScript is used
as auxiliary training data.

For each of the 10 scenarios in the InScript cor-
pus, the authors (Modi et al., 2016) designed pro-
totypical scenario-specific event and participant
classes. For example, the story about FIXING A

FLAT TIRE in Figure 1 shows that typically this
activity includes a bike rider, a bike, tools and a
tire. These participants are involved in the events
of riding a bike, getting tools, fixing the tire, and
checking it.

Following Ostermann et al. (2017), we distin-
guish between regular events, events correspond-
ing to the crucial steps of the respective scenario,
and irregular events, the ones that take place in
the course of the story, but are not directly related
to the scenario’s core event chain. For example,
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in Figure 1, the weather was nice is considered an
irregular event as it does not directly relate to the
core steps of the scenario, fixing a flat tire. We
collapse the classes UNREL, RELNSCR, OTHER

and UNKNOWN into a single irregular event class
for each scenario. 12,902 (33.5%) events in In-
Script are regular, whereas 4,185 (89.1%) events
in DeScript are regular. We also distinguish reg-
ular participants from irregular participants in
a similar manner. The identification of irregular
candidates is a crucial component of a script parser,
as naturally occurring text very often includes such
content, making the text more interesting and per-
sonal.

The 10 scenarios vary in complexity (TAKING

A BATH vs. FLYING IN AN AIRPLANE) and speci-
ficity (RIDING A PUBLIC BUS vs. REPAIRING A

FLAT TIRE). This is reflected in the class sizes of
regular events and regular participants. On aver-
age, each scenario has 19.2 regular event and 18.9
regular participant classes. TAKING A FLIGHT has
the largest class sizes for events and participants
(29 and 26, respectively), while PLANTING A TREE

has the smallest (14 and 15, respectively).

3.2 Model

We train a scenario agnostic model that parses all
InScript scenarios. Thus our model implicitly con-
tains a scenario detection model, which determines
the scenario that a piece of text is about. Our model
consists of two sequence models: (1) a word se-
quence model that captures how each event and
participant is usually realized in surface language,
and (2) an event sequence model that operates
on the event level, which models the sequence of
events and participants to capture procedural script
knowledge.

The Hierarchical Model. Figure 2 shows the
model architecture. The model takes as input a
story x from corpus d, an ordered set of indices
I that specifies the positions of the candidates. It
assigns an event / participant label to each of these
candidates as output. These labels are pre-defined
in InScript and specific to each scenario. The set of
candidates consists of all NPs and verbs in the text.
We use the InScript tokens as annotated in it; yet
they could also be extracted with a syntactic parser.

The word sequence model encodes the entire
story with pre-trained contextualized word embed-
dings into a list of vectors (we use xlnet-base-cased

Figure 2: The model architecture. Note that index se-
lection is performed before the Bi-LSTM layer.

(Yang et al., 2019)):

x̃ = XLNet(x) (1)

Next, to accommodate sequence modelling at the
discourse level, we only keep the representations
in x̃ that corresponds to the candidates, namely,
the NP heads and the verbs. Their positions in x̃
are specified by the ordered set of indices I . We
directly take the vector representation of these to-
kens and ignore the rest to form a sub-sequence
of x̃. This operation is termed index select in the
Pytorch library:

c = x̃.index select(I) (2)

Now, we apply the event sequence model ψ (a
Bi-LSTM) on it, to yield the features c̃ for linear
classifier γ, to generates a distribution over the
labels for each token:

p(y|x, I; θψ, θγ) = softmax(γθγ (ψθψ(c))) (3)

The model is trained by optimizing data likelihood:

θ∗ = argmax
θψ ,θγ

∑
x,I

log(p(y|x, I; θψ, θγ)) (4)

3.3 Addressing Data Sparsity
The class distribution is skewed. Some classes are
quite small: the largest regular event class has 397
instances (e.g., get groceries in GROCERY SHOP-
PING), whereas there are 26 classes with less than
10 instances (e.g., get receipt in GROCERY SHOP-
PING, scalp massage in TAKING A BATH), which
means they are hard to learn reliably. Our efforts
to address this are two-fold.

Domain Adaptation. Firstly, we use DeScript
as additional training data. We experiment with
two domain adaptation methods. Most straightfor-
wardly, (1) Data concatenates, which concatenates
DeScript with the original InScript train set. Hav-
ing noticed InScript and DeScript varying greatly in
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Index Model Train set Events Participants
Macro-F1 Micro-F1 Macro-F1 Micro-F1

1. Ostermann In 58.1 66.0 n/a n/a
2. fine-tuned XLNet In 62.11 79.31 79.7345 77.2
3. no index select In 63.31 78.31 74.3 87.12

4. hierarchical In 70.1123 83.7123 78.73 89.323

5. concatenate In, De 69.3123 82.5123 79.13 89.923

6. corpus embedding In, De 74.912345 82.9123 78.63 89.423

7. hierarchicalBT In, BT 75.11234568 85.71234568 80.3123456 90.31234568

8. corpus embeddingBT In, De, BT 74.312345 83.8123456 80.9123456 89.512345

1−8: performance improvement over the respective model is significant at α = 0.05 according to independent T-test.

Table 1: Results. The highest metrics in each column are displayed in boldface. Thanks to a larger training set, the
optimization of 7. and 8. are quite stable, thus its performance difference compared to others can be significant
despite small margins.

the style of their language, we also perform explicit
domain modelling with (2) Corpus embedding. We
follow Stymne et al. (2018) to train a vector repre-
sentation (the corpus embedding) for each corpus
to capture corpus-specific patterns. We concatenate
the corpus representation with each candidate rep-
resentation, to substitute the input term (ψθψ(c)) to
the linear classifier γ with

c̃ = ψθψ(c; ηθη(d)) (5)

Here η(·) denotes the corpus embeddings.

