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Introduction

Welcome to the Fifth Workshop on Structured Prediction for NLP!

Structured prediction has a strong tradition within the natural language processing (NLP) community,
owing to the discrete, compositional nature of words and sentences, which leads to natural combinatorial
representations such as trees, sequences, segments, or alignments, among others. It is no surprise that
structured output models have been successful and popular in NLP applications since their inception.
Many other NLP tasks, including, but not limited to: semantic parsing, slot filling, machine translation, or
information extraction, are commonly modeled as structured problems, and accounting for said structure
has often lead to performance gain.

This workshop follows the four previous successful editions in 2020, 2019, 2017 and 2016 on Structured
Prediction for NLP, as well as the closely related ICML 17 Workshop on Deep Structured Prediction.
This year we received 18 submissions and, after double-blind peer review, 10 were accepted (2 of
which are non-archival papers) for presentation in this edition of the workshop, all exploring this
interplay between structure and neural data representations, from different, important points of view. The
program includes work on structure-informed representation learning, leveraging structure in problems
like parsing, hierarchical classification, etc. and structured feedback for sequence-to-sequence models.
Our program also includes six invited presentations from influential researchers.

Our warmest thanks go to the program committee – for their time and effort providing valuable feedback,
to all submitting authors – for their thought-provoking work, and to the invited speakers – for doing us
the honor of joining our program.

We are profoundly saddened by the loss of Arzoo Katiyar, who was our beloved program committee
member since many previous editions. Our deepest condolences to her family and friends.

Zornitsa Kozareva
Sujith Ravi
Priyanka Agrawal
André Martins
Andreas Vlachos
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Abstract

To date, most abstractive summarisation mod-
els have relied on variants of the negative log-
likelihood (NLL) as their training objective. In
some cases, reinforcement learning has been
added to train the models with an objective
that is closer to their evaluation measures (e.g.
ROUGE). However, the reward function to
be used within the reinforcement learning ap-
proach can play a key role for performance
and is still partially unexplored. For this rea-
son, in this paper, we propose two reward
functions for the task of abstractive summari-
sation: the first function, referred to as RwB-
Hinge, dynamically selects the samples for the
gradient update. The second function, nick-
named RISK, leverages a small pool of strong
candidates to inform the reward. In the ex-
periments, we probe the proposed approach
by fine-tuning an NLL pre-trained model over
nine summarisation datasets of diverse size
and nature. The experimental results show a
consistent improvement over the negative log-
likelihood baselines.

1 Introduction

The current state-of-the-art neural text summarisa-
tion models have been refined to excel at either the
extractive or abstractive styles, or even both (Zhang
et al., 2020a; Lewis et al., 2020; Raffel et al., 2020).
Along with contemporary summarisation datasets
(Narayan et al., 2018a; Grusky et al., 2018; Fab-
bri et al., 2019), the advent of large pre-trained
language models, and their subsequent derivations
(Liu and Lapata, 2019; Park, 2020), has allowed
summarisation to become a more practical and rea-
sonable task to implement, without compromising,
and often improving, the accuracy. However, these
models usually employ the standard negative log-
likelihood (NLL) as their training objective, which
aims to maximise the likelihood of each token in a
given ground-truth reference. Despite its efficacy,

the NLL fails to account for synonymous tokens
and other potentially valid variations, and strongly
biases the model towards the ground-truth refer-
ence (Ranzato et al., 2016). Furthermore, the NLL
operates as a token-level objective during training,
which promotes an inconsistent comparison with
sequence-level evaluation metrics, such as ROUGE
(Lin, 2004).

In order to address the inconsistency between
token-level training and sequence-level evaluation,
reinforcement learning (RL) has been adopted in
summarisation and other language generation tasks
to afford the optimization of sequence-level met-
rics during training (Paulus et al., 2018; Pasunuru
and Bansal, 2018). Reinforcement learning has
proved successful at improving the accuracy of
language generation tasks, such as summarisation
(Paulus et al., 2018; Arumae and Liu, 2018; Pa-
sunuru and Bansal, 2018) and machine transla-
tion (Ranzato et al., 2016; Edunov et al., 2018).
However, balancing exploration and exploitation
remains imperative to the successful choice of an
effective reward. When standard RL techniques,
such as REINFORCE (Williams, 1992), are imple-
mented in natural language generation tasks, the
required expectation becomes intractable due to
large vocabulary sizes. Therefore, the application
of REINFORCE is typically reduced to calculating
the approximate expectation with respect to only
a single predicted sequence. To teach the model
to understand the importance of sample variation
among synonymous tokens, we instead choose to
implement an objective function which includes
multiple predicted sequences, allowing for a sce-
nario in which several valid candidate summaries
can be considered. Another consideration is that
the success of techniques such as REINFORCE
strongly depends on the use of an effective and
appropriate reward. Designing such a reward, one
which enables the model to manipulate multiple
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sequences and yet provides a positive and informa-
tive outcome in the process, is therefore necessary
for producing better results. This allows us to mod-
ify the reinforcement learning framework in such a
way that enforces only a higher weighting to those
predicted sequences which obtain a higher reward.
As such, we apply two techniques to summarisa-
tion; RwB-Hinge, which applies a hinge-loss modi-
fication to the classical REINFORCE with baseline
(Rennie et al., 2017) to selectively apply the model
gradients, and Expected Risk Minimization (RISK)
(Edunov et al., 2018), which leverages a small pool
of strong sampled candidates to smartly inform the
reward function. We aptly refer to our framework
as RewardsOfSum, to hint at the exploration of suit-
able reward functions for summarisation. Empiri-
cally, we show that the two proposed variants per-
form better than standard negative log-likelihood
baselines over a range of datasets of diverse size
and nature.

2 Related Work

In recent years, there has been some work in sum-
marisation to separate from the traditional nega-
tive log-likelihood (NLL) objective function, and
mollify its dependency on ground-truth references.
Several implementations of reinforcement learning
in summarisation involved optimizing discrete met-
rics, such as the standard ROUGE (Paulus et al.,
2018; Narayan et al., 2018b). Others have intro-
duced novel rewards into the reinforcement learn-
ing framework, such as question-focused rewards
(Arumae and Liu, 2018), saliency and entailment
rewards (Pasunuru and Bansal, 2018), and even
distributional semantic rewards (Li et al., 2019).
Gao et al. (2020) also present a novel unsupervised
metric for summarisation which correlates highly
with discrete evaluation metrics if adopted in a re-
inforcement learning approach.

On the other hand, there has been much work
in leveraging large, pre-trained language models
(LM) (Devlin et al., 2019; Lewis et al., 2020; Raf-
fel et al., 2020) to improve the quality and perfor-
mance of summarisation models. Utilizing pre-
trained language models requires significantly less
engineering effort to continually improve over state-
of-the-art baselines. Typically, these approaches
include using novel pre-training objectives (Zhang
et al., 2020a; Raffel et al., 2020; Zhu et al., 2020)
or implementing successful reinforcement learning
techniques (Bae et al., 2019). Li et al. (2019) found

that optimizing semantic rewards in reinforcement
learning, using BERTScore (Zhang et al., 2020b),
does not necessarily correlate with the ROUGE
score at test time. As such, the choice of reward in
a reinforcement learning approach should attempt
to carefully align with the evaluation metric.

How best to inform the reward via the reward
function, is critical to the performance of mod-
els in an RL framework. In our work, we aim to
stray from the typical sole NLL objective, and by
leveraging a pre-trained language model in a rein-
forcement learning framework, explore different
RL-based reward functions for summarisation.

3 Proposed Reinforcement Learning
Training

In order to improve over the negative log-likelihood
baseline models, we aim to implement a reinforce-
ment learning framework that adopts the standard
evaluation metric, ROUGE, as a reward during
training. We aim to keep consistent with previ-
ous implementations of reinforcement learning in
summarisation, and assume ROUGE-L F1 to be
the reward metric in the following work.

In Sections 3.1 and 3.2, we consider the follow-
ing standard notations: x is defined as an input
source document, y∗, ŷ, and ys are referred to as
the ground-truth reference, argmax prediction, and
sampled sequence, respectively, and r(y) refers to
the reward of sequence y, computed with respect
to the ground-truth reference, y∗. By exploiting a
combination of sampling and predictions, we aim
to enhance training diversity in the vein of the work
of Li and Jurafsky (2016); Li et al. (2016); Holtz-
man et al. (2020).

3.1 RwB-Hinge

We adopt the standard self-critical policy gradient
objective (Rennie et al., 2017), notably applied to
summarisation by Paulus et al. (2018):

α = −[r(ys)− r(ŷ)] (1)

LRwB = α

n
′

∑

t=1

log p(yst |y1, . . . , yt−1, x) (2)

In (1), ys and ŷ denote a sampled sequence and
the argmax prediction of the current model, respec-
tively. The reward of the argmax, r(ŷ), is used as
a “baseline” for the reward of the sample, r(ys). It
is easy to see that if r(ys)− r(ŷ) > 0, the sign of
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this loss is negative, treating ys as a “good” pre-
diction and leading to an increase of its probability.
Conversely, if the sign is positive, ys is deemed as
a “bad” prediction and its probability is decreased.

However, in abstractive summarisation it is not
trivial to discriminate between a good and a bad
summary when the reward score is in an interme-
diate range. To avoid inappropriately penalising
acceptable predictions, we propose incorporating a
hinge loss in (1):

α = −max [0, (r(ys)− r(ŷ))] (3)

The hinge loss allows the model to limit the
gradient updates to only the predictions that are
considered as good. In this way, we avoid the risk
of unstable training updates and hope to afford a
clearer trajectory towards a well-trained model.

3.2 Expected RISK Minimization
We also utilise a classical structured loss function
that has been shown to perform well in sequence-
to-sequence learning tasks (Edunov et al., 2018):

LRISK =
∑

y∈U(x)

−r(y) · p(y|x, θ) (4)

In (4), y represents one of multiple candidate
summaries, sampled or predicted with the meth-
ods defined in Section 4.2 (e.g. argmax, Gumbel-
Softmax (Jang et al., 2017)), that form the total
candidate summary set U(x). The conditional
probability of the predicted summary is noted as
p(y|x, θ).

This conditional probability is defined in (5),
where m is the number of tokens in the summary.
The sum of logarithms in (6) is divided by the total
number of tokens in the sequence, and is scaled
back using an exponential function, allowing each
candidate summary to be compared fairly in the
objective function and avoiding underflow.

p(y|x, θ) = f(y, x, θ)
∑

y′∈U(x)

f(y′ , x, θ) (5)

η =
m∑

j=1

logp(uj |u1, . . . , uj−1, x, θ) (6)

f(y, x, θ) = exp[
η

m
] (7)

By using this objective function, the model is
taught to assign higher probability to the candidate

summaries that obtain higher rewards. This objec-
tive does not require a baseline or hinge loss to se-
lect the predictions, since using multiple candidates
already exposes the model to different, potentially
valid predictions. Edunov et al. (2018) demon-
strates the effectiveness of this approach at sentence
level for both neural machine translation and sum-
marisation. For the summarisation task, Edunov
et al. (2018) compute the reward at sentence-level
since their dataset has single-sentence references.
However, as the reward function is agnostic to sin-
gle or multi-sentence predictions, we can easily
translate the RISK objective function to be used at
summary level.

3.3 Overall Training Objective

Similar to previous reinforcement learning imple-
mentations (Paulus et al., 2018; Li et al., 2019),
we, too, utilise a mixed learning objective function,
as shown in (8). This mixed approach helps the
model to not deviate too much from the reference
summaries, given a γ balancing coefficient chosen
with a strict validation criterion (Appendix A). The
LRL term refers to either the RwB-Hinge or RISK
training objective function.

Lmixed = γLXENT + (1− γ)LRL (8)

4 Experimental Setup

4.1 Datasets

Inspired by the recent work from Zhang et al.
(2020a), we utilise nine of the summarisation
datasets reported in their paper. The nine datasets
have been chosen based on the different lengths of
their reference summaries, to provide enough of
a variation to demonstrate the applicability of the
presented methods. We split the datasets into three
classes: “short”, “medium”, and “long”. Short
datasets have reference summaries ≤ 64 tokens,
medium datasets > 64 and ≤ 128 tokens, and long
datasets > 128 tokens.

4.2 Sampling Methods

In order to promote exploration across the vocabu-
lary distribution, we employ three simple method-
ologies to provide candidate sequences for our
training objectives.

Argmax: As is the standard with the majority
of sequence generation tasks, a predicted sentence
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Dataset Train Test Dev
AESLC 14.4K 1.9K 1.9K

Gigaword 3.8M 1.9K 189K
XSum 203K 11.3K 11.3K

CNN/DM 287K 11.4K 13.3K
Reddit-TIFU 33.7K 4.2K 4.2K

Newsroom 995K 108K 108K
Pubmed 119K 6.6K 6.6K
ArXiv 203K 6.4K 6.4K

Billsum 18.9K 3.2K 1.2K

Table 1: Statistics on the datasets used in the experi-
ments. Figures are rounded. The top third are short
datasets (≤ 64 tokens references summaries), the mid-
dle third are medium datasets (> 64 and≤ 128 tokens),
and the bottom third are long datasets (> 128 tokens).

can be easily provided by allowing the model to
make hard decisions (e.g. argmax) over the proba-
bility distribution generated by the decoder. This
allows us to use it as a baseline for the following
experiments. In its simplest form the argmax is
defined as:

ŷj = argmax
y

p(y|x, y∗j−1, θ) j = 1, . . . , n (9)

where we use “teacher forcing” for the predictions.
2nd-Best: Similar to the argmax, we employ a

k-best approach to sample the second best-argmax
from the same probability distribution generated
by the decoder. This allows us to choose different,
yet similarly weighted words from the decoder to
introduce variability between produced summaries:

ysj = argmax
k=2

p(y|x, y∗j−1, θ) j = 1, . . . , n

(10)
Gumbel-Softmax: We also utilise a recent re-

parameterization technique known as the Gumbel-
Softmax (Jang et al., 2017) that allows sampling
soft latent categorical variables by transforming
samples from a Gumbel distribution. Compared to
the standard “hard” predictions, this approach is
differentiable and allows controlling the sparsity of
the samples by a temperature parameter, τ :

p̃ij =
exp((log(pij) + gi)/τ

∑V
v=1 exp((log(pvj ) + gv)/τ

(11)

In (11), gi is a sample from the zero-mean, unit-
scale Gumbel distribution, pij is the probability dis-

tribution for a given token i at slot j, and the tem-
perature parameter, τ , controls the sparsity of the
output soft variable, p̃ij . In our experiments, we
have set τ to 0.1 to enforce sparsity.

4.3 Baseline Model and Training Runs

The abstractive text summarisation model we use
for our experiments is PEGASUS, a large pre-
trained Transformer encoder-decoder architecture
that has recently reported state-of-the-art results
over a number of datasets. Please refer to Zhang
et al. (2020a) for details. All hyperparameters used
in our experiments can be found in Appendix B.

We employ two training approaches to test the
solidity of the proposed methods. The first is a few-
shot learning approach that adopts limited, fixed
numbers of training samples (1000) and training
iterations (2000) for fine-tuning the model. The
second is a full-data learning approach, that utilises
all available training data, and exhausts the objec-
tive function until convergence over the validation
set. In all experiments, we first fine-tune a pre-
trained PEGASUS model with the NLL, and then
we further fine-tune the NLL model with one of
the proposed approaches. We train the model in
this way to avoid the slow and inefficient training
often associated with policy gradient objectives,
and as a result, adhere to the standard warm-start
NLL training adopted in previous reinforcement
learning-based approaches (Paulus et al., 2018; Li
et al., 2019).

In the following experiments, we refer to PEGA-
SUS as PEG, and its NLL-tuned models with the
suffixes -few_shot and -full_data. The proposed
approaches are in turn noted as RwB-Hinge and
RISK.

Experiment Arg-max 2nd-Best G-S
RwB-Hinge X X

RISK-2 X X
RISK-3 X X X

Table 2: Different experiments and the different sam-
pling methods used in each. Here, RISK-2 and RISK-3
denote the number of samples we utilise in the RISK
objective function; two and three, respectively.

5 Results

Tables 3, 4, and 5 show the results of each method
in comparison to the NLL-tuned baseline for the
nine reported datasets. Each table reports the
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Model AESLC Gigaword XSum
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PEGfew_shot 29.96 14.54 29.17 31.81 13.19 29.12 41.81 18.32 33.50
+ RwB-Hinge 28.69 13.83 27.82 31.83 13.15 29.08 42.47† 18.82† 33.94

+ RISK-2 29.35 14.14 28.39 31.96 13.22 29.27 42.57† 18.71† 33.96†

+ RISK-3 29.28 14.05 28.31 32.10† 13.35† 29.43† 42.66† 19.01† 34.15†

PEGfull_data 32.63 15.84 32.19 33.81 14.26 30.89 41.52 18.21 33.31
+ RwB-Hinge 34.39† 17.58† 33.71† 34.10† 14.52 31.31† 42.87† 19.36 34.56†

+ RISK-2 33.55† 17.01† 32.91† 33.97 14.45 31.18† 42.93† 19.25† 34.67†
+ RISK-3 33.75† 17.03† 33.04† 33.97 14.52 31.14† 42.74† 19.23† 34.60†

Table 3: Results on short datasets: AESLC, Gigaword, and XSum. Here we compare the limited resource
(PEGfew_shot) and full-data (PEGfull_data) approaches with our different implementations. (†) means that the dif-
ferences are statistically significant with respect to the baseline with a p-value < 0.05 over a bootstrap hypothesis
test. Best ROUGE-1/2/L scores are bolded.

Model CNN/DM Reddit-TIFU Newsroom
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PEGfew_shot 40.65 17.60 37.81 24.84 7.21 20.12 33.33 20.01 29.17
+ RwB-Hinge 40.44 17.44 37.54 25.55† 7.23 20.09 34.03† 20.74† 29.86†

+ RISK-2 40.52 17.48 37.62 25.69† 7.25 20.26 34.26† 21.10† 30.14†

+ RISK-3 40.76 17.63 37.87 25.73† 7.30 20.35 34.40† 21.27† 30.21†

PEGfull_data 40.58 18.15 37.94 23.66 6.72 19.24 36.39 23.90 32.50
+ RwB-Hinge 40.84† 17.74 38.19† 23.95† 6.93 19.69† 36.85† 24.01 33.00†

+ RISK-2 40.88† 17.91 38.19† 24.25† 7.19† 20.00† 36.74 24.01 32.73
+ RISK-3 40.88† 17.91 38.28† 24.70† 7.46† 20.25† 36.04 23.22 32.18

Table 4: Results on medium datasets: CNN/DM, Reddit-TIFU, and Newsroom. Here we compare the limited
resource (PEGfew_shot) and full-data (PEGfull_data) approaches with our different implementations. (†) means that
the differences are statistically significant with respect to the baseline with a p-value < 0.05 over a bootstrap
hypothesis test. Best ROUGE-1/2/L scores are bolded.

Model Pubmed ArXiv Billsum
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PEGfew_shot 38.28 13.70 23.32 38.08 11.61 22.87 48.27 27.79 35.70
+ RwB-Hinge 40.11† 14.45† 23.88† 38.85† 11.90† 22.88 48.61† 29.35† 36.91†

+ RISK-2 40.19† 14.61† 23.98† 38.98† 12.02† 22.90 48.21 28.34† 35.97
+ RISK-3 40.19† 14.55† 23.95† 38.68† 11.88† 22.81 48.65 28.71† 36.37†

PEGfull_data 40.57 16.05 25.46 38.48 13.33 24.12 52.98 34.44 41.36
+ RwB-Hinge 40.80 16.27 25.41 38.95† 13.69† 24.19 54.30† 36.01† 42.76†

+ RISK-2 40.32 15.85 25.31 38.76 13.55 24.11 53.76† 35.54† 42.37†

+ RISK-3 40.36 15.89 25.26 38.42 13.37 24.12 54.27† 35.80† 42.51†

Table 5: Results on long datasets: Pubmed, ArXiv, and Billsum. Here we compare the limited resource
(PEGfew_shot) and full-data (PEGfull_data) approaches with our different implementations. (†) means that the dif-
ferences are statistically significant with respect to the baseline with a p-value < 0.05 over a bootstrap hypothesis
test. Best ROUGE-1/2/L scores are bolded.

few-shot (top halves) and full-data results (bottom
halves), where the scores have been averaged over
three independently-initialised training runs. Each
fine-tuning method is employed in a mixed loss
framework, as mentioned in (8) in Section 3.3;
the value for the γ hyperparameter has been de-

termined over the validation set as described in Ap-
pendix A. The results show that all the fine-tuning
methods have surpassed the NLL baselines for al-
most all datasets. Several of these improvements
have also passed a bootstrap test for statistical sig-
nificance, which is regarded as a more appropriate
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Figure 1: Comparing the uni-, bi-, and tri-gram novelty for the medium sized datasets. These datasets contain
generated sequences up to 128 tokens in length. The methods are as follows: NLL (baseline), RwB-Hinge, RISK-
2, and RISK-3. The unique average n-gram novelty (n-grams that do not appear in the source text) is shown to
increase across the board compared to the standard NLL baseline.

statistical test for summarisation compared to a
t-test (Dror et al., 2018).

Figure 1 compares the effect that each fine-
tuning method has had over the production of novel
n-grams during test time (a property nicknamed as
n-gram novelty). For medium sized datasets in
particular, the reinforcement learning approaches
appear to, on average, facilitate the production of
more distinct uni-, bi-, and tri-grams at test time,
compared to the NLL baseline. Whilst n-gram nov-
elty is typically used in summarisation to showcase
test-time summary abstractiveness, the results in
Figure 1 highlight that training with objectives that
promote sample variation leads to models capable
of producing more novel n-grams (up to 13.8 pp in
tri-gram novelty over CNN/DM). This is supported
by the qualitative example in Table 6 which shows
that the proposed fine-tuning methods can achieve
greater diversity of summary predictions, whilst
still improving over the baseline NLL ROUGE
scores. It seems that the proposed fine-tuning meth-
ods have allowed the model to effectively weigh
the predicted summaries during training, and when
combined with the “stable” NLL in a mixed-loss ap-
proach, this has been able to produce well-rounded
predictions, diverse enough to stray from the origi-
nal baseline and the reference summaries.

In addition, Figure 2 shows a performance com-
parison with respect to the length of the refer-
ence summaries for the full-data approach over
a medium size dataset (CNN/DM). We see that our
fine-tuning methods have led, on average, to higher

Figure 2: Comparison of each method for the full-data
approach over a medium size dataset (CNN/DM). The
methods are as follows: NLL (baseline), RwB-Hinge,
RISK-2, and RISK-3. We see that the reinforcement
learning approaches have led, on average, to higher
ROUGE-L scores for the longer summaries compared
to the NLL baseline.

ROUGE-L scores for the longer summaries (up
to 2.3 ROUGE-L points for summaries between
80-100 tokens, and up to 6.2 points for summaries
over 100 tokens). Likely, the proposed methods
have been able to amend the reported tendency of
the NLL models to curtail the prediction of long
summaries.

Comparing multiple fine-tuning methods is use-
ful for showcasing the improvements that rein-
forcement learning can play on a generation task
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Source Document

Dougie Freedman is on the verge of agreeing a new two-year deal to remain at Nottingham Forest. Freedman has stabilised
Forest since he replaced cult hero Stuart Pearce and the club’s owners are pleased with the job he has done at the City Ground.
Dougie Freedman is set to sign a new deal at Nottingham Forest. Freedman has impressed at the City Ground since replacing
Stuart Pearce in February. They made an audacious attempt on the play-off places when Freedman replaced Pearce but have
tailed off in recent weeks. That has not prevented Forest’s ownership making moves to secure Freedman on a contract for the
next two seasons.

Reference

Nottingham Forest are close to extending Dougie Freedman’s contract. The Forest boss took over from former manager
Stuart Pearce in February. Freedman has since lead the club to ninth in the Championship.

NLL (40.00/30.43/32.85)

Dougie Freedman set to sign new deal at Nottingham Forest. Freedman has stabilised Forest since he replaced Stuart Pearce.
Forest’s owners are pleased with Freedman’s job.

RwB-Hinge (49.00/36.24/34.43)

Dougie Freedman is set to sign a new two-year deal at Nottingham Forest. The City Ground boss has stabilised the club
since he replaced Stuart Pearce. Forest’s owners are pleased with Freedman’s job at the club.

RISK-2 (50.66/44.59/44.00)

Dougie Freedman set to sign a new two-year deal at Nottingham Forest. Freedman has stabilised Forest since he replaced
Stuart Pearce in February. Forest made an audacious attempt at the play-off places when Freedman replaced Pearce.

RISK-3 (49.33/40.54/40.00)

Dougie Freedman set to sign new deal at Nottingham Forest. Freedman has stabilised the club since he replaced Stuart
Pearce in February. The club’s owners are pleased with the job Freedman has done at the City Ground.

Table 6: Example of the performance of each method from the CNN/DailyMail dataset for the full-data approach,
compared to the reference summary and NLL baseline. Words highlighted in blue indicate that they are not present
in the baseline NLL summary. Here we choose a typical method that aligns the best with the average NLL baseline
score, and compare how the methods pit against it. We see that there is a relative increase in ROUGE scores, whilst
diversifying the output.

Dataset Approach RwB-Hinge RISK-2 RISK-3

XSum (short) Few-Shot 43.90/20.18/35.59 44.03/20.28/35.75 43.80/20.30/35.76
Full-Data 42.97/19.45/34.73 42.92/19.53/34.73 43.23/19.25/35.06

Newsroom (medium) Few-Shot 35.47/22.31/31.11 36.20/23.11/31.81 35.96/22.87/31.62
Full-Data 38.17/25.37/34.12 37.02/24.36/33.21 37.08/25.11/33.22

Billsum (long) Few-Shot 49.08/29.96/37.63 48.19/28.84/36.68 49.23/29.62/37.06
Full-Data 54.48/36.49/43.43 53.51/35.24/42.49 54.10/35.39/42.50

Table 7: Scores on the validation set for short, medium, and long datasets to determine the best method for each size
class. RISK, on average, appears to work best for short/medium sized datasets (up to 128 tokens), and RwB-Hinge
works better for longer datasets (over 128 tokens).

Dataset RwB: No Hinge-Loss RwB: with Hinge-Loss
XSum (short) 42.82/19.32/34.43 42.97/19.45/34.73

Newsroom (medium) 38.97/26.38/35.00 38.17/25.37/34.12
Billsum (long) 53.04/34.87/42.14 54.48/36.49/43.43

Table 8: Comparisons between REINFORCE with baseline with and without the hinge-loss modification on the
validation set for short, medium, and long datasets, to validate the use of the hinge-loss modification in our method.
This is run over the full-data baselines, and shows that for the majority of dataset classes, the adopted hinge-loss
modification leads to improvements in performance.

like summarisation. However, no single method
has outperformed all others over all the datasets
and in both the few-shot and full-data approaches.
Whilst all methods have achieved interesting im-

provements over the baseline figures, we have run
a comparison over the validation set to see if their
relative rankings could be a reliable indicator of the
relative rankings of the test set scores reported in
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Tables 3, 4, and 5. Table 7 shows the results for one
dataset per class size, showing that for the short
and medium size datasets (≤ 128 tokens), either
of the RISK methods could be chosen to fine-tune
the model. This contrasts to the longer datasets
where the hinge-loss modification has achieved the
best results. In both cases, the results are in good
agreement with those on the test sets.

Lastly, in Table 8, we further validate our use
of the hinge-loss adaptation to the classical RE-
INFORCE with baseline method – a staple in the
reinforcement learning literature of language gen-
eration tasks (Paulus et al., 2018). Over the same
three datasets of Table 7, we see that in the ma-
jority of instances the hinge-loss modification has
been distinctively better than the standard approach.
This confirms our intuition that the adoption of a
hinge loss to restrict the gradient updates to “good”
predictions only is beneficial to the improvement
of ROUGE scores.

6 Conclusion

In this paper, we have proposed two variants to the
reinforcement learning approaches typically used
in sequence-to-sequence learning tasks. The two
proposed approaches – nicknamed RwB-Hinge and
RISK – have been designed to improve the rein-
forcement learning rewards by selecting and diver-
sifying the predictions used during the fine-tuning
of the model. In a set of automated summarisa-
tion experiments over nine, diverse datasets, the
approaches have consistently led to improved per-
formance, and also diversified the generated sum-
maries. We note that, despite its commonplace use
for summarisation evaluation, utilizing ROUGE
as reinforcement learning reward does not easily
translate into improved performance. For this rea-
son, in the near future we plan to explore other
contemporary score functions, such as BERTScore
(Zhang et al., 2020b), in an attempt to build more
effective rewards.
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A Validation Scores

To determine an appropriate γ term for our mixed loss implementation, we have run tests with different
values over the validation set for each dataset. To determine the best value, we have utilised the standard
REINFORCE (Williams, 1992) approach combined linearly with the negative log-likelihood. We have
chosen to optimise REINFORCE here since, being a close relative, but not the same as the algorithms we
have used during training, it may help to eschew overfitting. In the interest of time, we have utilised the
validation scores of a single seed to determine the γ values.
For the few-shot implementation in Table A.1, we have fixed the number of examples to fine-tune on
(1,000) and the number of training iterations (2,000) exactly as in the standard baseline approach defined
in Section 4. For the full-data approach in Table A.3, we have utilised all the training data, but, again in
the interest of time, we have capped the number of training iterations to either: a) the same training time
as the exhausted NLL tests reported in Table B.2, or b) 10,000 training iterations if the NLL training time
exceeded 15,000 training iterations.

Tables A.2 and A.4 show the best γ values from the validation runs for all datasets. For datasets where
there was no clear winner in Tables A.1 and A.3, we have compromised over the best values (highlighted
in blue).

Table A.1: Validation scores of the baseline PEGASUS model, fine-tuned on a 1000 training examples for 2000
training iterations (few-shot). Best scores are highlighted.

Dataset 0.1 0.3 0.5 0.7 0.9
AESLC 28.96/13.12/28.49 30.26/14.55/29.49 31.21/15.22/30.26 30.46/14.65/29.70 31.25/15.64/30.42
ArXiv 28.06/7.99/20.70 33.01/10.58/21.24 29.49/9.32/21.12 33.46/10.46/22.55 33.43/10.55/22.26

Billsum 41.61/28.08/34.65 40.37/28.07/34.17 40.16/28.19/34.27 39.56/28.11/34.16 42.64/29.36/35.73
CNN/DM 40.30/18.37/28.33 39.47/17.41/27.79 39.79/18.03/27.91 40.44/17.81/28.12 40.98/18.06/28.09
Gigaword 39.24/16.81/35.65 38.97/17.42/35.94 39.92/17.56/36.45 40.27/17.96/36.91 40.91/18.48/37.42
Newsroom 36.61/25.35/33.15 36.93/25.39/33.25 36.36/24.57/32.68 38.07/26.15/34.23 35.98/23.53/32.12
Pubmed 31.74/10.69/19.50 33.44/11.37/21.35 34.96/12.07/21.62 37.35/13.02/22.14 36.57/12.99/22.47

Reddit-TIFU 19.43/4.45/15.74 24.87/6.56/20.08 25.00/6.19/19.99 25.73/6.85/20.55 26.50/6.90/20.86
XSum 41.19/17.59/32.90 41.28/17.48/32.27 41.79/17.97/32.65 42.30/18.80/34.11 43.43/19.58/34.76

Table A.2: A summary of the corresponding gamma weights determined from the above few-shot validation tests.

AESLC ArXiv Billsum CNN/DM Gigaword Newsroom Pubmed Reddit-TIFU XSum
0.9 0.7 0.9 0.9 0.9 0.7 0.7 0.9 0.9

Table A.3: Validation scores of the baseline PEGASUS model, fine-tuned on all training examples provided with
the dataset for as many training iterations as either; the NLL baseline tests in Section 4, or 10,000 training iterations
for longer datasets (ArXiv, Billsum, Pubmed). Best scores are highlighted.

Dataset 0.1 0.3 0.5 0.7 0.9
AESLC 28.66/11.52/28.35 32.81/15.45/32.48 33.39/15.77/32.98 33.23/16.36/32.75 34.94/17.17/34.11
ArXiv 5.71/0.00/5.56 1.76/0.23/1.70 1.61/0.04/1.59 10.08/1.40/9.09 13.19/2.46/11.59

Billsum 6.50/1.50/6.45 9.85/4.51/9.42 15.50/6.31/13.04 32.78/17.36/25.92 38.98/22.84/30.62
CNN/DM 3.50/0.004/0.35 15.37/5.75/14.91 24.36/8.12/22.58 29.17/11.46/27.44 35.56/14.87/33.29
Gigaword 28.48/11.90/27.23 39.89/18.35/37.28 41.61/18.89/38.49 43.67/20.51/40.30 42.68/19.34/39.26
Newsroom 31.48/21.03/28.32 27.73/15.08/24.05 26.78/13.79/22.84 33.92/20.89/30.19 35.56/22.58/31.77
Pubmed 1.04/0.12/1.03 0.29/0.00/0.29 0.77/0.08/0.76 6.34/1.78/5.12 10.98/2.29/8.96

Reddit-TIFU 1.08/0.06/1.08 11.59/1.43/10.45 9.15/1.24/8.63 14.71/2.58/12.59 23.25/5.79/18.94
XSum 23.04/6.44/17.45 34.02/12.04/25.35 35.56/12.61/26.10 38.84/15.98/30.94 41.60/18.16/33.43
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Table A.4: A summary of the corresponding gamma weights determined from the above full-data validation tests.

AESLC ArXiv Billsum CNN/DM Gigaword Newsroom Pubmed Reddit-TIFU XSum
0.9 0.9 0.9 0.9 0.7 0.9 0.9 0.9 0.9

B Model Hyperparameters

In our experiments, we have utilised the same hyperparameters used in the original PEGASUS paper
(Zhang et al., 2020a). The exception to this is our use of a smaller batch size, constrained by computational
resources. As batch size we have used 1, which has resulted in a drop in performance compared to that
of the original paper. However, our fine-tuning approach is ensured to converge through the use of a
convergence criterion. This is defined by a validation run that evaluates the model every 1000 training
iterations, and monitors the progression of the validation loss over the entire training run. A model is
deemed ‘converged’ if its validation loss does not decrease over 3000 training iterations.

Table B.1: Model hyperparameters used in the few-shot experiments. All values except the fine-tuning steps are
also used in the full-data approach.

Dataset Learning Rate Label Smoothing Fine-Tuning Steps Batch Size Beam Size Max Input Tokens Max Target Tokens
AESLC 5e-4 0.1 2000 1 1 512 32
ArXiv 5e-4 0.1 2000 1 1 1024 256

Billsum 5e-4 0.1 2000 1 1 1024 256
CNN/DM 5e-4 0.1 2000 1 1 1024 128
Gigaword 5e-4 0.1 2000 1 1 128 32
Newsroom 5e-4 0.1 2000 1 1 512 128
Pubmed 5e-4 0.1 2000 1 1 1024 256

Reddit-TIFU 5e-4 0.1 2000 1 1 1024 128
XSum 5e-4 0.1 2000 1 1 512 64

Table B.2: Model fine-tuning steps used in the full-data experiments. The NLL and all fine-tuning tests (except
the validation tests), were validated every 1000 training iterations on a separate validation set, with the validation
loss monitored over the run. An early stopping criterion was in place to stop training if the validation loss had not
declined in 3000 consecutive training iterations. All methods have been averaged over three seed runs, whereas
for the validation run we report results from a single run.

Dataset NLL Validation RwB-Hinge RISK-2 RISK-3
AESLC 7k 7k 5k 5.3k 5.3k
ArXiv 43k 10k 7k 7k 7k

Billsum 44k 10k 5k 5k 4.6k
CNN/DM 12k 12k 6.6k 6.6k 7.6k
Gigaword 10k 10k 5.6k 6k 6k
Newsroom 10k 10k 6.3k 6.6k 6.3k
Pubmed 55k 10k 5.6k 6k 6k

Reddit-TIFU 10k 10k 7k 7k 6.5k
XSum 8k 8k 6k 5.3k 6k
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Abstract

The de-facto standard decoding method for se-
mantic parsing in recent years has been to au-
toregressively decode the abstract syntax tree
of the target program using a top-down depth-
first traversal. In this work, we propose an
alternative approach: a Semi-autoregressive
Bottom-up Parser (SMBOP) that constructs
at decoding step t the top-K sub-trees of
height ≤ t. Our parser enjoys several benefits
compared to top-down autoregressive parsing.
From an efficiency perspective, bottom-up
parsing allows to decode all sub-trees of a cer-
tain height in parallel, leading to logarithmic
runtime complexity rather than linear. From
a modeling perspective, a bottom-up parser
learns representations for meaningful seman-
tic sub-programs at each step, rather than for
semantically-vacuous partial trees. We apply
SMBOP on SPIDER, a challenging zero-shot
semantic parsing benchmark, and show that
SMBOP leads to a 2.2x speed-up in decoding
time and a∼5x speed-up in training time, com-
pared to a semantic parser that uses autoregres-
sive decoding. SMBOP obtains 71.1 denota-
tion accuracy on SPIDER, establishing a new
state-of-the-art, and 69.5 exact match, compa-
rable to the 69.6 exact match of the autoregres-
sive RAT-SQL+GRAPPA.

1 Introduction

Semantic parsing, the task of mapping natural lan-
guage utterances into programs (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Clarke et al.;
Liang et al., 2011), has converged in recent years on
a standard encoder-decoder architecture. Recently,
meaningful advances emerged on the encoder side,
including developments in Transformer-based ar-
chitectures (Wang et al., 2020a) and new pretrain-
ing techniques (Yin et al., 2020; Herzig et al., 2020;
Yu et al., 2020; Deng et al., 2020; Shi et al., 2021).
Conversely, the decoder has remained roughly con-
stant for years, where the abstract syntax tree of
the target program is autoregressively decoded in a

top-down manner (Yin and Neubig, 2017; Krishna-
murthy et al., 2017; Rabinovich et al., 2017).

Bottom-up decoding in semantic parsing has re-
ceived little attention (Cheng et al., 2019; Odena
et al., 2020). In this work, we propose a bottom-up
semantic parser, and demonstrate that equipped
with recent developments in Transformer-based
(Vaswani et al., 2017) architectures, it offers sev-
eral advantages. From an efficiency perspective,
bottom-up parsing can naturally be done semi-
autoregressively: at each decoding step t, the parser
generates in parallel the top-K program sub-trees
of depth ≤ t (akin to beam search). This leads to
runtime complexity that is logarithmic in the tree
size, rather than linear, contributing to the rocket-
ing interest in efficient and greener artificial intelli-
gence technologies (Schwartz et al., 2020). From
a modeling perspective, neural bottom-up parsing
provides learned representations for meaningful
(and executable) sub-programs, which are sub-trees
computed during the search procedure, in contrast
to top-down parsing, where hidden states represent
partial trees without clear semantics.

Figure 1 illustrates a single decoding step of
our parser. Given a beam Zt with K = 4 trees
of height t (blue vectors), we use cross-attention
to contextualize the trees with information from
the input question (orange). Then, we score the
frontier, that is, the set of all trees of height t +
1 that can be constructed using a grammar from
the current beam, and the top-K trees are kept
(purple). Last, a representation for each of the new
K trees is generated and placed in the new beam
Zt+1. After T decoding steps, the parser returns
the highest-scoring tree in ZT that corresponds to
a full program. Because we have gold trees at
training time, the entire model is trained jointly
using maximum likelihood.

We evaluate our model, SMBOP 1 2 (SeMi-

1Originally published in NAACL 2021.
2Rhymes with ‘MMMBop’.
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age 60
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actorname

Cross Attention

...

Score-frontier

actor 60name actor age 60

What are the names of actors over 60?

Prune frontier

Represent-beam

Figure 1: An overview of the decoding procedure of SMBOP. Zt is is the beam at step t, Z ′
t is the contextualized

beam after cross-attention, Ft+1 is the frontier (κ, σ,≥ are logical operations applied on trees, as explained below),
F ′
t+1 is the pruned frontier, and Zt+1 is the new beam. At the top we see the new trees created in this step. For
t = 0 (depicted here), the beam contains the predicted schema constants and DB values.

autoregressive Bottom-up semantic Parser), on SPI-
DER (Yu et al., 2018), a challenging zero-shot
text-to-SQL dataset. We implement the RAT-
SQL+GRAPPA encoder (Yu et al., 2020), currently
the best model on SPIDER, and replace the autore-
gressive decoder with the semi-autoregressive SM-
BOP. SMBOP obtains an exact match accuracy
of 69.5, comparable to the autoregressive RAT-
SQL+GRAPPA at 69.6 exact match, and to current
state-of-the-art at 69.8 exact match (Zhao et al.,
2021), which applies additional pretraining. More-
over, SMBOP substantially improves state-of-the-
art in denotation accuracy, improving performance
from 68.3 → 71.1. Importantly, compared to au-
toregressive semantic parsing , we observe an aver-
age speed-up of 2.2x in decoding time, where for
long SQL queries, speed-up is between 5x-6x, and
a training speed-up of ∼5x.3

2 Background

Problem definition We focus in this work on
text-to-SQL semantic parsing. Given a training set
{(x(i), y(i), S(i))}Ni=1, where x(i) is an utterance,
y(i) is its translation to a SQL query, and S(i) is the
schema of the target database (DB), our goal is to

3Our code is available at https://github.com/
OhadRubin/SmBop

learn a model that maps new question-schema pairs
(x, S) to the correct SQL query y. A DB schema S
includes : (a) a set of tables, (b) a set of columns for
each table, and (c) a set of foreign key-primary key
column pairs describing relations between table
columns. Schema tables and columns are termed
schema constants, and denoted by S.

RAT-SQL encoder This work is focused on de-
coding, and thus we implement the state-of-the-art
RAT-SQL encoder (Wang et al., 2020b), on top of
GRAPPA (Yu et al., 2020), a pre-trained encoder
for semantic parsing. We now briefly review this
encoder for completeness.

The RAT-SQL encoder is based on two main
ideas. First, it provides a joint contextualized rep-
resentation of the utterance and schema. Specif-
ically, the utterance x is concatenated to a lin-
earized form of the schema S, and they are passed
through a stack of Transformer (Vaswani et al.,
2017) layers. Then, tokens that correspond to a sin-
gle schema constant are aggregated, which results
in a final contextualized representation (x, s) =
(x1, . . . , x|x|, s1, . . . , s|s|), where si is a vector rep-
resenting a single schema constant. This contextu-
alization of x and S leads to better representation
and alignment between the utterance and schema.
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Second, RAT-SQL uses relational-aware self-
attention (Shaw et al., 2018) to encode the structure
of the schema and other prior knowledge on rela-
tions between encoded tokens. Specifically, given
a sequence of token representations (u1, . . . ,u|u|),
relational-aware self-attention computes a scalar
similarity score between pairs of token representa-
tions eij ∝ uiWQ(ujWK + rKij ). This is identical
to standard self-attention (WQ and WK are the
query and key parameter matrices), except for the
term rKij , which is an embedding that represents
a relation between ui and uj from a closed set of
possible relations. For example, if both tokens
correspond to schema tables, an embedding will
represent whether there is a primary-foreign key
relation between the tables. If one of the tokens is
an utterance word and another is a table column,
a relation will denote if there is a string match be-
tween them. The same principle is also applied
for representing the self-attention values, where an-
other relation embedding matrix is used. We refer
the reader to the RAT-SQL paper for details.

Overall, RAT-SQL jointly encodes the utterance,
schema, the structure of the schema and alignments
between the utterance and schema, and leads to
state-of-the-art results in text-to-SQL parsing.

RAT-SQL layers are typically stacked on top
of a pre-trained language model, such as BERT
(Devlin et al., 2019). In this work, we use GRAPPA

(Yu et al., 2020), a recent pre-trained model that
has obtained state-of-the-art results in text-to-SQL
parsing. GRAPPA is based on ROBERTA (Liu et al.,
2019), but is further fine-tuned on synthetically
generated utterance-query pairs using an objective
for aligning the utterance and query.

Autoregressive top-down decoding The pre-
vailing method for decoding in semantic parsing
has been grammar-based autoregressive top-down
decoding (Yin and Neubig, 2017; Krishnamurthy
et al., 2017; Rabinovich et al., 2017), which guar-
antees decoding of syntactically valid programs.
Specifically, the target program is represented as an
abstract syntax tree under the grammar of the for-
mal language, and linearized to a sequence of rules
(or actions) using a top-down depth-first traversal.
Once the program is represented as a sequence,
it can be decoded using a standard sequence-to-
sequence model with encoder attention (Dong and
Lapata, 2016), often combined with beam search.
We refer the reader to the aforementioned papers
for further details on grammar-based decoding.

Algorithm 1: SMBOP
1 input: utterance x, schema S
2 x, s← EncodeRAT(x, S)
3 Z0 ← Top-K schema constants and DB values
4 for t← 0 . . . T − 1 do
5 Z′

t ← Attention(Zt, x, x)
6 Ft+1 ← Score-frontier(Z′

t)
7 F ′

t+1 ← argmaxK(Ft+1)
8 Zt+1 ← Represent-beam(Zt, F

′
t+1)

9 return argmaxz(ZT )

We now turn to describe our method, which pro-
vides a radically different approach for decoding in
semantic parsing.

3 The SMBOP parser

We first provide a high-level overview of SMBOP
(see Algorithm 1 and Figure 1). As explained in
§2, we encode the utterance and schema with a
RAT-SQL encoder. We initialize the beam (line 3)
with the K highest scoring trees of height 0, which
include either schema constants or DB values. All
trees are scored independently and in parallel, in a
procedure formally defined in §3.3.

Next, we start the search procedure. At every
step t, attention is used to contextualize the trees
with information from input question representa-
tion (line 5). This representation is used to score
every tree on the frontier: the set of sub-trees of
depth ≤ t + 1 that can be constructed from sub-
trees on the beam with depth ≤ t (lines 6-7). After
choosing the top-K trees for step t+1, we compute
a new representation for them (line 8). Finally, we
return the top-scoring tree from the final decoding
step, T . Steps in our model operate on tree rep-
resentations independently, and thus each step is
efficiently parallelized.

SMBOP resembles beam search as in each step
it holds the top-K trees of a fixed height. It is also
related to (pruned) chart parsing, since trees at step
t+ 1 are computed from trees that were found at
step t. This is unlike sequence-to-sequence models
where items on the beam are competing hypotheses
without any interaction.

We now provide the details of our parser. First,
we describe the formal language (§3.1), then we
provide precise details of our model architecture
(§3.2) including beam initialization (§3.3, we de-
scribe the training procedure (§3.4), and last, we
discuss the properties of SMBOP compared to prior
work (§3.5).
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Operation Notation Input→ Output
Set Union ∪ R×R→ R
Set Intersection ∩ R×R→ R
Set difference \ R×R→ R
Selection σ P ×R→ R
Cartesian product × R×R→ R
Projection Π C ′ ×R→ R
And ∧ P × P → P
Or ∨ P × P → P
Comparison {≤ , ≥ , = , 6=} C × C → P
Constant Union t C ′ × C ′ → C ′

Order by τasc/dsc C ×R→ R

Group by γ C ×R→ R
Limit λ C ×R→ R
In/Not In ∈, 6∈ C ×R→ P
Like/Not Like ∼, 6∼ C × C → P
Aggregation Gagg C → C
Distinct δ C → C
Keep κ Any→ Any

Table 1: Our relational algebra grammar, along with
the input and output semantic types of each opera-
tion. P : Predicate, R: Relation, C: schema con-
stant or DB value, C ′: A set of constants/values, and
agg ∈ {sum,max,min, count, avg}.

3.1 Representation of Query Trees

Relational algebra Guo et al. (2019) have
shown recently that the mismatch between natu-
ral language and SQL leads to parsing difficulties.
Therefore, they proposed SemQL, a formal query
language with better alignment to natural language.