Data Augmentation. Secondly, we augment In-
Script via back-translation (Bojar and Tamchyna,
2011; Sennrich et al., 2016; Xie et al., 2020) to
paraphrase the original data and help the model
generalize better over the surface text. The sto-
ries are translated to French and back with Google
Translate. The participant and event annotations are
mapped to the paraphrases according to heuristics
based on word-level semantics and string matching.
The new data was concatenated with the original
InScript and both were treated as a single domain.
See the appendix for more implementation details1.
In the example below, the event verb takes a differ-
ent tense and surface form in the back-translation.

O : when Irider was ridingride myrider bikebike this
past summer

Fr : l’été dernier, je montais mon vélo

BT : when Irider roderide myrider bikebike this summer

1Our code, data and virtual environment are shared at
https://github.com/coli-saar/SSP_sem.

4 Experiments

4.1 Ablations and Baselines
We randomly split (80/10/10) InScript by entire
stories to create the train/val/test sets. We have two
external baselines: (1) the SotA model from Os-
termann et al. (2017); (2) a fine-tuned XLNet, for
which we train a linear classifier, apart from tuning
its pre-trained parameters. As for our models, Hi-
erarchical is the hierarchical model described by
formulas (1)-(4). For no index select, we ablate
the index selection (thus c = x) to neutralize the
event sequence model. Its event sequence model
now takes every token of the story as input, and
still operates on the token level. The variants con-
catenate and corpus embedding exploit DeScript
with respective domain adaptation methods.

4.2 Results
The results are shown in Table 1. A fine-tuned
XLNet already outperforms Ostermann. Yet our
model variants deliver further, substantial improve-
ments. All our models outperform Ostermann by
a considerable margin, on both event macro and
micro F1. We also see that all micro-F1s are no-
ticeably higher than the respective macro-F1s. This
difference is due to the data including many small
classes that are in general harder to learn.

hierarchical see substantial improvements over
no index select, which fails to perform sequence
modelling at the discourse level. We also note that
hierarchical improved both micro-F1s. Analysis
shows that the hierarchical models are generally
better at addressing the most frequent yet problem-
atic class, the irregular candidates. These candi-
dates do not participate in the core event chain, a
decision better made after taking the structure of

https://github.com/coli-saar/SSP_sem


199

the candidate sequences into consideration. That is
exactly the job of our event sequence model.

Participant parsing yields much higher scores
than event parsing. The reason is, a large propor-
tion of errors come from the irregular candidates
(see also Section 5). However, irregular partici-
pants (19.6%) are proportionally fewer than irregu-
lar events (66.5%). Moreover, a lot of participant
candidates refer to the protagonist (31.0%), an easy
class usually realized with first person pronouns,
making participant parsing generally easier.

For the variants that performs domain adapta-
tion, corpus embedding is clearly a better way
to exploit DeScript, due to the apparent differ-
ence between the language styles of both corpora.
hierarchicalBT sees a larger improvement over hi-
erarchical as it has paraphrased InScript as addi-
tional training data, which is larger and a more
similar domain than DeScript to InScript. These
improvements over hierarchical are more promi-
nent in event macro-F1s, which means these mod-
els are generally better at tagging smaller event
classes, achieving our original goal to alleviate the
issues caused by the uneven class sizes. Further ad-
dition of DeScript on top of hierarchicalBT (model
8.) does not yield further significant improvement,
but sees, overall, a modest performance drop: with
the addition of back-translated data thus a larger,
relatively homogeneous training set, the domain
difference between DeScript and InScript is begin-
ning to outweigh the benefit of having DeScript.

5 Error Analysis

We manually classified the validation set
errors made by our best-performing model,
hierarchicalBT , case by case. A breakdown is
presented in Table 2.

Noisy Corpus Labels. The corpus annotations
of these instances are possibly incorrect. This is
quite common, given the complexity (thus the mod-
erate inter-annotator agreement) of the task. For
example, in a story about BORROWING A BOOK

FROM A LIBRARY, ... I had to get a library card
... is a clear match for the event obtain card, as is
predicted by our model; but in the corpus it was
annotated as ‘irregular’, a mistake probably due
to the light verb ‘get’ seemingly irrelevant to the
scenario at first glance by the original annotator.

False Positives of irregular. A large proportion
of errors feature a wrongly predicted irregular.

We identified two main sources of such errors:
(1) small class sizes; (2) instances that are par-
ticularly difficult because pragmatic inference is
needed to make the right decision. As an example,
... get materials for the assignment ... corresponds
to the event class evoking library, i.e. it evokes
the scenario of BORROWING A BOOK FROM A LI-
BRARY without explicitly referring to a scenario
event. However, without taking the situational con-
text of the scenario into consideration, it cannot
be inferred that ‘get materials for the assignment’
actually means ‘borrow a book from a library’.

Wrong Category. A small number of events are
tagged as participants and vice versa, e.g. some
homonyms of verbs and nouns (board or love).

Type Events Participants
Noisy corpus label 23% 26%
False irregular predictions 49% 37%
Wrong category 2% 4%
Others 26% 33%

Table 2: A breakdown of the error types.

6 Conclusion

We present the first model that achieves high per-
formance on both event and participant parsing.
The model adopts a hierarchical design to model
both the sequence of tokens and the sequence of
script events and participants. Further exploitation
of domain adaptation and data augmentation meth-
ods yields a substantial performance boost. This
work has established methods to accurately parse
both script events and participants, in a supervised
learning framework. Our next step is approaching
this complex task with less supervision, to lift the
requirement on finely-annotated data, thus enabling
wide-coverage script parsing.
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