In this work, we follow their intuition, but in-
stead of SemQL, we use the standard query lan-
guage relational algebra (Codd, 1970). Relational
algebra describes queries as trees, where leaves
(terminals) are schema constants or DB values, and
inner nodes (non-terminals) are operations (see
Table 1). Similar to SemQL, its alignment with
natural language is better than SQL. However, un-
like SemQL, it is an existing query language, com-
monly used by SQL execution engines for query
planning.

We write a grammar for relational algebra, aug-
mented with SQL operators that are missing from
relational algebra. We then implement a transpiler
that converts SQL queries to relational algebra for
parsing, and then back from relational algebra to
SQL for evaluation. Table 1 shows the full gram-
mar, including the input and output semantic types
of all operations. A relation (R) is a tuple (or tu-
ples), a predicate (P ) is a Boolean condition (eval-
uating to True or False), a constant (C) is a
schema constant or DB value, and (C ′) is a set of
constants/values. Figure 2 shows an example re-

Π

σ

actor≥

60age

name

Π

σ

κ

actor

≥

60age

κ

κ

name

(a) Unbalanced tree (b) Balanced tree

Figure 2: An unbalanced and balanced relational al-
gebra tree (with the unary KEEP operation) for the
utterance “What are the names of actors older than
60?”, where the corresponding SQL query is SELECT
name FROM actor WHERE age ≥ 60.

lational algebra tree with the corresponding SQL
query. More examples illustrating the correspon-
dence between SQL and relational algebra (e.g.,
for the SQL JOIN operation) are in Appendix B.
While our relational algebra grammar can also be
adapted for standard top-down autoregressive pars-
ing, we leave this endeavour for future work.

Tree balancing Conceptually, at each step SM-
BOP should generate new trees of height ≤ t+ 1
and keep the top-K trees computed so far. In prac-
tice, it is convenient to assume that trees are bal-
anced. Thus, we want the beam at step t to only
have trees that are of height exactly t (t-high trees).

To achieve this, we introduce a unary KEEP oper-
ation that does not change the semantics of the sub-
tree it is applied on. Hence, we can always grow
the height of trees in the beam without changing
the formal query. For training (which we elaborate
on in §3.4), we balance all relational algebra trees
in the training set using the KEEP operation, such
that the distance from the root to all leaves is equal.
For example, in Figure 2, two KEEP operations
are used to balance the column actor.name. Af-
ter tree balancing, all constants and values are at
height 0, and the goal of the parser at step t is to
generate the gold set of t-high trees.

3.2 Model Architecture

To fully specify Alg. 1, we need to define the fol-
lowing components: (a) scoring of trees on the fron-
tier (lines 5-6), (b) representation of trees (line 8),
and (c) representing and scoring of constants and
DB values during beam initialization (leaves). We
now describe these components. Figure 3 illus-
trates the scoring and representation of a binary
operation.

Scoring with contextualized beams SMBOP
maintains at each decoding step a beam Zt =
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((z
(t)
1 , z(t)

1 ), . . . , (z
(t)
K , z(t)

K )), where z(t)
i is a sym-

bolic representation of the query tree, and z(t)
i is its

corresponding vector representation. Unlike stan-
dard beam search, trees on our beams do not only
compete with one another, but also compose with
each other (similar to chart parsing). For exam-
ple, in Fig. 1, the beam Z0 contains the column
age and the value 60, which compose using the
≥ operator to form the age ≥ 60 tree.

We contextualize tree representations on the
beam using cross-attention. Specifically, we use
standard attention (Vaswani et al., 2017) to give
tree representations access to the input question:
Z ′
t ← Attention(Zt, x, x), where the tree represen-

tations (z(t)
1 , . . . , z(t)

K ) are the queries, and the input
tokens (x1, . . . , x|x|) are the keys and values.

Next, we compute scores for all (t + 1)-high
trees on the frontier. Trees can be generated by
applying either a unary (including KEEP) operation
u ∈ U or binary operation b ∈ B on beam trees.
Let wu be a scoring vector for a unary operation
(such as wκ, wδ, etc.), let wb be a scoring vector
for a binary operation (such as wσ, wΠ, etc.), and
let z′i, z′j be contextualized tree representations on
the beam. We define a scoring function for frontier
trees, where the score for a new tree znew generated
by applying a unary rule u on a tree zi is defined
as follows:

s(znew) = w>
u FFU ([zi; z′i]),

where FFU is a 2-hidden layer feed-forward layer
with relu activations, and [·; ·] denotes concatena-
tion. Similarly the score for a tree generated by
applying a binary rule b on the trees zi, zj is:

s(znew) = w>
b FFB([zi; z′i; zj ; z′j ]),

where FFB is another 2-hidden layer feed-forward
layer with relu activations.

We use semantic types to detect invalid rule ap-
plications and fix their score to s(znew) = −∞.
This guarantees that the trees SMBOP generates are
well-formed, and the resulting SQL is executable.
Overall, the total number of trees on the frontier is
≤ K|U|+K2|B|. Because scores of different trees
on the frontier are independent, they are efficiently
computed in parallel. Note that we score new trees
from the frontier before creating a representation
for them, which we describe next.

Recursive tree representation after scoring the
frontier, we generate a recursive vector representa-
tion for the top-K trees. While scoring is done with

age 60

  60age

 Transformer(          ,            ,           )

Represent-beam Score-frontier

   FFB(           ;           ;           ;           )       
)

Figure 3: Illustration of our tree scoring and representa-
tion mechanisms. z is the symbolic tree, z is its vector
representation, and z′ its contextualized representation.

contextualized trees, representations are not contex-
tualized. We empirically found that contextualized
tree representations slightly reduce performance,
possibly due to optimization issues.

We represent trees with another standard Trans-
former layer. Let znew be the representation for a
new tree, let e` be an embedding for a unary or bi-
nary operation, and let zi, zj be non-contextualized
tree representations from the beam we are extend-
ing. We compute a new representation as follows:

znew =





Transformer(e`, zi) unary `
Transformer(e`, zi, zj) binary `

zi ` = KEEP

where for the unary KEEP operation, we simply
copy the representation from the previous step.

Return value As mentioned, the parser returns
the highest-scoring tree in ZT . More precisely, we
return the highest-scoring returnable tree, where
a returnable tree is a tree that has a valid semantic
type, that is, Relation (R).

3.3 Beam initialization
As described in Line 3 of Alg. 1, the beam Z0 is
initialized with K schema constants (e.g., actor,
age) and DB values (e.g., 60, “France”). In
particular, we independently score schema con-
stants and choose the top-K2 , and similarly score
DB values and choose the top-K2 , resulting in a
total beam of size K.

Schema constants We use a simple scoring func-
tion fconst(·). Recall that si is a representation of a
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constant, contextualized by the rest of the schema
and the utterance. The function fconst(·) is a feed-
forward network that scores each schema constant
independently: fconst(si) = wconst tanh (Wconstsi),
and the top-K2 constants are placed in Z0.

DB values Because the number of values in the
DB is potentially huge, we do not score all DB
values. Instead, we learn to detect spans in the
question that correspond to DB values. This leads
to a setup that is similar to extractive question an-
swering (Rajpurkar et al., 2016), where the model
outputs a distribution over input spans, and thus we
adopt the architecture commonly used in extractive
question answering. Concretely, we compute the
probability that a token is the start token of a DB
value, Pstart(xi) ∝ exp(w>

startxi), and similarly the
probability that a token is the end token of a DB
value, Pend(xi) ∝ exp(w>

endxi), where wstart and
wend are parameter vectors. We define the probabil-
ity of a span (xi, . . . , xj) to be Pstart(xi) ·Pend(xj),
and place in the beam Z0 the top-K2 input spans,
where the representation of a span (xi, xj) is the
average of xi and xj .

A current limitation of SMBOP is that it cannot
generate DB values that do not appear in the input
question. This would require adding a mechanism
such as “BRIDGE” proposed by Lin et al. (2020).

3.4 Training
To specify the loss function, we need to define
the supervision signal. Recall that given the gold
SQL program, we convert it into a gold balanced
relational algebra tree zgold, as explained in §3.1
and Figure 2. This lets us define for every decoding
step the set of t-high gold sub-trees Zgold

t . For
example Zgold

0 includes all gold schema constants
and input spans that match a gold DB value,4 Zgold

1

includes all 1-high gold trees, etc.
During training, we apply “bottom-up Teacher

Forcing” (Williams and Zipser, 1989), that is, we
populate5 the beam Zt with all trees from Zgold

t

and then fill the rest of the beam (of size K) with
the top-scoring non-gold predicted trees. This guar-
antees that we will be able to compute a loss at
each decoding step, as described below.

Loss function During search, our goal is to give
high scores to the possibly multiple sub-trees of

4In Spider, in 98.2% of the training examples, all gold DB
values appear as input spans.

5We compute this through an efficient tree hashing proce-
dure. See Appendix A.
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Figure 4: A histogram showing the distribution of the
height of relational algebra trees in SPIDER, and the
size of equivalent SQL query trees.

the gold tree. Because of teacher forcing, the fron-
tier Ft+1 is guaranteed to contain all gold trees
Zgold
t+1 . We first apply a softmax over all frontier

trees p(znew) = softmax{s(znew)}znew∈Ft+1 and
then maximize the probabilities of gold trees:

1

C

T∑

t=0

∑

zt∈Zgold
t

log p (zt)

where the loss is normalized byC, the total number
of summed terms. In the initial beam, Z0, the
probability of an input span is the product of the
start and end probabilities, as explained in §3.3.

3.5 Discussion

To our knowledge, this work is the first to present
a semi-autoregressive bottom-up semantic parser.
We discuss the benefits of our approach.

SMBOP has theoretical runtime complexity that
is logarithmic in the size of the tree instead of lin-
ear for autoregressive models. Figure 4 shows the
distribution over the height of relational algebra
trees in SPIDER, and the size of equivalent SQL
query trees. Clearly, the height of most trees is at
most 10, while the size is 30-50, illustrating the
potential of our approach. In §4, we demonstrate
that indeed semi-autoregressive parsing leads to
substantial empirical speed-up.

Unlike top-down autoregressive models, SM-
BOP naturally computes representations z for all
sub-trees constructed at decoding time, which are
well-defined semantic objects. These representa-
tions can be used in setups such as contextual se-
mantic parsing, where a semantic parser answers
a sequence of questions. For example, given the
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questions “How many students are living in the
dorms?” and then “what are their last names?”,
the pronoun “their” refers to a sub-tree from the
SQL tree of the first question. Having a repre-
sentation for such sub-trees can be useful when
parsing the second question, in benchmarks such
as SPARC (Yu et al., 2019).

Another potential benefit of bottom-up parsing
is that sub-queries can be executed while parsing
(Berant et al., 2013; Liang et al., 2017), which can
guide the search procedure. Recently, Odena et al.
(2020) proposed such an approach for program syn-
thesis, and showed that conditioning on the results
of execution can improve performance. We do not
explore this advantage of bottom-up parsing in this
work, since executing queries at training time leads
to a slow-down during training.

SMBOP is a bottom-up semi-autoregressive
parser, but it could potentially be modified to be
autoregressive by decoding one tree at a time. Past
work (Cheng et al., 2019) has shown that the perfor-
mance of bottom-up and top-down autoregressive
parsers is similar, but it is possible to re-examine
this given recent advances in neural architectures.

4 Experimental Evaluation

We conduct our experimental evaluation on SPIDER

(Yu et al., 2018), a challenging large-scale dataset
for text-to-SQL parsing. SPIDER has become
a common benchmark for evaluating semantic
parsers because it includes complex SQL queries
and a realistic zero-shot setup, where schemas at
test time are different from training time.

4.1 Experimental setup
We encode the input utterance x and the schema S
with GRAPPA, consisting of 24 Transformer layers,
followed by another 8 RAT-SQL layers, which we
implement inside AllenNLP (Gardner et al., 2018).
Our beam size is K = 30, and the number of
decoding steps is T = 9 at inference time, which
is the maximal tree depth on the development set.
The transformer used for tree representations has
one layer, 8 heads, and dimensionality 256. We
train for 60K steps with batch size 60, and perform
early stopping based on the development set.

Evaluation We evaluate performance with the
official SPIDER evaluation script, which computes
exact match (EM), i.e., whether the predicted SQL
query is identical to the gold query after some
query normalization. The evaluation script uses

Model EM Exec
RAT-SQL+GP+GRAPPA 69.8% n/a
RAT-SQL+GAP 69.7% n/a
RAT-SQL+GRAPPA 69.6% n/a
RAT-SQL+STRUG 68.4% n/a
BRIDGE+BERT (ensemble) 67.5% 68.3
RAT-SQLv3+BERT 65.6% n/a
SMBOP+GRAPPA 69.5% 71.1%

Table 2: Results on the SPIDER test set.

anonymized queries, where DB values are con-
verted to a special value token. In addition, for
models that output DB values, the evaluation script
computes denotation accuracy, that is, whether ex-
ecuting the output SQL query results in the right
denotation (answer). As SMBOP generates DB
values, we evaluate using both EM and denotation
accuracy

Models We compare SMBOP to the best non-
anonymous models on the SPIDER leaderboard at
the time of writing. Our model is most compara-
ble to RAT-SQL+GRAPPA, which has the same
encoder, but an autoregressive decoder.

In addition, we perform the following ablations
and oracle experiments:
• NO X-ATTENTION: We remove the cross atten-

tion that computes Z ′
t and uses the representa-

tions in Zt directly to score the frontier. In this
setup, the decoder only observes the input ques-
tion through the 0-high trees in Z0.

• WITH CNTX REP.: We use the contextualized
representations not only for scoring, but also as
input for creating the new treesZt+1. This tests if
contextualized representations on the beam hurt
or improve performance.

• NO DB VALUES: We anonymize all SQL queries
by replacing DB values with value, as de-
scribed above, and evaluate SMBOP using EM.
This tests whether learning from DB values im-
proves performance.

• Z0-ORACLE: An oracle experiment where Z0 is
populated with the gold schema constants (but
predicted DB values). This shows results given
perfect schema matching.

4.2 Results

Table 2 shows test results of SMBOP compared to
the top (non-anonymous) entries on the leaderboard
(Zhao et al., 2021; Shi et al., 2021; Yu et al., 2020;
Deng et al., 2020; Lin et al., 2020; Wang et al.,
2020a). SMBOP obtains an EM of 69.5%, only
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Figure 5: Speed-up on the development set compared
to autoregressive decoding, w.r.t the size of the SQL
query.
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Figure 6: EM as a function of wall clock time on the
development set of SPIDER during training.

0.3% lower than the best model, and 0.1% lower
than RAT-SQL+GRAPPA, which has the same en-
coder, but an autoregressive decoder. Moreover,
SMBOP outputs DB values, unlike other models
that output anonymized queries that cannot be ex-
ecuted. SMBOP establishes a new state-of-the-art
in denotation accuracy, surpassing an ensemble of
BRIDGE+BERT models by 2.9 denotation accu-
racy points, and 2 EM points.

Turning to decoding time, we compare SMBOP
to RAT-SQLv3+BERT, since the code for RAT-
SQLv3+GRAPPA was not available. To the best
of our knowledge the decoder in both is identical,
so this should not affect decoding time. We find
that the decoder of SMBOP is on average 2.23x
faster than the autoregressive decoder on the devel-
opment set. Figure 5 shows the average speed-up
for different query tree sizes, where we observe a
clear linear speed-up as a function of query size.
For long queries the speed-up factor reaches 4x-
6x. When including also the encoder, the average
speed-up obtained by SMBOP is 1.55x.

In terms of training time, SMBOP leads to
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Figure 7: EM as a function of the number of examples
on the development set of SPIDER during training.

much faster training and convergence. We com-
pare the learning curves of SMBOP and RAT-
SQLv3+BERT, both trained on an RTX 3090, and
also to RAT-SQLv3+GRAPPA using performance
as a function of the number of examples, sent to
us in a personal communication from the authors.
SMBOP converges much faster than RAT-SQL
(Fig. 7). E.g., after 120K examples, the EM of SM-
BOP is 67.5, while for RAT-SQL+GRAPPA it is
47.6. Moreover, SMBOP processes at training time
20.4 examples per second, compared to only 3.8 for
the official RAT-SQL implementation. Combining
these two facts leads to much faster training time
(Fig. 6), slighly more than one day for SMBOP vs.
5-6 days for RAT-SQL.

5 Conclusions

In this work we present the first semi-
autoregressive bottom-up semantic parser
that enjoys logarithmic theoretical runtime, and
show that it leads to a 2.2x speed-up in decod-
ing and ∼5x faster taining, while maintaining
state-of-the-art performance. Our work shows
that bottom-up parsing, where the model learns
representations for semantically meaningful
sub-trees is a promising research direction, that
can contribute in the future to setups such as
contextual semantic parsing, where sub-trees often
repeat, and can enjoy the benefits of execution at
training time. Future work can also leverage work
on learning tree representations (Shiv and Quirk,
2019) to further improve parser performance.
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Abstract

AM dependency parsing is a method for neu-
ral semantic graph parsing that exploits the
principle of compositionality. While AM de-
pendency parsers have been shown to be fast
and accurate across several graphbanks, they
require explicit annotations of the composi-
tional tree structures for training. In the past,
these were obtained using complex graphbank-
specific heuristics written by experts. Here we
show how they can instead be trained directly
on the graphs with a neural latent-variable
model, drastically reducing the amount and
complexity of manual heuristics. We demon-
strate that our model picks up on several lin-
guistic phenomena on its own and achieves
comparable accuracy to supervised training,
greatly facilitating the use of AM dependency
parsing for new sembanks.

1 Introduction

It is generally accepted in linguistic semantics that
meaning is compositional, i.e. that the meaning
representation for a sentence can be computed by
evaluating a tree bottom-up. A compositional pars-
ing model not only reflects this insight, but has
practical advantages such as in compositional gen-
eralisation (e.g. Herzig and Berant 2020), i.e. sys-
tematically generalizing from limited data.

However, in developing a compositional seman-
tic parser, one faces the task of figuring out what
exactly the compositional structures – i.e. the trees
that link the sentence and the meaning representa-
tion – should look like. This is challenging even
for expert linguists; for instance, (Copestake et al.,
2001) report that 90% of the development time of
the English Resource Grammar (Copestake and
Flickinger, 2000) went into the development of the
syntax-semantics interface.

Compositional semantic parsers which are
learned from data face an analogous problem: to

train a such a parser, the compositional structures
must be made explicit. However, these struc-
tures are not annotated in most sembanks. For in-
stance, the AM (Apply-Modify) dependency parser
of Groschwitz et al. (2018) uses a neural model to
predict AM dependency trees, compositional struc-
tures that evaluate to semantic graphs. Their parser
achieves high accuracy (Lindemann et al., 2019)
and parsing speed (Lindemann et al., 2020) across
a variety of English semantic graphbanks. To ob-
tain an AM dependency tree for each graph in the
corpus, they use hand-written graphbank-specific
heuristics. These heuristics cost significant time
and expert knowledge to create, limiting the ability
of the AM parser to scale to new sembanks.

In this paper, we drastically reduce the need
for hand-written heuristics for training the AM
dependency parser. We first present a graphbank-
independent method to compactly represent the rel-
evant compositional structures of a graph in a tree
automaton. We then train a neural AM dependency
parser directly on these tree automata. Our code is
available at github.com/coli-saar/am-parser.

We evaluate the consistency and usefulness of
the learned compositional structures in two ways.
We first evaluate the accuracy of the trained AM
dependency parsers, across four graphbanks, and
find that it is on par with an AM dependency parser
that was trained on the hand-designed composi-
tional structures of Lindemann et al. (2019). We
then analyze the compositional structures which
our algorithm produced, and find that they are lin-
guistically consistent and meaningful. We expect
that our methods will facilitate the design of com-
positional models of semantics in the future.

2 Related work

Compositional semantic graph parsers other than
AM dependency parsers, like Artzi et al. (2015),
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G-fairy

The fairy

G-begin

that begins to

G-glow

glow

MODS

APPO

(a) AM dep-tree with word alignments.
The dashed lines connect tokens to their
graph constants, and arrows point from
heads to arguments, labeled by the opera-
tion that puts the graphs together.

G-fairy:[ ]

G-begin:[S, O[S]]

G-glow:[S]

MODS

APPO

(b) AM dep-tree without
alignments. Nodes are
labeled with graph con-
stants, paired with their
types for ease of presenta-
tion.

b:begin

f:fairy

ARG0

g:glow

ARG1

ARG0

(c) AMR

begin

S

ARG0

glow

ARG1

ARG0

(d) Partial result:
begins to glow

Figure 1: AM dep-trees and graphs for the fairy that begins to glow. We usually
write our example AM dep-trees without alignments as in (b). We include node
names where helpful, as in (c), where e.g. b is labeled begin.

begin

S

ARG0

O[S]

ARG1

G-begin

fairy

G-fairy

elf

G-elf

glow

S

ARG0

G-glow

charm

S

ARG0

O

ARG1

G-charm

charm

O

ARG0

S

ARG1

G-charmP

Figure 2: Graph constants

Peng et al. (2015) and Chen et al. (2018), use CCG
and HRG based grammars to parse AMR and EDS
(Flickinger et al., 2017). They use a combination
of heuristics, hand-annotated compositional struc-
tures and sampling to obtain training data for their
parsers, in contrast to our joint neural technique.
None of these approaches use slot names that carry
meaning; to the best of our knowledge this work is
the first to learn them from data.

Fancellu et al. (2019) use DAG grammars for
compositional parsing of Discourse Representation
Structures (DRS). Their algorithm for extracting
the compositional structure of a graph is determin-
istic and graphbank-independent, but comes at a
cost: for example, rules for heads require differ-
ent versions depending on how often the head is
modified, reducing the reusability of the rule.

Maillard et al. (2019) and Havrylov et al. (2019)
learn compositional, continuous-space neural sen-
tence encodings using latent tree structures. Their
tasks are different: they learn to predict continous-
space embeddings; we learn to predict symbolic
compositional structures. Similar observations
hold for self-attention (Vaswani et al., 2017; Ki-
taev and Klein, 2018).

3 AM dependency parsing

Compositional semantic graph parsing methods do
not predict a graph directly, but rather predict a
compositional structure which in turn determines
the graph. Groschwitz et al. (2018) represent the
compositional structure of a graph with AM depen-
dency trees (AM dep-trees for short) like the one
in Fig. 1a. It describes the way the meanings of the
words – the graph fragments in Fig. 2 – combine to
form the semantic graph in Fig. 1c, here an AMR

(Banarescu et al., 2013). The AM dep-tree edges
are labeled with graph-combining operations, taken
from the Apply-Modify (AM) algebra (Groschwitz
et al., 2017; Groschwitz, 2019).

Graphs are built out of fragments called graph
constants (Fig. 2). Each graph constant has a root,
marked with a rectangular outline, and may have
special node markers called sources (Courcelle and
Engelfriet, 2012), drawn in red, which mark the
empty slots where other graphs will be inserted.

In Fig. 1a, the APPO operation plugs the root
of G-glow into the O source of G-begin. Because
G-begin and G-glow both have an S-source, APPO

merges these nodes, creating a reentrancy, i.e. an
undirected cycle, and yielding Fig. 1d, which is in
turn attached at S to the root of G-fairy by MODS.
APP fills a source of a head with an argument while
MOD uses a source of a modifier to connect it to a
head; both operations keep the root of the head.

Types The [S] annotation at the O-source of
G-begin in Fig. 2 is a request as to what the type
of the O argument of G-begin should be. The type
of a graph is the set of its sources with their re-
quest annotations, so the request [S] means that the
source set of the argument must be {S}. Because
this is true of G-glow, the AM dependency tree is
well-typed; otherwise the tree could not be evalu-
ated to a graph. Thus, the graph constants lexically
specify the semantic valency of each word as well
as reentrancies due to e.g. control.

If a graph has no sources, we say it has the empty
type [ ]; if a source in a graph printed here has no
annotation, it is assumed to have the empty request
(i.e. its argument must have no sources).

Parsing Groschwitz et al. (2018) use a neural su-
pertagger and dependency parser to predict scores
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t:tiny
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ARG0

(a) AMR

t:tiny

f:fairy
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g:glow
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(b) Blob-normalised
AMR

g:P-glow:[f]

f:P-fairy:[ ]

t:P-tiny:[f]

APPf

MODf

(c) Canonical AM
tree with types

Figure 3: The tiny fairy glows.
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Figure 4: Canonical constants.

begin

f

ARG0

g[f]

ARG1

P′-begin

and

s[f]

op1

g[f]

op2

P′-and

Figure 5: Non-canonical
constants with place-
holder sources.

for graph constants and edges respectively. Com-
puting the highest scoring well-typed AM dep-tree
is NP-hard; we use their fixed-tree approximate
decoder here.

4 Decomposition algorithm

The central challenge of compositional methods
lies in the fact that the compositional structures
are not provided in the graphbanks. Existing AM
parsers (Groschwitz et al., 2018; Lindemann et al.,
2019, 2020) use hand-built heuristics to extract AM
dep-trees for supervised training from the graphs
in the graphbank. These heuristics require exten-
sive expert work, including graphbank-specific de-
cisions for source allocations and graphbank- and
phenomenon-specific patterns to extract type re-
quests for reentrancies. In this section we present
a simpler yet more complete method for obtaining
the basic structure of an AM dep-tree for a given se-
mantic graph G (for decomposing the graph), with
much reduced reliance on heuristics. We will learn
meaningful source names jointly with training the
parser in §5 and §6.

Notation. We treat graphs as a quadruple G =
〈NG, rG, EG, LG〉, where the nodes NG are arbi-
trary objects (in the examples here we use lower-
case letters), rG ∈ NG is the root, EG ⊆ NG×NG

is a set of directed edges, and LG is the labelling
function for the nodes and edges. For example in
Fig. 3a, the node g is labeled “glow”. The node
identities are not relevant for graph identity or eval-
uation measures, but allow us to refer to specific
nodes during decomposition. We formalize AM
dep-trees as similar quadruples. Note that our ex-
ample graphs are all AMRs, but our algorithms
apply unchanged to all graphbanks

4.1 Basic transformation to AM dep-trees

Let us first consider the case where the semantic
graph G has no reentrancies, like in Fig. 3a. The
first step in obtaining the AM dep-tree for G is

to obtain the basic shape of the constants. We let
each graph constant contain exactly one labeled
node. Each edge belongs to the constant of exactly
one node. The edges in the constant of a node are
called its blob (Groschwitz et al., 2017); the blobs
partition the edge set of the graph. For example, the
blobs of the AMR in Fig. 3a are g plus the ‘ARG0’
edge, t plus the ‘mod’ edge, and f . We normalise
edges so that they point away from the node to
whose blob they belong, like in Fig. 3b, where the
‘mod’ edge is reversed and grouped with the node
t to match P-tiny in Fig. 4. We add an -of suffix
to the label of reversed edges. From here on, we
assume all graph edges to be normalised this way.

Heuristics for this partition of edges into blobs
are simple yet effective. Thus, this is the only part
of this method where we still rely on graphbank-
specific heuristics. (We use the same blob heuris-
tics as Lindemann et al. (2019) in our experiments).

Once the decision of which edge goes in which
blob is made, we obtain canonical constants,
which are single node constants using placeholder
source names and the empty request at every
source; see e.g. P-glow in Fig. 4 (P for ‘place-
holder’). Placeholder source names are graph-
specific source names: for a given argument slot in
a constant, let n be the node that eventually fills it
in G; we write n for the placeholder source in that
slot. For example in the AM dep-tree in Fig. 3c the
source f in P-glow (Fig. 4) gets filled by node f in
the AMR in Fig. 3b. These placeholder sources are
unique within the graph, allowing us to track source
names through the AM dep-tree. When we restrict
ourselves to the canonical constants, in a setting
without reentrancies, the compositional structure is
fully determined by the structure of the graph:

Lemma 4.1. For a graph G without reentrancies,
given a partition of G into blobs, there is exactly
one AM dep-tree CG with canonical constants that
evaluates to G.

We call this AM dep-tree the canonical AM tree
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a:and

s:sparkle

op1

g:glow

op2

f:fairy

ARG1 ARG0

(a) AMR G

a:and

s:sparkle

op1

g:glow

op2

f:fairy

ARG1

x:REF-f

ARG0

(b) Unrolled U

a:P-and:[s, g]

s:P-sparkle:[f]

f:P-fairy:[ ]

g:P-glow:[f]

x:REF-f :[ ]

APPs

APPf

APPg

APPf

(c) Canonical AM tree CU

a:and

s:sparkle

op1

g:glow

op2

f

ARG1 ARG0

(d) Partial result

a:P′-and:[s[f], g[f]]

s:P-sparkle:[f] g:P-glow:[f] f:P-fairy:[ ]

APPs APPg APPf

(e) Resolved AM dep-tree T for (a);
changes with respect to (c) in purple

Figure 6: Analysis for The fairy sparkles and glows.

CG = 〈NG, rG, EC , LC〉 of G. Fig. 3c shows the
canonical AM tree for the graph in Fig. 3b, using
the canonical constants in Fig. 4. The canonical
AM tree uses the same nodes and root as G, and
essentially the same edges, but all edges point away
from the root, forming a tree. Each node is labeled
with its canonical constant. Each edge n −→ m ∈
EC is labeled APPm if the corresponding edge in
the graph has the same direction, and is labeled
MODn if there is instead an edge m −→ n in G.

4.2 Reentrancies and types
Finding AM dep-trees for graphs with reentran-
cies, like in Fig. 6a, is more challenging. To solve
the problem in its generality, we first unroll the
graph as in Fig. 6b, representing the reentrancy at
f not directly, but with a reference node with label
REF-f . Merging this REF-node with the node f it
refers to yields the original graph again. (See §4.3
for our unrolling algorithm.) An unrolled graph U
shares its non-REF-nodes with the original graph
G. REF-nodes are always leaves.

We then obtain a canonical AM-tree CU for
the unrolled graph U as in §4.1 (see Fig. 6c), but
REF-n nodes fill n-sources; e.g. x has an incoming
APPf edge here. CU evaluates to U , not to G; we
obtain an AM dep-tree that evaluates to G through
a process called resolving the reentrancies, which
removes all REF-nodes and instead expresses the
reentrancies with the AM type system.

Fig. 6e shows the result T of applying this res-
olution process to CU in Fig. 6c. In T , the s and
g sources of the graph P′-and (see Fig. 5) each
have a request [f] that signals that the f sources
of P-sparkle and P-glow are still open when these
graphs combine with P′-and, yielding the partial

Algorithm 1: Reentrancy resolution

1 T ← the canonical AM-tree CU of an
unrolling U of G;

2 R← {n ∈ NG | ∃ REF-n node in U};
3 while R 6= ∅:
4 Pick a y ∈ R s.t. there is no x ∈ R,

x 6= y, with y on an x-resolution path;
5 for p ∈ y-resolution paths:
6 for n

APP−−→ m ∈ p:
7 if m is y or labeled REF-y:
8 Add β(y) to the request at y

in τ (n);
9 else:

10 Add y[β(y)] to the request
at m in τ (n);

11 Move the subtree of T rooted at y up to
be an APPy daughter of RT (y), unless
RT (y) = y;

12 Delete all REF-y nodes from T ;
13 R← R− {y}
14 return T

result in Fig. 6d. Since identical sources merge
in the AM algebra, Fig. 6d has a single f-source
slot. Into this slot, P-fairy is inserted to yield the
original graph G in Fig. 6a, and we have obtained
the reentrancy without using a REF-node. f is now
a child of a in T ; we call a the resolution target
of f , RT (f). In general the resolution target of a
node n is the lowest common ancestor of n and all
nodes labeled REF-n.

Thus, to resolve the graph, we (a) add the neces-
sary type requests to account for sources remaining
open until they are merged at the resolution target
and (b) make each node a dependent of its resolu-
tion target and remove all REF-nodes. Algorithm 1
describes this procedure. It uses the idea of an n-
resolution path, which is a path between a node
n or a REF-n node and its resolution target. In
Fig. 6c, there are two f -resolution paths: one in
blue between f and its resolution target a, and one
in green between the REF-f node x and its resolu-
tion target a. Further, τ (n) is the type of the graph
constant in T for a node n and β(n) is the type of
the result of evaluating the subtree below n in T .

In the example, Algorithm 1 iterates over all
edges in both resolution paths (Line 6; the order of
these iterations does not impact the result). For the
two bottom edges s

APPf−−→ f and g
APPf−−→ x, Line 8

applies. Since the subtree rooted at f evaluates to
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a constant with empty type, no actual changes are
made here (β(y) can be non-trivial from resolution
paths handled previously). For the two upper edges
a

APPs−−→ s and a
APPg−−→ g, Line 10 applies, adding f

to the requests at s and g in the constant at a. In
Line 11, f gets moved up to become a child of its
resolution target a and in Line 12 the REF-f node
x gets removed, yielding T in Fig. 6e. Algorithm 1
is correct in the following precise sense:
Theorem 1. Let G be a graph, let U be an un-
rolling of G, let CU be the canonical AM-tree of U ,
and let T be the result of applying Algorithm 1 to
CU . Then T is a well-typed AM dep-tree that eval-
uates to G iff for all y ∈ NG, for all y-resolution
paths p in C,

1. the bottom-most edge n −→ m of p (i.e. m is
y or labeled REF-y) does not have a MOD

label, and
2. for all y-resolution paths p in C, if n MOD−−→ m
∈ p, n,m 6= y, then there is a directed path
in G from n to y.

Condition (1) captures the fact that moving MOD

edges in the graph changes the evaluation result
(the modifier would attach at a different node) and
Condition (2) the fact that modifiers are not allowed
to add sources to the type of the head they modify.

Algorithm 1 does not yield all possible AM dep-
trees; in Appendix B, we present an algorithm that
yields all possible AM dep-trees (with placeholder
sources) for a graph. However, we find in prac-
tice that Algorithm 1 almost always finds the best
linguistic analysis; i.e. reasons to deviate from Al-
gorithm 1 are rare (we estimate that this affects
about 1% of nodes and edges in the AM dep-tree).
We leave handling these rare cases to future work.

4.3 Unrolling the graph
To obtain an unrolled graph U , we use Algo-
rithm 2. The idea is to simply expand G through
breadth-first search, creating REF-nodes when we
encounter a node a second time. We use sepa-
rate queues F and B for forward and backward
traversal of edges, allowing us to avoid travers-
ing edges backwards wherever possible, since that
would yield MOD edges in the canonical AM-tree
CU , which can be problematic for the conditions of
Theorem 1. And indeed, we can show that when-
ever there is an unrolled graph U satisfying the
conditions of Theorem 1, Algorithm 2 returns one.

Algorithm 2 does not specify the order in which
the incident edges of each node n are added to the

Algorithm 2: Unrolling
Input: Graph G

1 F,B ← empty FIFO queues;
2 U ← empty graph;
3 add rG to U , add outgoing edges of rG to F

and incoming edges of rG to B;
4 while F ∪B 6= ∅:
5 if F 6= ∅: // traverse forward
6 e← F .pop;
7 n← e.target;
8 else: // traverse backward
9 e← B.pop;

10 n← e.origin;

11 Mark e as traversed;
12 if n 6∈ NU :
13 add n, e to U ;
14 add untraversed outgoing edges of n

to F and incoming to B
15 else:
16 add new x to NU ; L(x) = REF-n;
17 add e′ to EU where e′ is just like e

except with x in place of n

18 return U

queues, leaving an element of choice. However,
we find that nearly all of these choices are unified
later in the resolution process; meaningful choices
are rare. For example in Fig. 6b, f and x may
be switched, but Algorithm 1 always yields the
AM dep-tree in Fig. 6e. In practice, we execute
Algorithm 2 with arbitrary queueing order, and
follow it with Algorithm 1. The AM dep-tree we
obtain is guaranteed to be a decomposition of the
original graph whenever one exists:

Theorem 2. Let G be a graph partitioned into
blobs. If there is a well-typed AM dep-tree T , using
that blob partition, that evaluates to G, then Algo-
rithm 2 (with any queueing order) and Algorithm 1
yield such a tree.

5 Tree automata for source names

We have now seen how, for any graph G, we obtain
a unique AM dependency tree T . This tree repre-
sents the compositional structure of G, but it still
contains placeholder source names. We will now
show how to automatically choose source names.
These names should be consistent across the trees
for different sentences; this yields reusable graph
constants, which capture linguistic generalizations
and permit more accurate parsing. But the source
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names must also remain consistent within each tree
to ensure that the tree still evaluates correctly to G;
for instance, if we replace the placeholder source
f in P-glow in Fig. 6e by O, but we replace f in
P′-and by S, then the AM dep-tree would not be
well-typed because the request is not satisfied.

We therefore proceed in two steps. In this sec-
tion, we represent all internally consistent source
assignments compactly with a tree automaton. In
§6, we then learn to select globally reusable source
names jointly with training the neural parser.

Tree automata. A (bottom-up) tree automaton
(Comon et al., 2007) is a device for compactly de-
scribing a language (set) of trees. It processes a
tree bottom-up, starting at the leaves, and nondeter-
ministically assigns states from a finite set to the
nodes. A rule in a tree automaton has the general
shape f (q1, . . . , qn)→ q. If the automaton can as-
sign the states q1, . . . , qn to the children of a node
π with node label f , this rule allows it to assign the
state q to π. The automaton accepts a tree if it can
assign a final state to the root node. Tree automata
can be seens as generalisation of parse charts.

General construction. Given an AM depen-
dency tree T with placeholders, we construct a
tree automaton that accepts all well-typed variants
of T with consistent source assignments. More
specifically, let S be a finite set of reusable source
names; we will use S = {S, O,M} here, evoking
subject, object, and modifier. The automaton will
keep track of source name assignments, i.e. of par-
tial functions φ from placeholder source names into
S. Its rules will ensure that the functions φ assign
source names consistently.

We start by binarizing T into a binary tree B,
whose leaves are the graph constants in T and
whose internal nodes correspond to the edges of T ;
the binarized tree for the dependency tree in Fig. 7a
is shown in Fig. 7b. We then construct a tree au-
tomaton AB that accepts binarized trees which are
isomorphic to B, but whose node labels have been
replaced by graph constants and operations with
reusable source names. The states of AB are of the
form 〈π, φ〉, where φ is a source name assignment
and π is the address of a node inB. Node addresses
π ∈ N∗ are defined recursively: the root has the
empty address ε, and the i-th child of a node at
address π has address πi. The final states are all
states with π = ε, indicating that we have reached
the root.

P-fairy:[ ]

P′-begin:[f, g[f]]

P-glow:[f]

MODf

APPg

(a)

MODf

P-fairy APPg

P′-begin P-glow

(b)

MODS

〈ε, {}〉

G-fairy

〈0, {}〉
APPO〈

1,
{
g 7→O
f 7→S

}〉

G-begin〈
10,
{
g 7→O
f 7→S

}〉 G-glow

〈11, {f 7→S}〉

(c)

Figure 7: (a) AM dep-tree with placeholder sources for
the graph in Fig. 1c, (b) its binarization B and (c) ex-
ample automaton run (states in green).

Rules. The automaton AB has two kinds of rules.
Leaf rules choose injective source name assign-
ments for constants; there is one rule for every
possible assignment at each constant. That is, for
every graph constant H at an address π in B, the
automaton AB contains all rules of the form

G 7→ 〈π, φ〉

where φ is an injective map from the placeholder
sources in H to S, and G is the graph constant
identical to H except that each placeholder source
s in H has been replaced by φ(s).

For example, the automaton for Fig. 7b contains
the following rule:

G-begin→ 〈00, {g 7→ O, f 7→ S}〉

Note that this rule uses the node label G-begin with
the reusable source names, not the graph constant
P′-begin in B with the placeholders.

In addition, operation rules percolate source as-
signments from children to parents. Let APPx for
some placeholder source x be the operation at ad-
dress π in B. Then AB contains all rules of the
form

APPφ1(x) (〈π0, φ1〉 , 〈π1, φ2〉)→ 〈π, φ1〉

as long as φ1 and φ2 are identical where their do-
mains overlap, i.e. they assign consistent source
names to the placeholders. The rule passes φ1 on
to its parent. The assignments in φ2 are either re-
dundant, because of overlap with φ1, or they are
no longer relevant because they were filled by op-
erations further below in the tree. The MOD case
works out similarly.

In the example, AB contains the rule

APPO (〈10, φb〉 , 〈11, φg〉)→ 〈1, φb〉

where φb = {g 7→ O, f 7→ S} and φg = {f 7→ S},
because φb and φg agree on f. A complete accept-
ing run of the automaton is shown in Fig. 7c.
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The automaton AB thus constructed accepts the
binarizations of all well-typed AM dependency
trees with sources in S that match T .

6 Joint learning of compositional
structure and parser

As a final step, we train the neural parser of
Groschwitz et al. (2018) directly on the tree au-
tomata. For each position i in the sentence, the
parser predicts a score c (G, i) for each graph con-
stant G, and for each pair i, j of positions and op-
eration `, it predicts an edge score c

(
i

`−→ j
)

.

The tree automata are factored the same way,
in that they have one rule per graph constant and
per dependency edge. As a result, we get a one-
to-one correspondence between parser scores and
automaton rules when aligning automata rules to
words via the words’ alignments to graph nodes.

We thus take the neural parser scores as rule
weights c (r) for rules r in the automaton. In a
weighted tree automaton, the weight of a tree is de-
fined as the product of the weights of all rules that
built it. The inside score I of the tree automaton
is the sum of the weights of all the trees it accepts.
Computing this sum naively would be intractable,
but the inside score can be computed efficiently
with dynamic programming. Our training objective
is to maximize the sum of the log inside scores of
all automata in the corpus.

The arithmetic structure of computing the inside
scores is complex and varies from automaton to
automaton, which would make batching difficult.
We solve this with the chain rule as follows:

∇θ log I =
1

I
∇I =

1

I

∑

r∈A

∂

∂c (r)
I ∇θc (r)

=
1

I

∑

r∈A
α (r)∇θc (r) ,

where θ are the parameters of the neural parser,
which determine c(r), and α (r) is the outer weight
of the rule r (Eisner, 2016), i.e. the total weight of
trees that use r divided by c(r). The outer weight
can be effectively computed with the inside-outside
algorithm (Baker, 1979). This occurs outside of
the gradient, so we do not need to backpropagate
into it. Since the scores c (r) are direct outputs of
the neural parser, their gradients can be batched
straightforwardly.

Method DM PAS PSD AMR
random trees 81.1 79.0 67.8 70.8
random weights 93.0 94.4 80.0 75.0
EM weights 93.8 94.3 81.7 75.2
joint neural model (§6) 94.5 94.8 82.7 76.5

Table 1: Baseline comparisons on the development sets
(3 source names in all experiments).

7 Evaluation

7.1 Setup

We evaluate parsing accuracy on the graphbanks
DM, PAS, and PSD from the SemEval 2015 shared
task on Semantic Dependency Parsing (SDP, Oepen
et al. (2015)) and on the AMRBank LDC2017T10
(Banarescu et al., 2013). We follow Lindemann
et al. (2019) in the choice of neural architecture,
in particular using BERT (Devlin et al., 2019) em-
beddings, and in the choice of decoder, hyperpa-
rameters and pre- and postprocessing (we train the
model of §6 for 100 instead of 40 epochs, since
it is slower to converge than supervised training).
When a graph G is non-decomposable using our
blob partition, i.e. if there is no well-typed AM
dep-tree T that evaluates to G, and so the condi-
tion of Theorem 2 does not hold, then we remove
that graph from the training set. (This does not
affect coverage at evaluation time.) This occurs
rarely, affecting e.g. about 1.6% of graphs in the
PSD training set.

Like (Lindemann et al., 2019), we use the heuris-
tic AMR alignments of (Groschwitz et al., 2018).
These alignments can yield multi-node constants.
In those cases, we first run the algorithm of Sec-
tion 4 to obtain an AM tree with placeholder source
names, and then consolidate those constants that
are aligned to the same word into one constant, ef-
fectively collapsing segments of the AM tree into
a single constant. We then construct the tree au-
tomata of Section 5 as normal.

7.2 Results

We consider three baselines. Each of these chooses
a single tree for each training instance from the tree
automata and performs supervised training. The
random trees baseline samples a tree for each sen-
tence from its automaton, uniformly at random. In
the random weights baseline, we fix a random
weight for each graph constant and edge label,
globally across the corpus, and select the highest-
scoring tree for each sentence. The EM weights
baseline instead optimizes these global weights
with the inside-outside algorithm.
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DM PAS PSD AMR 17
id F ood F id F ood F id F ood F Smatch F

He and Choi (2020) 94.6 90.8 96.1 94.4 86.8 79.5 -
FG’20 94.4 91.0 95.1 93.4 82.6 82.0 -
Bevilacqua et al. (2021) - - - - - - 84.5

L’19, w/o MTL 93.9±0.1 90.3±0.1 94.5±0.1 92.5±0.1 82.0±0.1 81.5±0.3 76.3±0.2

This work 94.2±0.0 90.2±0.1 94.6±0.0 92.7±0.1 81.4±0.1 (75.8±0.1) 80.7±0.4 (74.1±0.1) 75.1±0.2 (74.2±0.3)

Table 2: Semantic parsing accuracies (id = in domain test set; ood = out of domain test set). Results for our work
are averages of three runs with standard deviations. L’19 are results of Lindemann et al. (2019) with fixed tree
decoder (incl. post-processing bugfix for AMR as per Lindemann et al. (2020)). FG’20 is Fernández-González and
Gómez-Rodrı́guez (2020).

Table 1 compares the baselines and the joint
neural method. Random trees perform worst – con-
sistency across the corpus matters. The difference
between random weights and EM is suprisingly
small, despite the EM algorithm converging well.
The joint neural learning outperforms the baselines
on all graphbanks; we analyze this in § 8. We also
experimented with different numbers of sources,
finding 3 to work best for DM, PAS and AMR, and
4 for PSD (all results in Appendix C).

Table 2 compares the accuracy of our joint model
to Lindemann et al. (2019) and to the state of the
art on the respective graphbanks. Our model is
competitive with the state of the art on most graph-
banks. In particular, our parsing accuracy is on par
with Lindemann et al. (2019), who perform super-
vised training with hand-crafted heuristics. This
indicates that our model learns appropriate source
names.

Grahbank-specific pre- and processing. The
pre- and postprocessing steps of (Lindemann et al.,
2019) we use still rely on two graphbank-specific
heuristics, that directly relate to AM depenency
trees: in PSD, it includes a simple but effective step
to make coordination structures more compatible
with the specific flavor of application and modifica-
tion of AM dependency trees. In AMR it includes
a step to remove some edges related to coreference
(a non-compositional source of reentrancy).

We include in brackets the results without those
two preprocessing steps. The drop in perfor-
mance for PSD indicates that while for the most
part our method is graphbank-independent, not
all shapes of graphs are equally suited for AM
dependency-parsing and some preprocessing to
bring the graph ‘into shape’ can still be important.
For AMR, keeping the co-reference based edges
leads to AM trees that resolve those reentrancies
with the AM type system. That is, the algorithm
‘invents’ ad-hoc compositional explanations for a

non-compositional phenomenon, yielding graph
constants with type annotations that do not gener-
alize well. The corresponding drop in performance
indicates that extending AM dependency parsing to
handle coreference will be an important future step
when parsing AMR; some work in that direction
has already been undertaken (Anikina et al., 2020).

8 Linguistic Analysis

As AM parsing is inherently interpretable, we can
explore linguistic properties of the learned graph
constants and trees. We find that the neural method
makes use of both syntax and semantics.

We compute for each sentence in the training
set the best tree from its tree automaton, accord-
ing to the neural weights of the best performing
epoch. We then sample trees from this set for hand-
analysis (see Appendix A), to examine whether the
model learned consistent sources for subjects and
objects. We find that while the EM method uses
highly consistent graph constants and AM opera-
tions, the neural method, which has access to the
strings, sacrifices some graph constant and opera-
tion consistency in favour of syntactic consistency.

Syntactic Subjects and Objects. In the active
sentence The fairy charms the elf, the phrase the
fairy is the syntactic subject and the elf the syntac-
tic object. In the passive The elf is charmed (by
the fairy), the phrase the elf is now the syntactic
subject, even though in both sentences, the fairy
is the charmer and the elf the charmee. Similarly,
the fairy is the syntactic subject in the intransitive
sentence The fairy glows.

Intra-Phenomenon Consistency. For both the
EM and neural method, we found completely con-
sistent source allocations for active transitive verbs
in all four sembanks. These source allocations
were also the overwhelming favourite graph con-
stants for two-argument predicates (72-92%), and

29



the most common sources used by Apply opera-
tions (94-98%). For example, in AMR, the graph
constant template in Fig. 8a appears 26,653 times in
the neural parser output. 74% of these used sources
x = S1 and y = S2 (from S = {S1, S2, S3}). All
active transitive sentences in our sample used this
source allocation, so we call this the active graph
constant (e.g. G-charm in Fig. 2) and refer to the
sources S1 and S2 as S and O respectively, for sub-
ject and object. All four sembanks showed this kind
of consistency; when we refer to S and O sources
below, we mean whichever two sources displayed
the same behaviour as S1 and S2 in AMR.

All four graphbanks are also highly consistent
in their modifiers: classical modifiers such as ad-
jectives are nearly universally adjoined with one
consistent source – we refer to it as M – and MODM

is the overwhelming favourite (90-99%) for MOD

operations.

Cross-Phenomenon Consistency. We call a
parser syntactically consistent if its syntactic sub-
jects fill the S slot, regardless of their semantic role.
A syntactically consistent parser would acquire the
AMR in Fig. 8c from the active sentence by the
analysis in Fig. 8b, and from the passive sentence
by the analysis in Fig. 8d, with the passive constant
G-charmP from Fig. 2.

The neural parser is syntactically consistent: in
all sembanks, it uses the same source S for syn-
tactic subjects in passives as for actives. EM, con-
versely, prefers to use the same graph constants for
active and passives, flipping the APP edges to pro-
duce syntactically inconsistent trees as in Fig. 8e.
Single-argument predicates are also syntactically
consistent in the neural model, using S for subjects
and O for objects, while EM picks one source. The
heuristics in Lindemann et al. (2019) have passive
constants, but use them only when forced to, e.g.
when coordinating active and passive.

Finally, we compute the entropy of the graph
constants for the best trees of the training set as∑

G f(g) ln f(G), where f(G) is the frequency of
constant G in the trees.The entropies are between 2
and 3 nats, but are consistently lower for EM than
the neural method, by 0.031 to 0.079 nats. Consid-
ering that the neural method achieves higher pars-
ing accuracies, using the most common graph con-
stants and edges possible evidently is not always
optimal for performance. The syntactic regularities
exploited by the neural method may contribute to
its improved performance.

z

x

ARG0

y

ARG1

(a) Transitive con-
stants, with label z
and sources x, y

G-charm

The

G-fairy

fairy charms the

G-elf

elf

APPS APPO

(b) Active sentence defines S and O

charm

fairy

ARG0

elf

ARG1

(c) AMR
for both
sentences

G-charmP

The

G-elf

elf is charmed by the

G-fairy

fairy

APPS APPO

(d) Neural analysis of passive sentences mir-
rors surface syntax

G-charm

The

G-elf

elf is charmed by the

G-fairy

fairy

APPO APPS

(e) EM analysis of passives uses APPO for syntactic subject

Figure 8: AMR examples of active and passive. See
Fig. 2 for graph constants.

9 Conclusion

In this work, we presented a method to obtain the
compositional structures for AM dependency pars-
ing that relies much less on graphbank-specific
heuristics written by experts. Our neural model
learns linguistically meaningful argument slot
names, as shown by our manual evaluation; in this
regard, our model learns to do the job of the lin-
guist. High parsing performance across graphbanks
shows that the learned compositional structures are
also well-suited for practical applications, promis-
ing easier adaptation of AM dependency parsing to
new graphbanks.
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A Sampling Method for hand analysis

To sample trees, we compute for each sentence in
the training set the best tree from its tree automaton,
according to the neural weights of the best perform-
ing epoch. This ensures the AM trees evaluate to
the correct graph. We then sample trees from this
set for hand-analysis.

To get relevant sentences, we sampled 5-to-15-
word sentences with graph constants from the fol-
lowing six categories:

Transitive verbs: graph constants with a labeled
root and two arguments with edges labelled as in
Table 1:

Sembank subject object
AMR ARG0 ARG1
DM ARG1 ARG2
PAS verb ARG1 verb ARG2
PSD ACT arg PAT arg

Table 1: Transitive verbs

As explained in the main text, we define the
active constants as those with the most common
source allocation, and the passive constants as
those with the active source allocation flipped. We
sampled both active and passive source allocations.

Verbs with one argument: Graph constants just
like the transitive ones but lacking one of the argu-
ments. There are four of these, given both source
allocations.

Generally these graph constants are used for
more than just verbs; for each of the six categories
we sampled until we had ten relevant sentences.
We visualised the AM trees and categorised the
phenomena, for example active or passive verbs,
nominalised verbs, imperatives, relative clauses,
gerund modifiers, and so forth.

To answer the question of whether the parser
used consistent constants for active and passive
transitive sentences, we sampled until we had ten
sentences with active or passive main verbs. For
the single-argument verbs, we also looked at nomi-
nalised verbs, modifiers, and so forth. (Sampling
and visualisation scripts will be available together
with the rest of our code on GitHub.)

B An algorithm to obtain all AM
dep-trees for a graph

Let G be a graph partitioned into blobs. Let UG be
the set of unrolled graphs forG that can be obtained
by Algorithm 2 by varying the queue order.

Let further MG be the set of results of Algo-
rithm 3 below for every input AM dep-tree T = CU

for U ∈ UG and every choice of set M as specified
in the algorithm. Algorithm 3 switches the order
of two nodes m and k, making k the head of the
subtree previously headed by m. This change of
head is only possible when the incoming edge of
m is labeled MOD (for APP, the change of head
changes the evaluation result). It also requires a
MOD edge between m and k; an APP edge with
this type of swap would lead to a non-well-typed
graph.

Finally, let RG be the set of results of Algo-
rithm 4 for every input AM dep-tree T ∈MG and
any valid choice of R and RT (valid as described
in the algorithm). Algorithm 4 is like Algorithm 1
for reentrancy resolution, but can have resolution
targets RT (n) that are higher in the tree than the
lowest common ancestor of n and the REF-n nodes.
Further, Algorithm 4 uses the same methodology
to also move nodes that do not need resolution to
become descendents of a ‘resolution target’ higher
in the tree (i.e. R here can now also contain nodes
for which no REF node exists).

Then the following Theorem 1 holds:
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Algorithm 3: Modify-edge swapping

1 Input: an AM dep-tree T and a set M of
pairs of consecutive edges in T of the form
〈n MODn−−→ m,m

MODm−−−→ k〉 such that no edge
appears in multiple pairs.

2 for 〈n MODn−−→ m,m
MODm−−−→ k〉 ∈M :

3 Replace n MODn−−→ m in T with n MODn−−→ k;
4 Replace m MODm−−−→ k in T with

k
APPm−−→ m;

5 Add β(m) (which always includes n) to
the request at m in τ (k);

6 return T

Algorithm 4: Extended reentrancy resolu-
tion

1 Input: an AM dep-tree T ; a set
R ⊇ {n ∈ NG | ∃ REF-n node in T}; and
a map RT that assigns to each node n ∈ R
a resolution target RT (n), that is at least as
high as the lowest common ancestor of n
and all REF-n nodes (if they exist), and
that satisfies the conditions of Theorem 1.

2 while R 6= ∅:
3 Pick a y ∈ R s.t. there is no x ∈ R,

x 6= y, with y on an x-resolution path;
4 for p ∈ y-resolution paths:
5 for n

APP−−→ m ∈ p:
6 if m is y or labeled REF-y:
7 Add β(y) to the request at y

in τ (n);
8 else:
9 Add y[β(y)] to the request

at m in τ (n);

10 Move the subtree of T rooted at y up to
be an APPy daughter of RT (y), unless
RT (y) = y;

11 Delete all REF-y nodes from T ;
12 R← R− {y}
13 return T

Theorem 1. Let G be a graph partitioned into
blobs, and let TG be the set of all well-typed AM
dep-trees with placeholder sources, using that blob
partition, that evaluate to G. Then if TG = ∅, all
AM dep-trees in RG are either not well-typed or
do not evaluate to G. If however TG 6= ∅, then
RG = TG.

# sources DM PAS PSD AMR
2 92.2 91.9 75.6 74.3
3 94.5 94.8 82.7 76.5
4 94.4 94.7 83.4 75.9
6 92.3 93.6 80.1 73.4

Table 2: Development set accuracies of the neural
method for different numbers of source names.

C Additional Details

• AMR F-scores are Smatch scores (Cai and
Knight, 2013)

• DM, PAS and PSD: We compute la-
beled F-score with the evaluation
toolkit that was developed for the SDP
shared task: https://github.com/

semantic-dependency-parsing/toolkit

• We use the standard train/dev/test split for all
corpora

• AMR corpus available through https://amr.

isi.edu/download.html (requires LDC li-
cense)

• SDP corpora available through https:

//catalog.ldc.upenn.edu/LDC2016T10

(requires LDC license)

Number of source names. We experimented
with different numbers of source names in the joint
neural method (Table 2). Mostly, three source
names were most effective, except for PSD, where
four were most effective. Two source names are
not enough to model many common phenomena
(e.g. ditransitive verbs, coordination of verbs);
graphs containing these phenomena cannot be de-
composed with two sources and are removed from
the training set, reducing parsing accuracy. The
higher performance of PSD with four sources may
stem from PSD using flat coordination structures
which require more source names; although this is
also true for AMR where four source names are
not beneficial. The drop with six source names
may come from the fact that the latent space grows
rapidly with more sources, making it harder to learn
consistent source assignments.

Hyperparameters. See Table 3.
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Activation function tanh
Optimizer Adam
Learning rate 0.001
Epochs 100

Dim of lemma embeddings 64
Dim of POS embeddings 32
Dim of NE embeddings 16
Minimum lemma frequency 7

Hidden layers in all MLPs 1

Hidden units in LSTM (per direction) 256
Hidden units in edge existence MLP 256
Hidden units in edge label MLP 256
Hidden units in supertagger MLP 1024
Hidden units in lexical label tagger MLP 1024

Layer dropout in LSTMs 0.3
Recurrent dropout in LSTMs 0.4
Input dropout 0.3
Dropout in edge existence MLP 0.0
Dropout in edge label MLP 0.0
Dropout in supertagger MLP 0.4
Dropout in lexical label tagger MLP 0.4

Table 3: Common hyperparameters used in all exper-
iments (the random trees, random weights and EM
weights baselines use 40 epochs since they converge
faster). For a complete description of the neural archi-
tecture, see Lindemann et al. (2019) and its supplemen-
tary materials.
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Abstract

Large volumes of interaction logs can be col-
lected from NLP systems that are deployed in
the real world. How can this wealth of infor-
mation be leveraged? Using such interaction
logs in an offline reinforcement learning (RL)
setting is a promising approach. However, due
to the nature of NLP tasks and the constraints
of production systems, a series of challenges
arise. We present a concise overview of these
challenges and discuss possible solutions.

1 Introduction

When Natural Language Processing (NLP) sys-
tems are deployed in production, and interact with
users (“the real world”), there are many potential
ways of collecting feedback data or rich interac-
tion logs. For example, one can ask for explicit
user ratings (Kreutzer et al., 2018a), or collect user
clicks (De Bona et al., 2010), or elicit user revi-
sions (Trivedi et al., 2019) to get an estimate of
how well the deployed system is doing. However,
such user interaction logs are primarily used for an
one-off assessment of the system, e.g., for spotting
critical errors, detecting domain shifts, or identify-
ing the most successful use cases of the system in
production. This assessment can then be used to
support the decision of keeping or replacing this
system in production.

From a machine learning perspective, using in-
teraction logs only for evaluation purposes is a
lost opportunity for offline reinforcement learning
(RL). Logs of user interactions are gold mines for
off-policy learning, and they should be put to use,
rather than being forgotten after a one-off evalua-
tion purpose. To move towards the goal of using
user interaction logs for learning, we will discuss

∗All authors contributed equally, order has been random-
ized (see https://bit.ly/38PgRjm).

which challenges have hindered RL from being em-
ployed in real-world interaction with users of NLP
systems so far.

Concretely, our focus is on sequence-to-
sequence learning for NLP applications (see § 2
for an overview). For example, many machine
translation services provide the option for users to
give feedback on the quality of the translation, e.g.,
by collecting post-edits. Similarly, industrial chat-
bots can easily collect vast amounts of interaction
logs, which can be utilized with offline RL meth-
ods (Kandasamy et al., 2017; Zhou et al., 2017;
Hancock et al., 2019). In the following, we will
thus present challenges that are encountered in user-
interactive RL for NLP systems. With this discus-
sion, we aim to (1) encourage NLP practitioners to
leverage their interaction logs through offline RL,
and (2) inspire RL researchers to steel their algo-
rithms for the challenging applications in NLP.

2 Offline Feedback for Seq2Seq in NLP

In sequence-to-sequence (Seq2Seq) learning, the
task is to map an input sequence x =
x1, x2, . . . , x|x|, ∀xi ∈ X to an output sequence
y = y1, y2, . . . , y|y|,∀yj ∈ Y , where X ,Y denote
the sets of input and output vocabularies, respec-
tively. The conditional distribution of the output
sequence given the input can be modeled with a
policy πθ with learnable parameters θ. Assuming a
left-to-right generation order, the output sequence
y is generated by conditioning on previous output
elements y<j and the input sequence x:

πθ(y | x) =

|y|∏

j=1

πθ(yj | y<j ,x). (1)

Mapping the sequence-to-sequence problem for-
mulation to NLP tasks, we have for example:

• Machine translation: x is a source sentence
and y the translation of x in a target language.
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• Semantic parsing: x is a sentence and y its
semantic parse (e.g., in SQL).

• Summarization: x is the document that is to be
summarized and y a corresponding summary.

• Dialogue generation: x is the conversation
history and y an appropriate reply.

The most distinctive feature of Seq2Seq NLP
tasks for RL are the extremely large, structured
output spaces: given the output vocabulary of size
|Y| and a maximum sequence length M , there are
|Y|M possible combinations of output sequences.
For instance, in machine translation there might be
as many as 30 000 output tokens in the vocabulary
and the output sequence length could easily be 100,
leading to a total of 30 000100 possible outputs.

A successful policy identifies the few combina-
tion of tokens that form valid output sequences. In
the most extreme case only one output sequence
exists that will be correct. , e.g., in a seman-
tic parsing setup, where potentially only one spe-
cific SQL query will return the correct answer
when executed. To train a policy, supervised data
can be used. There we assume a given dataset
Dsup = {(xt,yt)}Tt=1 on which the parameters θ
can be learnt with a maximum likelihood approach,
aiming to maximize the model score for the given
reference output.

In practice, it may be too expensive to collect
correct, i.e., supervised, output sequences, since
they require skilled annotators, e.g., trained trans-
lators for a machine translation task. Therefore,
one option is to pre-train the policy on some avail-
able supervised data, which will allow the model
to concentrate on reasonable areas in the output
space (Choshen et al., 2020). The model can then
be used to produce potentially imperfect output se-
quences and humans can judge an output ỹ and a
reward δt ∈ [0, 1] is assigned. Model parameters
may be optimized by pairing the model outputs
with their reward estimates. Depending on the use
case, quality judgments may also exist for single
elements in the structure, adding δ(t,j) for every
step in the output sequence. The core idea is that
the weighting by δ enables learning from imperfect
outputs while respecting their faults. In RL, these
quality assessments are used to reward desirable
model actions, here desirable sequence outputs.

When collecting quality judgments from human
users in production systems, it would be risky to
directly update the model online according to their

feedback.1 Some user feedback might be adver-
sarial, inappropriate, or not representative when
used for training without prior treatment (Rivas
et al., 2018; Kreutzer et al., 2018a; Davis, 2016).
2 Furthermore, interpreting feedback wrongly
(e.g., through incorrect credit assignment (Bah-
danau et al., 2017)), or receiving misleading feed-
back (Nguyen et al., 2017; Kreutzer et al., 2018a),
could easily push the policy into less favorable con-
ditions.

Because updating systems online is too risky,
quality judgments are instead stored in interaction
logs, i.e., Dlog = {(xt, ỹt, δt)}Tt=1, and the system
is updated offline. As a result, the imperfect out-
put sequences are produced by a possibly different
policy, the logging policy µ, and updates to our
learning policy are conducted offline, which is a
classic off-policy RL scenario.

Due to the logging setup, the collected dataset is
biased towards the choices of the deployed model,
the logging policy µ. This results in a counterfac-
tual learning scenario (Bottou et al., 2013). The
bias may be corrected via importance sampling.
If the logging policy is known and µ(ŷ | x) is
logged as well, the policy can then be optimized
for the Inverse Propensity Scoring (IPS) objective
(Rosenbaum and Rubin, 1983):

LIPS = − 1

T

T∑

t=1

δt
πθ(ỹt | xt)
µ(ỹt | xt)

. (2)

3 Challenges for Off-Policy RL in NLP

On top of the difficulties encountered in offline RL,
additionally constraints arise in production scenar-
ios. We address this and possible solutions in §3.1,
while §3.2 focuses on how to obtain reliable data
from which machine learning can succeed.

3.1 Deterministic Logging and Off-line
Learning

In order to not show inferior outputs to users, pro-
duction NLP systems show the most likely output,
which disables the typically crucial exploration
component of RL. This effectively results in de-
terministic logging policies that lack explicit explo-
ration, which makes an application of standard off-

1The majority of RL research in NLP has focused on learn-
ing from online feedback (Sokolov et al., 2016; He et al., 2016;
Li et al., 2016; Bahdanau et al., 2017; Nguyen et al., 2017;
Nogueira and Cho, 2017; Lam et al., 2018).

2The chatbot Tay might be one of the most illustrative
examples for what can go wrong (Davis, 2016).

38



policy methods for counterfactual learning ques-
tionable. For example, techniques such as inverse
propensity scoring (Rosenbaum and Rubin, 1983)
or weighted importance sampling (Precup et al.,
2000; Jiang and Li, 2016; Thomas and Brunskill,
2016), rely on sufficient exploration of the output
space by the logging system as a prerequisite for
counterfactual learning. In fact, Langford et al.
(2008) and Strehl et al. (2010) even give impos-
sibility results for exploration-free counterfactual
learning.

One option is to hope for implicit exploration
due to input or context variability. This has been ob-
served for the case of online advertising (Chapelle
and Li, 2011) and investigated theoretically (Bas-
tani et al., 2017). In NLP, output sequences
may overlap in some of the words, so the learner
could infer from rewards in which contexts spe-
cific words are more suitable than in others. This
has been explored in the context of machine trans-
lation (Lawrence et al., 2017b), utilizing the De-
terministic Propensity Matching (DPM) objective

LDPM = − 1

T

T∑

t=1

δtπθ(ỹt | xt), (3)

which closely follows the IPS objective, however,
due to the deterministic logging ∀ỹ, µ(ỹ | x) = 1.
While this exploration is limited by the input data,
solutions for safe exploration might be attractive to
transfer to NLP applications to actively guide ex-
ploration while not sacrificing quality (Hans et al.,
2008; Berkenkamp et al., 2017).

Another option is to consider concrete cases of
degenerate behavior in estimation from logged
data. We look at two such issues and possible solu-
tions. Both problems occur irrespective of whether
data is logged deterministically or not, but the ef-
fects of the degenerative behavior might be ampli-
fied in the case of deterministic logging.

The first form of degenerate behaviour occurs
for a collected log Dlog with δ ∈ [0, 1] because
IPS and DPM can trivially be minimized by setting
all probabilities in the dataset D to 1 for any δt >
0 (Lawrence et al., 2017a). Concretely, this means,
while the worst output sequences with δt = 0 are
simply ignored, all other sequences are encouraged,
even if their reward is close to 0. However, it is
clearly undesirable to increase the probability of
low reward examples (Swaminathan and Joachims,
2015; Lawrence et al., 2017b,a).

There are two possible solutions to this problem:

The first solution is to tune the learning rate and
perform early stopping before the degenerate state
can be reached. The second solution is to utilize a
multiplicative control variate (Kong, 1992) for self-
normalization (Swaminathan and Joachims, 2015).
For efficient gradient calculation, batches of size B
can be reweighted one-step-late (OSL) (Lawrence
and Riezler, 2018) using θ′ from some previous
iteration:

LOSL = −
1
B

∑B
b=1 δbπθ(ỹb | xb)

1
T

∑T
t=1 πθ′(ỹt | xt)

. (4)

Self-normalization discourages increasing the prob-
ability of low reward data because this would take
away probability mass from higher reward outputs
and as a result. This introduces a bias in the esti-
mator (that decreases as T increases), however, it
makes learning under deterministic logging feasi-
ble, as has been shown for learning with real human
feedback in a semantic parsing scenario (Lawrence
and Riezler, 2018). This gives the RL agent an
edge in learning in an environment that has been
deemed impossible in the literature.

A second form of degenerate behavior occurs
because the reward δt of an output sequence is typi-
cally measured with some non-negative value, e.g.,
δt ∈ [0, 1]. For example, for machine translation,
Kreutzer et al. (2018b) collect ratings for transla-
tions on a 5-point Likert scale and map the values
linearly to [0, 1]. However, utilizing any of the
above objectives means that bad output sequences
with low rewards cannot actively be discouraged.

There are two possible solutions, both of which
have been used as additive control variates to re-
duce variance in gradient estimators. First, low re-
ward sequences can be discouraged by employing
a reward baseline, where for example the average
reward ∆ = 1

t

∑t
t′=1 δt′ is subtracted from each

δt. This will cause output sequences worse than
the running average to be discouraged rather than
encouraged. The second option is to use the logged
data Dlog to learn a reward estimator δ̂ that can
return a reward estimate for any pair (x,y). This
estimator together with the IPS objective leads to
the Doubly Robust (DR) objective (Dudik et al.,
2011),
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LDR = − 1

T

T∑

t=1

[
(δt − δ̂(xt, ỹt)) πθ(ỹt | xt)+

∑

ỹ′∼πθ(ỹ|xt)
δ̂(xt, ỹ

′) πθ(ỹ
′ | xt)

]
.

This objective enables the exploration of other
outputs ỹ′ that are not part of the original log and
encourages them based on the reward value re-
turned by the estimator. For the task of machine
translation, Lawrence et al. (2017b) show this ob-
jective to be the most successful in their setup,
and Kreutzer et al. (2018a) report simulation re-
sults that show that this objective can significantly
reduce the gap between offline and online policy
learning, even if the reward estimator is not perfect.
Zhou et al. (2017) present an alternating approach
to integrating a reward estimator for exploration,
by switching between learning offline from logged
rewards and exploring online with the help of a
reward estimator in phases.

3.2 Reliability and Learnability of Feedback
In interactive NLP, it is unrealistic to expect any-
thing else than bandit feedback from a human user
interacting with a chatbot, automatic summariza-
tion tool, or commercial machine translation sys-
tem. That is, users of such systems will only pro-
vide a reward signal to the one output that is pre-
sented to them, and cannot be expected to rate a
multitude of outputs for the same input. As a result,
the feedback is very sparse in relation to the size of
the output space.

Ideally, the user experience should not be dis-
rupted through feedback collection. Non-intrusive
interface options for example allow for corrections
of the output (“post-edits” in the context of ma-
chine translation) as a negative signal, or recording
whether the output is copied and/or shared without
changes, which may be interpreted as a positive
signal. However, the signal might be noisy, since
the notion of output quality for natural language
generation tasks is not a well-defined function to
start with: Each input might have many possible
valid outputs, each of which humans may judge
differently, depending on many contextual and per-
sonal factors. In machine translation evaluation for
instance, inter-rater agreements have traditionally
been reported as low (Turian et al., 2003; Carl et al.,
2011; Lommel et al., 2014), especially when qual-
ity estimates are collected from non-professional

raters (Callison-Burch, 2009). Similar observa-
tions have been made for other text generation
tasks (Godwin and Piwek, 2016; Verberne et al.,
2018). Nguyen et al. (2017) illustrated how badly
machine translation systems can handle human-
level noise in direct feedback for online RL with
simulations. The level of noise in real-world hu-
man feedback may be so high that it prevents learn-
ing completely, as for example experienced in e-
commerce machine translation logs (Kreutzer et al.,
2018a). The issue is even higher in dialogue gen-
eration where there are a plenitude of acceptable
responses (Pang et al., 2020). To this aim, inverse
RL has been proposed to infer reward functions
from responses indirectly (Takanobu et al., 2019).

Surprisingly, the question of how to best im-
prove an RL agent in the scenario of learning from
real-world human feedback has been scarcely re-
searched. This might originate from many RL
research environments coming with fixed reward
functions. In the real world, however, there is rarely
a clearly defined single reward function for which
it would suffice optimizing for. The suggestions
in Dulac-Arnold et al. (2019) seem straightforward:
warm-starting agents to decrease sample complex-
ity or using inverse reinforcement learning to re-
cover reward functions from demonstrations (Wang
et al., 2020) — but they require additional supervi-
sion signals that RL was supposed to alleviate.

When it comes to the question which type of
human feedback is most beneficial for training an
RL agent, one finds a lot of blanket statements,
e.g., referring to the advantages of pairwise com-
parisons (Thurstone, 1927). For instance, learning
from human pairwise preferences from humans
has been advertised for summarization (Christiano
et al., 2017; Stiennon et al., 2020) and language
modeling (Ziegler et al., 2019), but the reliability
of the signal has not been evaluated. An exception
is the work of Kreutzer et al. (2018b) which is the
first to investigate two crucial questions. The first
question addresses which type of human feedback
— pairwise judgments or cardinal feedback on a 5-
point scale — can be given most reliably by human
teachers. The second question investigates which
type of feedback allows to learn reward estimators
that best approximate human rewards and can be
best integrated into an end-to-end RL-NLP task.

Regarding the first question, Kreutzer et al.
(2018b) found that the common assumption — that
pairwise comparisons are easier to judge than a
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single output on a Likert scale (Thurstone, 1927) —
turned out to be false for the task of machine trans-
lation. Inter-rater reliability proved to be higher for
5-point ratings (Krippendorff’s α = 0.51) than for
pairwise judgments (α = 0.39). (Kreutzer et al.,
2018b) explain two advantages that the Likert scale
setup offers: (1) it is possible to standardize cardi-
nal judgments for each rater to remove individual
biases, (2) they offer an absolute anchoring for
quality, while a preference rankings leave the over-
all positioning of the pair of outputs on a quality
scale open. For pairwise judgments it is difficult
or even impossible to reliably choose between two
outputs that are similarly good or bad, e.g., dif-
fering by only a few words. Therefore, filtering
out raters with low intra-rater reliability proved ef-
fective for absolute ratings, while filtering outputs
with a high variance in ratings was most effective
for pairwise ratings, yielding the final inter-rater
reliability given above. Discarding rated outputs,
however, reduces the size of the log to learn from,
which is undesirable in settings where rewards are
scarce or costly.

To answer the second question, Kreutzer et al.
(2018b) found a neural machine translation sys-
tem can be significantly improved using a reward
estimator trained on only a few hundred cardinal
user judgments. This work highlights that future
research in real-world RL might have to involve
studies in user interfaces or user experience, since
the interfaces for feedback collection influence the
reward function that RL agents learn from – and
thereby the downstream task success. Collecting
implicit feedback (Kreutzer et al., 2018a; Jaques
et al., 2020) might offer a better user experience.

For the challenges discussed in Sections 3.1 and
3.2, a promising approach is to tackle the arguably
simpler problem of learning a reward estimator
from human feedback first, then provide unlimited
learned feedback to generalize to unseen outputs in
off-policy RL. However, risks of bias introduction
and potential benefits for noise reduction through
replacing user feedback by reward estimators are
yet to be quantified.

4 Conclusion

There is large potential in NLP to leverage user
interaction logs for system improvement. We
discussed how algorithms for offline RL can of-
fer promising solutions for this learning problem.
However, specific challenges in offline RL arise

due to the particular nature of NLP systems that
collect human feedback in real-world applications.
We presented cases where such challenges have
been found and offered solutions that have helped.
So far, the solutions have mainly been explored in
the context of machine translation and semantic
parsing. In the future, it will be interesting to ex-
plore further tasks and additional real-world use
cases to find out how to best learn from human
feedback.
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Abstract

Despite its wide use, recent studies have
revealed unexpected and undesirable proper-
ties of neural autoregressive sequence models
trained with maximum likelihood, such as an
unreasonably high affinity to short sequences
after training and to infinitely long sequences
at decoding time. We propose to study these
phenomena by investigating how the modes,
or local maxima, of a distribution are main-
tained throughout the full learning chain of the
ground-truth, empirical, learned and decoding-
induced distributions, via the newly proposed
mode recovery cost. We design a tractable
testbed where we build three types of ground-
truth distributions: (1) an LSTM based struc-
tured distribution, (2) an unstructured distri-
bution where probability of a sequence does
not depend on its content, and (3) a product
of these two which we call a semi-structured
distribution. Our study reveals both expected
and unexpected findings. First, starting with
data collection, mode recovery cost strongly
relies on the ground-truth distribution and is
most costly with the semi-structured distribu-
tion. Second, after learning, mode recovery
cost from the ground-truth distribution may in-
crease or decrease compared to data collec-
tion, with the largest cost degradation occur-
ring with the semi-structured ground-truth dis-
tribution. Finally, the ability of the decoding-
induced distribution to recover modes from the
learned distribution is highly impacted by the
choices made earlier in the learning chain. We
conclude that future research must consider
the entire learning chain in order to fully un-
derstand the potentials and perils and to further
improve neural autoregressive sequence mod-
els.

1 Introduction

Neural autoregressive sequence modeling has be-
come the standard approach to modeling sequences

in a variety of natural language processing appli-
cations (Aharoni et al., 2019; Brown et al., 2020;
Roller et al., 2020). In this modeling paradigm,
the probability of a sequence is decomposed into
the product of the conditional probability of each
token given the previous tokens. Each conditional
probability is modeled by a shared neural network,
typically implemented as a recurrent neural net-
work (Hochreiter and Schmidhuber, 1997) or a
transformer (Vaswani et al., 2017).

Despite its success, recent studies have identi-
fied peculiarities in neural autoregressive sequence
models. Lee et al. (2018) identify hallucinations in
neural machine translation, in which a well-trained
model suddenly generates a nonsense translation
when a rare token is artificially introduced to a
source sentence. Stahlberg and Byrne (2019) ob-
serve that a vast portion of probability mass is con-
centrated on the empty sequence in neural machine
translation, although the models they studied were
never presented with empty sequences during train-
ing. Holtzman et al. (2019) report that large-scale
language models often produce pathological se-
quences with many n-gram repetitions, at a rate
which far exceeds that of the training data. Welleck
et al. (2020a) show that neural language models
can generate infinite-length sequences despite be-
ing trained on only finite sequences.

A common theme underlying these findings is
that well-trained models can assign unreasonably
high probabilities to sequences that are dissimilar
to any sequence from the training set. In particular,
the modes of the model’s distribution appear to
be undesired, implying that the model failed to
recover the modes of the empirical distribution,
which we term mode recovery degradation. The
situation is further complicated by the fact that
we only approximate the model’s modes with a
decoding algorithm, so it is unclear whether the
decoding algorithm, the model, or even the data
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collection is at fault.
In this paper, we isolate and study mode recovery

degradation by characterizing each stage of neural
sequence modeling as inducing a new sequence dis-
tribution, then directly analyzing each distribution’s
modes. With this approach, we diagnose at what
stage, and to what extent, sequences receive unrea-
sonably high probabilities. To do so, we first define
a learning chain that consists of the ground-truth
distribution, the empirical distribution induced by
data collection, the learned distribution, and the
decoding-induced distribution. We then quantify
the extent to which the most probable sequences
under each distribution match the most probable
sequences under the ground-truth distribution by
defining a mode recovery cost, which measures how
expensive it is for a later distribution to recover the
most probable sequences of an earlier distribution
in the chain.

In summary, we find that mode recovery cost is
non-trivial at each part of the neural autoregressive
learning pipeline. The pattern of how mode recov-
ery changes heavily depends on the properties of
the ground-truth distribution. In particular, when
the ground-truth distribution is parameterized as a
product of highly structured distribution based on
LSTM neural network and unstructured distribu-
tion where the probability of every sequence is sam-
pled independently from all the others, its modes
are more costly to recover. Furthermore, the ability
of a decoding algorithm to recover modes is also de-
pendent upon all choices made earlier in the chain
including the underlying ground-truth distribution,
even in the case of modes of the learned distribu-
tion. These observations make a meaningful step
towards better understanding of mode degradation
in neural autoregressive sequence modeling.

2 Neural autoregressive sequence
modeling

We consider the problem of modeling a distribution
p∗(s) over variable-length, discrete sequences s.
Formally, s ∈ Σl, where l ∈ {1, 2, . . . , L}, Σ is a
finite set of tokens, and Ω ⊂ ⋃L

l=1 Σl denotes the
space of all possible sequences. Every sequence
s ∈ Ω ends with a special token 〈eos〉 ∈ Σ which
only appears at the end of each sequence.

In neural autoregressive sequence modeling,
we model the distribution p∗(s) as pθ(s) =∏|s|
t=1 pθ(st|s<t), with each conditional distribu-

tion parameterized by a shared neural network.

Maximum likelihood. To learn the model, we
use maximum likelihood estimation (MLE), which
trains the model pθ to maximize the log-likelihood
of a set of training sequences D =

{
s1, . . . , sN

}
:

arg max
θ

1

N

N∑

n=1

Ln∑

t=1

log pθ(s
n
t |sn<t). (1)

Approximate decoding. Given a trained model,
we obtain a set of highly probable sequences. In
practice, this problem is often intractable due to the
size of Ω, which grows exponentially in sequence
length. As a result, we resort to approximating the
optimization problem using a decoding algorithm
that returns a set of k sequences F(pθ; γ), where
F denotes the decoding algorithm, and γ denotes
its hyper-parameters. Concretely, we consider two
decoding approaches: a deterministic decoding al-
gorithm that produces a set of sequences using
beam search with beam-width k, and a stochastic
decoding algorithm that forms a set of sequences
using ancestral sampling until k unique sequences
are obtained.1 We refer readers to Welleck et al.
(2020a) for detailed descriptions of those decoding
algorithms.

Learning chain. The neural autoregressive se-
quence modeling approach consists of four proba-
bility distributions, which together form a learning
chain. The first distribution is the ground-truth dis-
tribution p∗(s). This distribution is almost always
unknown and is assumed to be highly complicated.
Second, the dataset used in maximum likelihood
(Eq. 1) determines an empirical distribution,

pemp(s) =
1

|D|
∑

s′∈D
I(s = s′), (2)

where D is a set of sequences drawn from the
ground-truth distribution p∗ and I is the indicator
function. The third distribution is the learned distri-
bution pmodel captured by a neural autoregressive
model trained on D.

Finally, we introduce the decoding-induced dis-
tribution pF , which allows us to compare the set of
probable sequences obtained with a decoding algo-
rithm F against highly probable sequences in the
ground-truth, empirical, and learned distributions.
Specifically, we turn this set into the distribution

pF (s) =

{
1
Z pθ(s) s ∈ F(pθ; γ),

0 s 6∈ F(pθ; γ),
(3)

1Ancestral sampling recursively samples st ∼ pθ(st|s<t).
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where Z =
∑

s′∈F(pθ;γ) pθ(s
′). Each sequence

is weighted according to the model’s probability,
which reflects the practice of ordering and sampling
beam search candidates by their probabilities.

There is a natural order of dependencies among
these four distributions in the learning chain,
p∗�data collection pemp�learning pmodel�decoding pF .
We are interested in how a distribution in the later
part of the chain recovers the highly probable
sequences of an earlier distribution. To study this,
we next introduce the notion of mode recovery.

3 Mode recovery

Mode sets We define a k-mode set as a set of
top-k sequences under a given distribution:

Sk(p) = argtop-ks∈Ω p(s).

argtop-k selects all the elements within Ω whose
probabilities p(s) are greater than the probability
assigned to the (k + 1)-st most likely sequence,
which could result in fewer than k sequences. This
is due to potentially having multiple sequences of
the same probability.

Mode recovery cost. We characterize the recov-
ery of the modes of the distribution p by the distri-
bution q as the cost required to recover the k-mode
set Sk(p) using the distribution q. That is, how
many likely sequences under q must be considered
to recover all the sequences in the k-mode set of p.

Formally, given a pair of distributions p and q,
we define the k-mode recovery cost from p to q as

Ok(p‖q) = min
{
k′
∣∣∣Sk(p) ⊆ Sk′(q)

}
. (4)

The cost is minimized (= |Sk(p)|) when the k-
mode set of q perfectly overlaps with that of p. The
cost increases toward |Ω| as the number of modes
from q that must be considered to include the k-
mode set from p increases. The cost is maximized
(=|Ω|) when the top-k set Sk(p) of p is not a subset
of the support of the distribution q.

The limited support of q. As mentioned ear-
lier, the mode recovery cost Ok(p‖q) is ill-defined
when the support of the distribution q, supp(q),
is not a super-set of the k-mode set of the distri-
bution p . In this situation, we say that the distri-
bution q fails to recover modes from the k-mode
set of the distribution p. In particular, this hap-
pens with decoding-induced distributions because

of their limited support, which is equal to the size
of the candidate set of sequences F(pθ, γ).

We introduce the k-mode set overlap
Ik(p‖q) = |Sk(p) ∩ supp(q)|, which equals
the size of the intersection between the k-mode
set of the distribution p and the support of
the distribution q. The k-mode set overlap is
maximized and equals |Sk(p)| when the mode
recovery is successful. We call it a recovery failure
whenever the overlap is smaller than |Sk(p)|. We
use k-mode set overlap only when mode recovery
fails, because it is not able to detect if the modes
from the corresponding k-mode set have high
probability under the induced distribution.

4 Why do we study mode recovery?

The recent success of neural sequence modeling
has operated on the assumption that we can find
sequences that are reasonably similar to training
sequences by fitting a neural autoregressive model
to maximize the log-probabilities of the train-
ing sequences (maximum-likelihood learning) and
searching for the most likely sequences under the
trained model (maximum a posteriori inference).
However, recent studies suggest that the most likely
sequences may not resemble training sequences at
all. For instance, the learning stage can yield a
distribution pmodel which places high probability
on empty (Stahlberg and Byrne, 2019) or repeti-
tive (Holtzman et al., 2019) sequences, while the
decoding stage can yield a distribution pF which
places non-zero mass on infinite-length sequences
(Welleck et al., 2020a).

As a result, various workarounds have been pro-
posed in the form of alternative learning or de-
coding algorithms (Andor et al., 2016; Sountsov
and Sarawagi, 2016; Murray and Chiang, 2018;
Welleck et al., 2020b; Welleck and Cho, 2020; Mar-
tins et al., 2020; Deng et al., 2020; Basu et al., 2021;
Shi et al., 2020). A particularly relevant work by
Eikema and Aziz (2020) argues that the modes of
neural sequence models are inadequate and thus
we must discard maximum-a-posteriori inference
altogether. Rather than advocating for a partic-
ular solution, we instead seek an understanding
of why the conventional approach displays these
peculiar behaviors. While we do not claim to pro-
vide a full explanation, the first step is developing
a way of quantifying the problem, then localiz-
ing it. To this end, we develop the mode recov-
ery cost and measure it along the learning chain
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p∗�pemp�pmodel�pF . This focus on modes de-
parts from the conventional focus on evaluating the
full distribution with a probabilistic divergence.

Mode recovery vs. probabilistic divergence.
Mode recovery is related to but distinct from a
probabilistic divergence. Often a probabilistic di-
vergence is designed to consider the full support
of one of two distributions between which the di-
vergence is computed. For each point within this
support, a probabilistic divergence considers the
ratio, or difference, between the actual probabili-
ties/densities assigned by the two distributions. For
instance, the KL divergence KL(p‖q) computes∑

x∼p p(x) log p(x)
/
q(x). Another example is the

total variation (TV) distance, which is equivalent to∑
ω∈Ω |p(ω) − q(ω)|/2 when the sample set Ω is

finite. The TV distance considers the entire sample
set and computes the cumulative absolute differ-
ence between the probabilities assigned to each
event by two distributions.

We find mode recovery more interesting than
probabilistic divergence in this paper, because our
goal is to check whether a decision rule, that is to
(approximately) choose the most likely sequence
based on an available distribution, changes as we
follow the chain of induced distributions. Further-
more, we are not interested in how precisely un-
likely sequences are modeled and what probabili-
ties they are being assigned. We thus fully focus
on mode recovery in this paper.

5 A testbed for evaluating mode recovery

It is intractable to measure mode recovery cost
(Eq. 4) on real-world datasets that are popular in
neural sequence modeling, e.g. wikitext-103 (Mer-
ity et al., 2016) given the exponential growth of the
sequence space with sequence length. For exam-
ple, the training part of Wikitext-103 consists of
28k sequences with 3.5k tokens, each drawn from
a vocabulary of 267k tokens. Furthermore, these
datasets do not provide access to the ground-truth
distribution, which prevents us from computing any
recovery cost involving p∗.

In order to allow exact computations of mode re-
covery cost, we design a controllable testbed. This
testbed consists of (1) the ground-truth distribution,
which permits explicit control over the structured-
ness, (2) the data collection step, which controls
the complexity of the empirical distribution, (3) the
learning step, which allows us to induce the learned
distribution with neural autoregressive models, and

(4) the decoding step, where the decoding algo-
rithm induces the approximation of the learned
distribution. In the rest of this section we describe
each distribution in detail.

We set the size of the sequence space of the
testbed so that all computations are feasible. We
limit the vocabulary size |Σ| to 7 tokens and use
a maximum sequence length L of 10 tokens. This
results in a sequence space size |Ω| of around 12
million sequences.

Ground-truth distribution. We define each
ground-truth distribution as a product of two com-
ponents:

p∗α(s) ∝ pθ(s)αp(s;µ, σ)(1−α),

where pθ(s) is an autoregressive distribution with
parameters θ. The probability p(s;µ, σ) is con-
structed by p(s;µ, σ) ∝ exp(x(s)), where x(s) ∼
Laplace(µ, σ) is a fixed random sample for each s,
and α ∈ [0, 1].

We implement pθ using a randomly initialized
LSTM neural network, with two layers and 512
LSTM units in every layer. We build p(s;µ, σ)
with µ = 0.0 and σ = 1.0.

We build the ground-truth distribution to reflect
some properties of real data. First, real data has
strong statistical dependencies among the tokens
within each sequence. We induce these dependen-
cies by assuming that each sequence is produced
from left to right by generating each token condi-
tioned on the previously generated sub-sequences
of tokens. We implement this procedure using the
LSTM neural network.

Second, there exist exceptional sequences in real
data which receive high probability even though
those sequences do not reflect statistical dependen-
cies mentioned above. We build another distribu-
tion component in order to introduce exceptions
in a way that there are no statistical dependencies
in the given sequence. We use independent sam-
ples from a Laplace distribution as unnormalized
probabilities of every sequence from the sequence
space Ω. We thus ensure that there are no statistical
dependencies among the tokens under this unstruc-
tured distribution.

We thus construct the product of two distribu-
tions described above so that it exhibits structured
and unstructured aspects of the generating process.
The mixing coefficient α allows us to interpolate
between the heavily structured to heavily unstruc-
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Figure 1: Mode recovery cost of the empirical distribu-
tion from the ground-truth distribution as a function of
k while Ntrain = 5× 105.

tured ground-truth distributions. We call it semi-
structured when 0 < α < 1.

Empirical distribution. We create each empiri-
cal distribution pemp (Eq. 2) by drawing samples
with replacement from the ground-truth distribu-
tion. We sample a training multi-set and a valida-
tion multi-set, then form the empirical distribution
with their union . We denote the size of the training
dataset as Ntrain, and set the size of the validation
set to .05×Ntrain.

Learned distribution. We obtain each learned
distribution pmodel by training an LSTM model on
the training dataset Dtrain using maximum likeli-
hood (Eq. 1). We vary the complexity of the learned
distribution using the number of LSTM units of ev-
ery layer of the LSTM neural network from the set
Nmodel hs ∈ {128, 512}. Variable-length sequences
are padded with a 〈pad〉 token in order to form
equal-length batches of 5120 sequences. We use
the Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 10−4. We compute validation loss
every 5×102 steps, and apply early stopping with a
patience of 5 validation rounds based on increasing
validation loss. We train the model for up to 2×104

steps. After training, the checkpoint with the low-
est validation loss is selected to parameterize the
learned distribution pmodel.

Decoding-induced distribution. We form
decoding-induced distributions (Eq. 3) using beam
search and ancestral sampling. For beam search,
we set Nbeam = 500. For ancestral sampling, we
sample sequences and discard duplicates until a
given number of unique sequences, Nanc = 500,
are obtained.

Randomness. To account for randomness that
occurs when initializing the ground-truth distribu-
tion, sampling the empirical distribution, and using
ancestral sampling during decoding, we run each
configuration of the learning chain (i.e. ground-
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Figure 2: Mode recovery cost of the empirical distribu-
tion from the ground-truth distribution as a function of
Ntrain while k = 200.

truth, empirical, learned, and decoding-induced
distributions) with 10 different random seeds, and
report the median and 25-th and 75-th quantiles, if
available, of each evaluation metric.

6 Mode recovery in the learning chain

We use our testbed to empirically study mode re-
covery degradation by measuring mode recovery
cost in the data collection, learning, and decoding,
stages of the learning chain. We use k ≤ 500.

Data collection: recovering ground-truth
modes with the empirical distribution. We
start by asking: does mode degradation happen
during data collection? We fix Ntrain = 5 × 105

and compute mode recovery cost from the ground-
truth distribution with the empirical distribution
for the range of k ≤ 500 presented in Fig.1 us-
ing three configurations of ground-truth distribu-
tions. It shows that mode recovery cost grows as k
increases. Furthermore, we observe different pat-
terns of mode recovery cost given each choice of
the ground-truth distribution.

We observe distinct patterns of mode recovery
with either structured (α = 1.0) and unstructured
(α = 0.0) ground-truth distributions. We found
that the structured ground-truth distribution assigns
higher probabilities to shorter sequences because
of LSTM neural network and autoregressive fac-
torization. This implies that sequences which are
sorted w.r.t. their probabilities are also sorted w.r.t.
their lengths. Because of this property the empiri-
cal distribution can recover modes from the struc-
tured ground-truth distribution almost perfectly for
particular k. In the case of the unstructured ground-
truth distribution mode recovery cost is lower com-
pared to other cases. This ground-truth distribution
has no statistical dependencies within modes which
makes it less interesting to us due to the lack of
similarity with real data.

Finally, in the case of the semi-structured ground-
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Figure 3: Mode recovery cost reduction log-rate be-
tween empirical and learned distributions from the
ground-truth distribution as a function of k while
Ntrain = 5× 105.

truth distribution (α = 0.3) the cost of recover-
ing its modes grows increasingly as k increases.
In other words, empirical distributions recover
modes from ground-truth distributions less effec-
tively when latter exhibit statistical dependencies
as well as many exceptional sequence probabilities.

Now we focus on the influence of the train-
ing set size Ntrain on mode recovery during data
collection. We fix k = 200 and compute mode
recovery cost from the ground-truth distribution
using the empirical distribution when Ntrain ∈
{105, 5× 105, 106, 5× 106, 107}, shown in Fig.2.
Mode recovery cost naturally decreases as we in-
crease the number of training instances as seen on
the right-most side of Fig.2. The left-most side is
more interesting to us because it corresponds to val-
ues of Ntrain that reflect real world problems. For
instance, in the case of Ntrain = 105 it is signifi-
cantly more costly to recover modes from the semi-
structured ground-truth distribution compared to
both structured and unstructured variants. We thus
conclude that mode recovery degradation happens
already during data collection, and that parameteri-
zation of ground-truth distributions impacts mode
recovery cost.

Learning: recovering modes with the learned
distribution. The next stage in the chain is learn-
ing, pemp�learning pmodel, in which we train a
model using a training dataset with the expectation
that the model will match the ground-truth distribu-
tion. Our experiments center on the question: how
does mode recovery degradation in the learning
stage compare to that of the data collection stage?
For instance, we anticipate that the learned model
will have a mode recovery cost that is at least as
bad as that of the empirical distribution.

We measure the mode recovery cost reduction
log-rate from empirical to learned distributions,
log

Ok(p∗α‖pemp)
Ok(p∗α‖pmodel)

. Fig.3 shows the reduction log-

rate as a function of k with fixed Ntrain = 5× 105,
for three different ground-truth distributions. We
observe three different cases, with a clear depen-
dency on what kind of data was used during learn-
ing.

Learning with data coming from the unstructured
ground-truth distribution (α = 0.0) results in mode
recovery cost reduction log-rate being close to zero.
This implies that the underlying LSTM model is
able to memorize the unstructured data points com-
ing from the empirical distribution, but it can not
recover any other modes from the ground-truth dis-
tribution.

With the structured ground-truth distribution
(α = 1.0), we observe positive log-rate for some
values of k. This means that the learned distribu-
tion is able to recover modes of the ground-truth
distribution at a lower cost than the empirical distri-
bution does. Similarly to data collection stage, this
largely happens due to the property of LSTM to put
high probabilities on short sequences. The learned
distribution’s ability in mode recovery goes above
that of the empirical distribution when there is a
match between the parameterization of models be-
hind the ground-truth distribution and the learned
distribution.

In the case of the semi-structured ground-truth
distribution (α = 0.3), the learned distribution
has severe mode recovery degradation even with
smaller values of k (left-most side of Fig.3). The
model is unable to perfectly learn an underly-
ing dataset which has a few statistical exceptions
within it.

In addition to our observations about recover-
ing modes from ground-truth distributions, Fig.4
shows at what cost modes of each empirical dis-
tribution are recovered by the learned distribution
as a function of Ntrain. The learned distribution
recovers modes of the empirical distribution with
the highest cost when the latter was induced us-
ing the semi-structured ground-truth distribution.
Mode recovery cost of all empirical distributions
naturally decreases as number of training instances
Ntrain becomes unrealistically high. We conjecture
that the combination of sequences with statistical
dependencies and sequences which do not share
any statistical dependencies in the dataset makes
the learned distribution struggling at mode recovery
from both ground-truth and empirical distributions.

We conclude that properties of ground-truth dis-
tributions have direct impacts on the ability of the
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Figure 4: Mode recovery cost of the learned distribu-
tion from the empirical distribution as a function of
Ntrain while k = 200.

learned distributions to recover modes from ground-
truth and empirical distributions. Learning strug-
gles to capture all patterns from the underlying
distributions when the latter exhibit exceptions in
statistical dependencies within data points.

Decoding: recovering modes with the decoding-
induced distribution. The final stage in the
learning chain is decoding, pmodel�decoding pF ,
in which we use a decoding algorithm F to obtain
highly-probable sequences. We study both a deter-
ministic decoding algorithm, implemented using
beam search, and a stochastic decoding algorithm,
implemented using ancestral sampling. Our experi-
ments are centered on two questions: (1) how do
the choices made earlier in the learning chain af-
fect the decoding behavior? and (2) how is this
behavior affected by the choice of the decoding
algorithm?

We consider six different datasets that we
train models on, each of which is a combina-
tion of the ground-truth distribution where α ∈
{0.0, 0.3, 1.0}, and the number of training points
Ntrain ∈ {5× 105, 5× 106}. Our previous analysis
revealed each of those datasets leads to a substan-
tially different ability of the learned distributions
to recover modes from earlier distributions along
the learning chain. We set Nmodel hs to be equal to
512. Our choice of decoding algorithms results in
decoding-induced distributions with a limited sup-
port. Hence the induced distribution pF often fails
to recover modes of distributions from the earlier
stage of the chain especially as k increases. As we
described in Sec. 3, we use the k-mode set overlap
Ik(·‖pF ) to examine the degree to which a given
decoding algorithm F fails at mode recovery.

First, we study how well the decoding algorithm
recovers modes from the learned distribution. Fig.5
shows k-mode set overlap between learned and
decoding-induced distributions using both beam
search (left) and ancestral sampling (right). Both al-
gorithms fail increasingly more often as k increases.

Ancestral sampling fails substantially more often
than beam search. This is expected given that an-
cestral sampling was not designed to find highly
probable sequences, unlike beam search. Both of
these decoding algorithms fail to recover modes
from the learned distribution most when the learned
distribution was obtained using the semi-structured
ground-truth distribution (α = 0.3), regardless of
the size of the dataset. In other words, the choices
made earlier along the learning chain impact the
decoding-induced distribution’s ability to recover
modes from the learned distribution, regardless of
which decoding algorithm was used.

Second, we investigate how the choice of the de-
coding algorithm influences the difference in how
the decoding-induced distribution recovers modes
of ground-truth and learned distributions. We thus
look at the k-mode set overlap reduction from
ground-truth to learned distributions (Ik(p∗α‖pF )−
Ik(pmodel‖pF )) for both beam search and ancestral
sampling. The positive overlap reduction in Fig.6
means that the decoding algorithm fails more to
recover modes from the learned distribution than
from the ground-truth distribution.

Each decoding algorithm shows a different pat-
tern of the overlap reduction. Reduction is more or
less flat and is close to zero for ancestral sampling
regardless of the choice of the dataset. It is, how-
ever, different with beam search where we have
three observations. First, the reduction overlap de-
viates from zero as k increases. Second, with the
semi-structured ground-truth distribution (α = 0.3)
the overlap deviates most, which is then followed
by the unstructured variant (α = 0.0). Third, the
number of training points Ntrain leads to significant
difference in the case of the semi-structured distri-
bution. Reduction overlap goes very negative with
the smaller number of training instances, while the
trend flips when we have ten times more data. We
thereby conclude that the pattern of mode recovery
degradation along the entire learning chain depends
on the choice of the decoding algorithm.

7 Conclusion

In this paper, we studied the propensity of neu-
ral autoregressive sequence models to assign high
probabilities to sequences that differ from those in
the ground-truth distribution. To measure this phe-
nomenon, we defined mode recovery cost, which
measures a distribution’s ability to recover the
highly probable sequences of another distribution.
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of k. Choices made earlier in the learning chain (including ground-truth distribution, data collection and learning)
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Figure 6: k-mode set overlap reduction from the ground-truth distribution to the learned distribution using the
decoding-induced distribution as a function of k. The choice of the decoding algorithm affects the pattern of mode
recovery degradation along the entire learning chain.

We developed a testbed for evaluating mode recov-
ery cost throughout the entire learning chain.

We provided evidence of non-trivial mode re-
covery cost within this testbed, and observed that
the increase in the cost relies heavily on the struc-
turedness of the ground-truth distribution. Mode
recovery from earlier distributions was more costly
along the learning chain when the ground-truth
distribution was constructed as a product of fully-
structured and fully-unstructured distributions such
that it reflects patterns in real data.

Mode recovery cost at each stage depended
on all the choices made earlier at all the previ-
ous stages. The empirical distribution induced
during data collection recovered modes from the
ground-truth distribution imperfectly regardless of
the dataset size. It was particularly high when we
used the semi-structured ground-truth distribution.
As expected, mode recovery cost was negatively
correlated with a number of training instances.

Mode recovery after learning was directly af-
fected by the choice of the ground-truth distribution
as well. In general, the learned distribution failed to
recover modes from the ground-truth distribution as
well as the empirical distribution does. This trend
flipped, however, when the learned distribution was
parameterized identically to the ground-truth dis-
tribution. Distributions induced during decoding
recovered modes of learned distributions with sig-

nificantly different costs depending on all choices
made at previous stages of the learning chain. The
choice of decoding algorithm was also found to
influence patterns of mode recovery cost. Based on
these observations, we conclude that we have to use
the entire learning chain to study mode recovery in
neural autoregressive sequence modeling.

Future directions. We highlight three main di-
rections of research based on our findings and con-
clusions. First, mode recovery along the learning
chain must be studied in the context of real world
problems. To do so, there is a need for future work
on approximation schemes of mode recovery cost
computable in real tasks. Second, the relationship
between the ground-truth and learned distributions
may be changed to better match real-world cases,
for instance by considering structured ground-truth
distributions that are less similar to the learned
model family, or unstructured components that are
informed by sequence content. Third, we have con-
sidered standard practices of neural autoregressive
modeling while constructing the learning chain.
Extending the learning chain to study the effects
of new approaches such as knowledge distillation
(Kim and Rush, 2016) or back translation (Sennrich
et al., 2016) is another fruitful direction for future
research.
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Erenay Dayanik1, André Blessing1, Nico Blokker2, Sebastian Haunss2,
Jonas Kuhn1, Gabriella Lapesa1, and Sebastian Padó1
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Abstract

The analysis of public debates crucially re-
quires the classification of political demands
according to hierarchical claim ontologies (e.g.
for immigration, a supercategory “Controlling
Migration” might have subcategories “Asylum
limit” or “Border installations”). A major chal-
lenge for automatic claim classification is the
large number and low frequency of such sub-
classes. We address it by jointly predicting
pairs of matching super- and subcategories.
We operationalize this idea by (a) encoding
soft constraints in the claim classifier and (b)
imposing hard constraints via Integer Linear
Programming. Our experiments with differ-
ent claim classifiers on a German immigra-
tion newspaper corpus show consistent perfor-
mance increases for joint prediction, in partic-
ular for infrequent categories and discuss the
complementarity of the two approaches.

1 Introduction

Newspaper articles are an invaluable source for the
analysis of public debates. In political science, it
is common to manually annotate the articles by
identifying claims (text spans which report a de-
mand on a specific policy aspect), assigning them
fine-grained claim categories from domain-specific
claim ontologies and attributing them to actors
(e.g., politicians or parties). Actors and claim cate-
gories together can be used to construct expressive
discourse networks (Leifeld, 2016) for in-depth
analysis of debate structure and dynamics.

In line with the trend of applying NLP methods
to questions from political science (e.g., Bamman
and Smith, 2015; Glavaš et al., 2019) claim classifi-
cation has been framed as generic text classification
(Padó et al., 2019). That study however addresses
only coarse-grained categories and reports mixed
results even at that level, with a macro F1 of 46.
This is arguably due to the well-known problems

of fine-grained classification: The larger the set of
classes, the more data would be desirable, while in
actuality, the number of instances per class shrinks
(Mai et al., 2018; Chang et al., 2020).

Our paper aims at developing practically use-
ful models of fine-grained claim classification. Its
main proposal is to exploit the hierarchical nature
of claim ontologies by jointly predicting (frequent)
supercategories and (informative) subcategories.
By enforcing consistency between the levels, the
predictions can profit off each other. We experi-
ment with two operationalizations of this idea. The
first one, Hierarchical Label Encoding (HLE, Shi-
maoka et al. (2017a)) introduces “soft” constraints
through parameter sharing between classes in the
classifier. The second one, Integer Linear Program-
ming (ILP, e.g., Punyakanok et al. (2004)) intro-
duces “hard” constraints in a post-processing step.

Both methods can be applied to a range of claim
classifier architectures. We present experiments
with four architectures on a German manually an-
notated corpus from the so-called refugee crisis in
Germany in 2015. We answer the following ques-
tions: Do HLE and ILP improve the performance
in our experimental setup? (Yes.) Is there comple-
mentarity between them? (Yes.) Does the effect
depend on the underlying architectures. (Broadly,
no.) What types of classes is the improvement most
pronounced for. (Low-frequency ones.)

2 Dataset and Claim Ontology

Our experiments are conducted on an extended
version of the DebateNet-migr15 (Lapesa et al.,
2020).1 This corpus comprises 1361 articles pub-
lished in 2015 on the German quality newspaper
taz. The corpus is annotated manually according
to a two-level claim ontology developed by politi-

1For details on the availability of the dataset and code used
in our experiments, see mardy-spp.github.io
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Original corpus
Code Label f n.sub mean f.sub
1xx Controlling Migration 998 16 62 ± 46.2
2xx Residency 726 18 40 ± 41.2
3xx Integration 475 15 31 ± 35.5
4xx Domestic Security 230 9 25 ± 17.9
5xx Foreign Policy 689 9 76 ± 17.8
6xx Economy 194 12 16 ± 13.1
7xx Society 749 19 39 ± 37.9
8xx Procedures 676 20 33 ± 37.7

(a)

Modified corpus
Code f low mid high
1xx 994 2 3 7
2xx 726 4 4 4
3xx 470 1 3 2
4xx 229 3 3 0
5xx 686 3 2 3
6xx 192 3 2 0
7xx 744 4 3 5
8xx 667 5 3 3

(b)

Table 1: (a): Claim distribution by supercategories: Code; Label; frequency (f ); number of subcategories (n.sub);
mean subcategory frequency with SD (mean f.sub). (b): Claim distribution for each supercategory after very
infrequent classes are merged. low/mid/high represents the distribution of subcategory frequencies.

cal science experts for the migration domain. The
corpus contains 3827 annotated textual spans, each
of which is assigned one or more categories from
the claim ontology described below: spans can be
assigned multiple categories when the statements
touch on more than one policy issue.

Claim ontology Policy debates are inherently
complex, as a reflection of the complexity of
the problems which the policy addresses: in our
case, control of migration, but also integration of
refugees, foreign policy, etc. In our case, the claim
ontology consists of 100 subcategories which are
grouped into 8 supercategories (cf. Table 1a). For
example, ‘border controls’ and ‘quota for refugees’
are subcategories of the supercategory ‘migration
control’. The fine-grained annotation is crucial
to build a satisfactory picture of a policy debate:
what we are interested in is the position of certain
politicians with respect to specific policy aspects
over time (i.e., being in favor or against refugee
quotas), while the supercategories are not expres-
sive enough for the analysis of the debate itself.
At the same time, Table 1a shows the drop in fre-
quency between supercategories (in the hundreds)
and subcategories (in the tens), with pronounced
differences between categories, resulting in a clear
modeling challenge. We return to this point in Sec-
tion 5.

3 Basic Claim Classification

Given the properties described above, we model
claim classification as multi-label classification.
We follow previous work on coarse-grained claim
classification (Padó et al., 2019) in comparing a set

of neural models, ranging from baselines to state-
of-the-art architectures. All models are trained us-
ing cross entropy loss with the sigmoid activation
function. All models except BERT use custom Fast-
Text (Bojanowski et al., 2017) word embeddings
pretrained on a German newswire corpus.2

LSTM This model passes the input through a
single-layer LSTM. The final hidden state is
used as input to a fully connected layer.

BiLSTM A single-layer Bidirectional LSTM
(Graves et al., 2013) traverses the input. The
final hidden states in both directions are con-
catenated and fed to a fully connected layer.

BiLSTM+Attention This model combines the
BiLSTM architecture with the attention mech-
anism described in Shimaoka et al. (2017a).
The input is fed to a single-layer BiLSTM.
Then, the attention-weighted sum of the hid-
den states corresponding to the input sequence
is fed to a fully connected layer.

BERT This is a pretrained BERT (Devlin et al.,
2019) model trained solely on German cor-
pora 3 and a fully connected layer which is
trained while the BERT encoder is fine-tuned.
After each input is encoded, we use the final
hidden state of the first token, corresponding
to the special token [CLS], as the contextual-
ized representation of the input which serves
as input to a fully connected layer.

2Further details regarding the architecture and training
parameters can be found in the appendix.

3https://deepset.ai/german-bert
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4 Integrating Hierarchical Class
Structure

The obvious shortcoming of the model architec-
tures sketched above is that they make the standard
assumption of class independence – even though
we know that the classes in claim classification are
related. We therefore build on the idea that we can
label all documents with both sub- and supercat-
egories during training time, and then encourage
the model to jointly predict categories at both lev-
els so that these predictions are consistent with
one another. The expectation is that this creates
an incentive to learn better representations for the
fine-grained classes. We now sketch two generally
applicable methods that implement this idea.

Hierarchical Label Encoding (HLE). The idea
behind this approach is to inject the inference re-
lation between sub- and supercategories into the
representation learning process. Following Shi-
maoka et al. (2017a), we create a binary square
matrix, S ∈ {0, 1}l×l, where l is the number of
claim classes in dataset. Each cell in the matrix is
filled with 1 either if the column class is subclass
of or same as the row class, and filled with 0 other-
wise. The matrix S is not updated during training
and integrated into models by multiplying it by the
weight matrix W of the final fully connected layer
of each model: p(y = 1) = sigm(h(W>S)>)
where W ∈ Rl×hs, h ∈ R1×hs, |y| = l, and hs is
the size of the hidden state of (Bi)LSTM or BERT.
HLE introduces parameter sharing between classes
in the same hierarchy (e.g. 100 and 101), but does
not guarantee that the prediction output contains
both a super- and a subcategory.

Integer Linear Programming (ILP). ILP has
been applied to enforce linguistically motivated
constraints on predicted structures such as seman-
tic roles (Punyakanok et al., 2004), dependency
parsing (Riedel and Clarke, 2006), or entailment
graphs (Berant et al., 2011). Formally, an integer
linear program is an optimization problem over a
set of integer variables x, given a linear objective
function with a set of coefficients c and a set of lin-
ear inequality (and equality) constraints (Schrijver,
1984):

max cᵀx so that Ax ≥ b

We use ILP to select the most likely legal output
from the probabilities estimated by the classifiers.

Legal outputs are those where (a) for each pre-
dicted subcategory, the matching supercategory is
predicted, and (b) for each predicted supercategory,
at least one matching subcategory is predicted. We
introduce a binary variable xi for each supercate-
gory and subcategory in the claim ontology, indi-
cating whether this class is being predicted. This
makes our task a binary optimization problem, a
subclass of ILP. The coefficients c are given by the
probability estimates of the neural claim classifiers
(NCCs):

ci = PNCC(xi = 1)

The objective function is the log likelihood of the
complete model output, including both predicted
and non-predicted classes:

∑

i

log cixi + log[1− ci](1− xi)

The first constraints we impose on the solution is
that each predicted subcategory must be accompa-
nied by the matching supercategory. Let sup(i) de-
note the supercategory for the subcategory i. Then
this constraint can be formalized as:

for each subcategory xi : xi − xsup(i) ≤ 0

The second constraint is that each predicted su-
percategory is accompanied by at least one if its
subcategories. Let subs(i) denote the set of subcat-
egories for supercategory i. The constraint is:

for each supercategory xi : xi −
∑

j∈subs(i)
xj ≤ 0

ILP has a complementary profile to HLE in enforc-
ing hard constraints on the output, without propa-
gating the errors back to representation learning.

5 Experimental Evaluation

Setup. We remove very infrequent subcategories
in the dataset by applying a threshold of 20 in-
stances. Smaller categories are merged with the
preexisting subcategory x99, which exists for each
supercategory as a ‘catch-all’ category for outlier
cases. After filtering, there are 8 super- and 72
subcategories left in the dataset (cf. Table 1b). We
experiment with four model variations: Plain (base
claim classifiers as in Section 3); ILP and HLE as
described in Section 4; and ILP+HLE.

We split our dataset to train (90%) test (10%)
splits and run the experiments on our own cluster
with two Nvidia GeForce 1080GTX Ti GPUs. For

55



each experiment, we perform grid search guided
by cross-validation on the training set to find the
best hyperparameters. We report Precision, Recall
and F1 scores weighted over all subcategories.

Main Results. Table 2 summarizes the results
of our experiments. In the ‘plain’ setting, LSTM
and BiLSTM perform significantly worse than BiL-
STM+Attention and BERT. This finding is consis-
tent with the generally observed benefit of attention
and previous results by Padó et al. (2019).

The addition of ILP (2nd column) leads to incon-
sistent changes in precision but always yields better
Recall and F-Scores. LSTM and BiLSTM still per-
form significantly worse than the other two models.
When we switch to HLE, all metrics for all models
are boosted significantly, showing that parameter
sharing via the super/sub-category co-occurrence
matrix is a successful across the board. We ob-
serve the largest improvement for BERT, where
HLE yields an improvement of 12 points in F1, and
leads to the overall highest Precision (0.75).

The last column (HLE + ILP) shows a substan-
tial complementarity of the two methods: models
consistently improve over both the HLE only and
ILP only setting. Specifically, HLE+ILP models
achieves better Recall scores than HLE models (+7
points on average) and better Precision (+8 points
on average) scores than ILP models. The effect is
least pronounced for the best architecture (BERT);
nevertheless, BERT with HLE and ILP achieves the
overall highest Recall (0.59) and F-Score (0.60),
corresponding to an improvement of 13 points F1
compared to the ‘plain’ version. The fact that the
F1 boost is fueled mainly by Recall is particularly
promising because optimizing for Recall is the best
strategy when NLP tools are employed in semi-
automatic annotation (Ganchev et al., 2007; Am-
bati et al., 2011).

Frequency Band Analysis. As discussed in the
introductory section, fine-grained classification
struggles in particular with infrequent classes. We
therefore ask how hierarchical class structure af-
fects performance in relation to frequency. To do
so, we analyze the performance of the best architec-
ture (BERT), splitting the fine-grained categories
into three equal-sized frequency bands.4

4Thresholds: high-frequency (265≥f≥ 67), mid-frequency
(65≥f≥ 40) and low-frequency (20≥f≥ 39). Complete lists
of the categories in the frequency bands and detailed results
of other models are available in Table 5 and Table 6 in the
appendix.

The results in Table 3 show that the prediction
quality of plain BERT differs significantly across
frequency bands. It fails badly in the low freq band
(F1=0.1) while doing a fair job in the mid and high
bands (F1=0.42 and 0.57, respectively). Again, we
see consistent improvements for both ILP and HLE,
but the improvements are more substantial for HLE,
in particular for the low-freq band (+27 point F1).
Combining HLE and ILP further increases Recall,
but reduces Precision somewhat.5

In sum, we observe that both ILP and HLE im-
prove fine-grained classification. The parameter
sharing introduced by HLE particularly helps the
lowest-frequency categories and increases both Pre-
cision and Recall. ILP generally boosts Recall
by enforcing that both super- and a subcategories
need to be predicted. There appears to be a mid-
frequency “sweet spot” where this is particularly
effective: Less frequent, and the probability esti-
mates are not reliable enough; more frequent, the
Precision–Recall trade-off is not worth it.

Qualitative Considerations. Finally, we investi-
gate which subcategories benefit most from HLE
and ILP in our best model (BERT). Table 4 again
shows complementarity between HLE and ILP, in-
dicating that a better combination of the two meth-
ods could lead to further improvements. HLE+ILP
overlaps largely with HLE, mirroring the larger im-
pact of HLE. Analysis of these classes shows that
they belong to the mid and low frequency bands.

However, not all low and mid frequency classes
profit equally. To explain this, we note that the fine-
grained classes in the migration ontology differ
substantially with regard to concreteness: While
the high-level category ‘Foreign policy’ (5xx) con-
tains relatively concrete sub-categories (‘Enforcing
Dublin III regulations’ or ‘Expanding the list of
safe countries of origin’), the supercategory ‘So-
ciety’ (7xx) mostly consists of less manifest pol-
icy measures (‘Uphold Human Rights’, ‘Oppose
Xenophobia’). With regard to that distinction, the
highest-gain subcategories are of the concrete kind
(cf. Table 1): 106 (‘Border defence’), 303 (‘Forced
integration’), 801 (‘Constitutional law’), 807 (‘Re-
ducing bureaucracy’), 405 (‘Counterterrorism’).
Conversely, we do not find any subcategories of the
less concrete supercategory 700 (‘Society’).

5We confirmed the relationship between frequency and
performance with a correlation analysis to rule out a binning
artifact. See Table 7 in the appendix.
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Model plain ILP HLE HLE + ILP
P R F1 P R F1 P R F1 P R F1

LSTM 0.50 0.24 0.30 0.45 0.28 0.32 0.60 0.33 0.39 0.52 0.38 0.41
BiLSTM 0.51 0.26 0.32 0.51 0.33 0.38 0.57 0.30 0.36 0.63 0.42 0.48
BiLSTM+Att 0.67 0.39 0.46 0.63 0.42 0.48 0.69 0.41 0.48 0.66 0.46 0.51
BERT 0.61 0.42 0.47 0.56 0.50 0.50 0.75 0.52 0.59 0.66 0.59 0.60

Table 2: Test results (weighted averages for fine-grained claim classification) for four architectures and two meth-
ods to integrate class structure (integer linear programming, hierarchical label encoding). Best results bolded.

Freq band plain ILP HLE HLE + ILP
P R F1 P R F1 P R F1 P R F1

Low freq 0.10 0.10 0.10 0.18 0.14 0.15 0.58 0.31 0.37 0.48 0.31 0.35
Mid freq 0.58 0.36 0.42 0.65 0.47 0.50 0.77 0.55 0.62 0.71 0.63 0.65
High freq 0.73 0.51 0.57 0.60 0.58 0.58 0.78 0.56 0.62 0.67 0.63 0.64

Table 3: Detailed results for BERT architecture: break down by frequency bands of fine-grained classes (highest
F1 score for each frequency band bolded).

Setting Highest Improvement

ILP 204, 499, 507, 508, 803
HLE 106, 303, 314, 801, 807
ILP+HLE 106, 303, 405, 801, 807

Table 4: Subcategories that gain most in F1 score

6 Conclusion

This paper has identified automatic fine-grained
claim classification as a crucial, but underad-
dressed, component of political discourse analy-
sis. We have demonstrated that hierarchical class
structure can be exploited to lift fine-grained claim
classification to a usable level, showing robust im-
provements even for transformer architectures and
in particular for low-frequency claim categories.

Addressing the low-frequency issue is particu-
larly relevant in the broader context of the goals of
political science. Political discourse unfolds over
time, and every prominent issue starts out as infre-
quent. The true dynamics of debates can only be
captured if the classifiers are able to pick up the less
salient categories (Koopmans and Statham, 1999;
Kossinets, 2006). Future work involves investigat-
ing these concerns on a wider range of datasets, as
well as evaluating fine-grained claim classification
for semi-automatic discourse network construction.
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Sebastian Padó, Andre Blessing, Nico Blokker, Ere-
nay Dayanik, Sebastian Haunss, and Jonas Kuhn.
2019. Who sides with whom? towards computa-
tional construction of discourse networks for politi-
cal debates. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2841–2847, Florence, Italy. Association for
Computational Linguistics.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav
Zimak. 2004. Semantic role labeling via integer
linear programming inference. In COLING 2004:
Proceedings of the 20th International Conference
on Computational Linguistics, pages 1346–1352,
Geneva, Switzerland. COLING.

Sebastian Riedel and James Clarke. 2006. Incremen-
tal integer linear programming for non-projective de-
pendency parsing. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing, pages 129–137, Sydney, Australia. As-
sociation for Computational Linguistics.

Alexander Schrijver. 1984. Linear and Integer Pro-
gramming. John Wiley & Sons, New York.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2017a. Neural architectures for
fine-grained entity type classification. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 1271–1280, Valencia,
Spain. Association for Computational Linguistics.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2017b. Neural architectures for
fine-grained entity type classification. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 1271–1280, Valencia,
Spain. Association for Computational Linguistics.

Appendix

A Results Details: Results by Frequency
Bands for all Architectures

Table 5 presents Precision, Recall and F1 scores
of models broken down for low, mid and high fre-
quency bands. We observe similar patterns with
other three models: (1) Prediction quality of mod-
els in plain setting differ significantly across fre-
quency bands and all three models perform sig-
nificantly worse on low frequency band and (2)
Extending models with HLE and ILP leads to sig-
nificantly better F1 scores on all frequency bands.

B Results Details: Correlation Analyses

We calculate Spearman’s correlation coefficient
in order to investigate the relationship between
amount of available data for each subcategory and

58



Model Freq band plain ILP HLE HLE + ILP
P R F1 P R F1 P R F1 P R F1

Low freq 0.19 0.07 0.10 0.23 0.08 0.12 0.32 0.11 0.16 0.33 0.18 0.21
LSTM Mid freq 0.57 0.20 0.28 0.53 0.25 0.31 0.66 0.33 0.42 0.58 0.38 0.43

High freq 0.53 0.29 0.35 0.47 0.34 0.37 0.64 0.37 0.42 0.54 0.42 0.45

Low freq 0.24 0.10 0.13 0.35 0.16 0.20 0.15 0.05 0.07 0.27 0.13 0.16
BiLSTM Mid freq 0.54 0.20 0.28 0.56 0.27 0.35 0.68 0.22 0.32 0.54 0.30 0.37

High freq 0.56 0.32 0.37 0.52 0.39 0.43 0.61 0.38 0.44 0.57 0.44 0.47

Low freq 0.10 0.07 0.07 0.23 0.13 0.14 0.17 0.10 0.10 0.24 0.11 0.13
BiLSTM Att Mid freq 0.82 0.47 0.56 0.69 0.45 0.53 0.71 0.46 0.53 0.64 0.52 0.55

High freq 0.74 0.42 0.50 0.69 0.47 0.53 0.79 0.45 0.54 0.75 0.51 0.57

Low freq 0.10 0.10 0.10 0.18 0.14 0.15 0.58 0.31 0.37 0.48 0.31 0.35
BERT Mid freq 0.58 0.36 0.42 0.65 0.47 0.50 0.77 0.55 0.62 0.71 0.63 0.65

High freq 0.73 0.51 0.57 0.60 0.58 0.58 0.78 0.56 0.62 0.67 0.63 0.64

Table 5: Detail results for all architectures by frequency band

performance change of BERT model across set-
tings further. For that, we measure the difference
between BERT model’s subcategory performances
in plan and other settings as well as amount of
data available for each subcategory. Table 6 shows
which subcategory belongs to which frequency
band and Table 7 shows Spearman’s correlation co-
efficients. We observe high negative values almost
always indicating that there is a strong negative
correlation between the amount of data exist for a
subcategory and amount of change in performance
which means that infrequent classes gain most from
ILP and HLE.

Frequency Band Label

111 199 201 209 213 214
LOW 406 408 499 502 505 508

602 603 605 701 706 707
708 801 802 807 811 814

106 107 109 204 211 212
MID 215 301 302 303 307 401

402 405 503 509 601 699
702 711 715 803 804 808

101 102 104 105 108 110
HIGH 190 202 203 207 299 309

399 501 504 507 703 705
709 712 799 805 812 899

Table 6: Lists of the categories in the frequency bands

PAIR P R F

BERT
Plain - ILP -0.20 -0.10 -0.20
Plain - HLE -0.24 -0.31 -0.29

Plain - (ILP+HLE) -0.28 -0.29 -0.32

Table 7: Spearman’s correlation coefficient results be-
tween change in evaluation metrics and subcategory
size for BERT model.

C Training Details

In the LSTM model, we set the number of hid-
den units to 500. We train 300-dimensional Fast-
Text word embeddings on a corpus consisting of
German Newspapers and use them as the input to
LSTM. We use Adam with learning rate of 0.003
as optimizer. Batch size and number of epochs are
set to 16 and 25 respectively.

In the BiLSTM model, we the set number of
units to 500 in each direction and batch size to 16.
The same 300-dimensional word embeddings as
in the LSTM are used. The model is trained with
Adam optimizer and a learning rate of 0.003 for 25
epochs.

In the BiLSTM+Attn model, we used the at-
tention mechanism variant described in Shimaoka
et al. (2017b). We set number of units to 500 in
each direction and batch size to 16. We use the
same 300-dimensional word embeddings used in
LSTM and BiLSTM models, and train model for
20 epochs using Adam optimizer with learning rate
of 0.003.

For the BERT model, we use a cased BERT
variant6 that was trained specifically for German
with default parameters for the number of attention
heads, hidden layers, and the number of hidden
units are 12, 12, and 768, respectively. During fine-
tuning, we use the Adam optimizer with learning
rates of 5e-5, β1 = 0.9, β2 = 0.999, and set the
maximum sequence length to 200, batch size to 16
and norm of maximum gradient to 1.0 and trained
for 20 epochs.

Table 8 and Table 9 show the number of param-
eters in each model and average time required to

6https://deepset.ai/german-bert
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Parameter Numbers

Plain HLE
LSTM 4,731,080 4,731,500
BiLSTM 6,375,080 6,376,000
BiLSTM Att 6,475,180 6,476,100
BERT 109,142,864 109,143,552

Table 8: Number of parameters in each model.

Runtime (in Minutes)
LSTM 1.5
BiLSTM 2.2
BiLSTM Att 4.5
BERT 32.0

Table 9: Average runtime required to train each model

train each model used in our experiments respec-
tively.

Hyperparameter search details We perform
grid search for hyperparameter optimization and
use the hyperparameters leading highest average
F1 score during 5-Fold cross validation. Following
lower and upper bounds have been applied dur-
ing search for each hyperparameter: learning Rate
[1e-4, 5e-2], epoch:[5, 25], batch size:[16, 32].

D Details about Dataset
Figure 1 depicts the number of instances for each
category.

Figure 1: Claim distribution of subcategories. Green
dotted line: boundary between high and mid frequency
bands. Dark blue line: boundary between low and mid
bands.
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Abstract

In this paper, we propose a globally normal-
ized model for context-free grammar (CFG)-
based semantic parsing. Instead of predicting
a probability, our model predicts a real-valued
score at each step and does not suffer from the
label bias problem. Experiments show that our
approach outperforms locally normalized mod-
els on small datasets, but it does not yield im-
provement on a large dataset.

1 Introduction

Semantic parsing has received much interest in the
NLP community (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Jia and Liang, 2016; Guo
et al., 2020). The task is to map a natural language
utterance to executable code, such as λ-expressions,
SQL queries, and Python programs.

Recent work integrates the context-free grammar
(CFG) of the target code into the generation process.
Instead of generating tokens of the code (Dong
and Lapata, 2016), CFG-based semantic parsing
predicts the grammar rules in the abstract syntax
tree (AST). This guarantees the generated code
complies with the CFG, and thus it has been widely
adopted (Yin and Neubig, 2018; Guo et al., 2019;
Bogin et al., 2019; Sun et al., 2019, 2020).

Typically, the neural semantic parsing models
are trained by maximum likelihood estimation
(MLE). The models predict the probability of the
next rules in an autoregressive fashion, known as a
locally normalized model.

However, local normalization is often criticized
for the label bias problem (Lafferty et al., 2001; An-
dor et al., 2016; Wiseman and Rush, 2016; Stanoje-
vić and Steedman, 2020). In semantic parsing, for
example, grammar rules that generate identifiers
(e.g., variable names) have much lower probability
than other grammar rules. Thus, the model will be
biased towards such rules that can avoid predicting

identifiers. More generally, the locally normalized
model will prefer such early-step predictions that
can lead to low entropy in future steps.

In this work, we propose to apply global nor-
malization to neural semantic parsing. Our model
scores every grammar rule with an unbounded real
value, instead of a probability, so that the model
does not have to avoid high-entropy predictions and
does not suffer from label bias. Specifically, we
use max-margin loss for training, where the ground
truth is treated as the positive sample and beam
search results are negative samples. In addition,
we accelerate training by initializing the globally
normalized model with the parameters from a pre-
trained locally normalized model.

We conduct experiments on three datasets: ATIS
(Dahl et al., 1994), CoNaLa (Yin et al., 2018), and
Spider (Yu et al., 2018). Compared with local
normalization, our globally normalized model is
able to achieve higher performance on the small
ATIS and CoNaLa datasets with the long short-term
memory (LSTM) architecture, but does not yield
improvement on the massive Spider dataset when
using a BERT-based pretrained language model.

2 Related Work

Early approaches to semantic parsing mainly rely
on predefined templates, and are domain-specific
(Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005; Kwiatkowksi et al., 2010). Later, researchers
apply sequence-to-sequence models to semantic
parsing. Dong and Lapata (2016) propose to gener-
ate tokens along the syntax tree of a program. Yin
and Neubig (2017) generate a program by predict-
ing the grammar rules; our work uses the TranX
tool (Yin and Neubig, 2018) with this framework.

Globally normalized models, such as the con-
ditional random field (CRF, Lafferty et al., 2001),
are able to mitigate the label bias problem. How-
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ever, their training is generally difficult due to the
global normalization process. To tackle this chal-
lenge, Daumé and Marcu (2005) propose learning
as search optimization (LaSO), and Wiseman and
Rush (2016) extend it to the neural network regime
as beam search optimization (BSO). Specifically,
they obtain negative partial samples whenever the
ground truth falls out of the beam during the search,
and “restart” the beam search with the ground truth
partial sequence teacher-forced.

Our work is similar to BSO. However, we search
for an entire output, and do not train with partial
negative samples. This is because our decoder is
tree-structured, and different partial trees cannot
be implemented in batch efficiently. We instead
perform locally normalized pretraining to ease the
training of our globally normalized model.

3 Methodology

In this section, we first introduce the neural seman-
tic parser TranX, which servers as the locally nor-
malized base model in our work. We then elaborate
how to construct its globally normalized version.

3.1 The TranX Framework

TranX is a context-free grammar (CFG)-based
neural semantic parsing system (Yin and Neubig,
2018). TranX first encodes a natural language input
X with a neural network encoder.

Then, the model generates a program by
predicting the grammar rules (also known as
actions) along the abstract syntax tree (AST)
of the program. In Figure 1, for exam-
ple, the rules generating the desired program
include ApplyConstr(Expr.), ApplyConstr(Call),
ApplyConstr(Attr.), and GenToken(sorted).

In TranX, these actions are predicted in an au-
toregressive way based on the input X and the
partially generated tree, given by

PL(at|a<t, X;θL)=
exp{o(at|a<t, X;θL)}∑

a′t∈At(a<t)

exp{o(a′t|a<t, X;θL)}

(1)

where θL denotes the parameters of the neural net-
work model, and the subscript L emphasizes that
the probability is locally normalized. o(·) denotes
the logit at this step, and at is an action (i.e., gram-
mar rule) among all possible actions at this step
At(·), which is based on previous predicted rules
a<t.

In other words, the prediction probability is nor-
malized at every step, and the training objective is
to maximize

PL(a1:n|X;θL) =
n∏

t=1

PL(at|a<t, X;θL) (2)

where n is the total number of steps.

3.2 Globally Normalized Training

A locally normalized model may suffer from the
label bias problem (Lafferty et al., 2001). This is
because such a model normalizes the probability
to 1 at every step. However, the candidate action
set At(a<t) may have different sizes, and the ac-
tions from a smaller At(a<t) typically have higher
probabilities. Thus, the model would prefer such
actions a<t that will yield smaller At(a<t) in fu-
ture steps.1

We propose to adapt TranX to a global normal-
ized model to alleviate label bias. Instead of pre-
dicting a probability P (at|a<t, X) as in (2), our
globally normalized model predicts a positive score
at a step as

s(at|a<t, X;θG) = exp{o(at|a<t, X;θG)} (3)

where o(·) is the same logit as (1), and θG is the
parameters.

The probability of the sequence a1:n is normal-
ized only once in a global manner, given by

PG(a1:n, X;θG) =
1

ZG

n∏

t=1

s(at|a<t, X;θG)

(4)

where ZG =
∑

a′
1:n

∏n
t=1 s(a

′
t|a′<t;θG) is the par-

tition function.
A globally normalized model alleviates the label

bias problem, because it does not normalize the
probability at every prediction step, as seen from
(4). Thus, it is not biased by the size of At(a<t).

The training objective is still to maximize the
likelihood, albeit normalized in a global way. How-
ever, computing the partition function ZG requires
enumerating all combinations of actions a′1:n in
the partition function of (4), which is generally
intractable.

In practice, the maximum likelihood training
is approximated by max-margin loss between a
positive sample a1:n and a negative sample a−1:n,

1Or more generally, the model prefers At(a<t) with a
smaller entropy.
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Expr.

Call

Attr.
Name Keyword

file.csv
pandas

read_csv

Input: pandas read top 100 lines in file.csv

Output: pands.read_csv(file.csv,nrows=100)

Figure 1: An example of generating a Python program
with TranX.

given by

L(a−1:n,a1:n) = max{0, o(a−1:n|X)− o(a1:n|X) + ∆}
(5)

where o(a1:n|X) = 1
n

∑n
t=1 o(at|a<t) is the aver-

age of logits. ∆ is a positive constant.
The positive sample is simply the ground truth

actions, whereas the negative samples are obtained
by beam search. In other words, we perform beam
search inference during training, and the sequences
in the beam (other than the ground truth) serve as
the negative samples.

Similar to MLE training for (4), the max-margin
loss increases the logits of the ground truth sample,
while decreasing the logits for others. It is noted
that the quality of negative samples will largely af-
fect the max-margin training, as only a few samples
are used to approximate ZG.

To address this issue, we initialize the parameters
of the globally normalized model θG with θL in
a pretrained locally normalized model. Thus, our
negative samples are of higher quality, so that the
max-margin training is easier and more stable.

3.3 Handling the Copy Mechanism

TranX has a copy mechanism (Gu et al., 2016) as
an important component for predicting the terminal
nodes of the AST, as the target program largely
overlaps with the source utterance, especially for
entities (e.g., “file.csv” in Figure 1). In the locally
normalized TranX, the copy mechanism marginal-
izes the probability of generating a token in the
vocabulary and copying it from the source:

PL(at = GenToken[v] |a<t, X)

= P (gen |a<t, X)P (v | gen,a<t, X)

+ P (copy |a<t, X)P (v | copy,a<t, X)

where GenToken[·] denotes generating a terminal
token v. P (copy|·) is the predicted probability of
copying the token v from the source utterance, and
P (gen|·) = 1 − P (copy|·) is the probability of
generating v from the vocabulary.

However, the copy mechanism cannot be directly
combined with global normalization, because we
use unbounded, real-valued logits instead of prob-
abilities. This would not make much sense when
both logits are negative, whereas their product is
positive.

Therefore, we propose a variant of copy mech-
anisms in the globally normalized setting. Specif-
ically, we keep the probabilities P (copy|·) and
P (gen|·), and use them to weight the logits of gen-
erating and copying a token v, given by

o(at = GenToken[v] |a<t, X)

= P (gen |a<t, X)o(v | gen,a<t, X)

+ P (copy |a<t, X)o(v | copy,a<t, X)

Here, o(at = GenToken[v] | ·) is a linear inter-
polation of two logits, and thus fits the max-margin
loss (5) naturally.

4 Experiments

Datasets. We conduct experiments on three bench-
mark parsing datasets: ATIS (Zettlemoyer and
Collins, 2007), CoNaLa (Yin et al., 2018), and
Spider (Yu et al., 2018), which contain 4473, 2379,
and 8695 training samples, respectively.

It should be pointed out that much work adopts
data anonymization techniques to replace entities
with placeholders (Dong and Lapata, 2016; Yin
and Neubig, 2017, 2019; Sun et al., 2020). This
unfortunately causes a large number of duplicate
samples between training and test. This is recently
realized in Guo et al. (2020), and thus, in our work,
we only compare the models using the original,
correct ATIS dataset.

Settings. Our globally normalized semantic
parser is developed upon the open-sourced TranX2.
We adopt the CFG grammars provided by TranX
to convert lambda calculus and Python programs
into ASTs and sequence of grammar rules (actions).
For ATIS and CoNaLa datasets, we use long LSTM
models as both the encoder and the decoder. Their
dimensions are set to 256. For the Spider dataset,
we use a pretrained BERT model3 (Devlin et al.,

2https://github.com/pcyin/tranX
3Specifically, we use the RoBERTa-base model (Liu et al.,

2019) as we find it performs better than the original BERT-
base model (Devlin et al., 2019).
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Dev Test
Jia and Liang (2016)

No copy N/A 69.90%
Copy N/A 76.30%
Copy + data recombination N/A 83.30%

Guo et al. (2020)
No copy N/A 68.70%
Copy N/A 75.70%

Ours
No copy 80.00% 71.49%
Copy 79.15% 75.63%
Copy + global 81.61% 76.32%
Copy + global + emb 84.53% 78.16%

Table 1: Exact match accuracy on the ATIS dataset.

2019) and the relation-aware Transformer (Wang
et al., 2020) as the encoder and an LSTM as the de-
coder. The architecture generally follows the work
by Xu et al. (2021).

The beam size is set to 20 to search for negative
samples, and is set to 5 for inference. The margin
∆ in (5) is set to 0.1. We use the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 5e-4
for training.

For both ATIS and CoNaLa datasets, we report
the best results on the development sets and the
corresponding results on the test set. For the Spider
dataset, we only report the results on the develop-
ment set as the ground truth of the test set is not
publicly available.

5 Results

ATIS dataset. Following Yin and Neubig (2017);
Sun et al. (2020), we report the exact match accu-
racy for ATIS. We first replicate locally normalized
models with and without the copy mechanism and
achieve similar results to Jia and Liang (2016) and
Guo et al. (2020), shown in Table 1. This verifies
that we have a fair implementation and are ready
for the study of global normalization.

We observe that the copy mechanism largely af-
fects the accuracy on the test set, although it has
little effect on the development set. This is because
the training and validation distributions closely re-
semble each other, whereas the test distribution
differs largely. Therefore, the copy mechanism is
important for handling unseen entities in the test
set, and our proposed copy variant in Section 3.3 is
also essential to globally normalized models.

We then train our model with the max-margin
loss. Our globally normalized model consistently
improves the accuracy on both development and

Dev Test
Yin and Neubig (2018) N/A 24.35%

+ Reranking N/A 30.11%
Ours (local) 33.46% 25.84%

+ Reranking 35.82% 28.39%
+ Global 34.75% 27.08%

Table 2: BLEU score on the CoNaLa dataset.

Dev Acc.
Rubin and Berant (2020) 73.4%
Yu et al. (2021) 74.7%
Ours (local) 73.79%

+ Global 73.69%

Table 3: Exact match accuracy on the Spider dataset.
Test performance requires submissions to the official
website. We report validation performance instead.

test sets, compared with its locally normalized
counterpart. This shows the effectiveness of our
approach.

In addition, we notice that a large number of en-
tities in ATIS have a form like “ap:denvor” (Denver
Airport). We thus use the combination of character-
level ELMo embeddings (Peters et al., 2018) and
word-level GloVe embeddings (Pennington et al.,
2014). This further improves the accuracy, which
outperforms the previous methods by∼1.9% in the
setting without data augmentation.

CoNaLa dataset. For CoNaLa, BLEU is treated
as the main metric in previous work (Yin and Neu-
big, 2019), because accuracy is generally very low
(<3%) on this dataset. From Table 2, we observe
that our globally normalized model improves the
BLEU scores on both the development and test
sets compared with the locally normalized baseline.
Such improvement is consistent with that on ATIS.

We further compare our model with Yin and
Neubig (2019), which reranks beam search results
by heuristics. Our method is outperformed by the
reranking approach. Note that reranking can be
considered as alleviating label bias with postpro-
cessing, as the locally normalized model fails to
assign the correct sequence with the highest joint
probability. However, the reranking method re-
quires training several reranking scorers, combined
with an ad hoc feature (namely, length). By con-
trast, our global normalization does not rely on ad
hoc human engineering.

Spider dataset. Table 3 lists the results on the
Spider dataset. Here, our locally normalized model
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uses BERT as the encoder, and its performance is
on par with that from the recent state-of-the-art ap-
proaches (Rubin and Berant, 2020; Yu et al., 2021).
However, our global normalization does not im-
prove the performance. It is noted that BERT is a
more powerful model than LSTM, and Spider has
a much larger training set than CoNaLa and ATIS.
We conjuncture that BERT learns the step-by-step
local prediction probability very well, which in turn
yields a satisfying joint probability and largely mit-
igates label bias by itself. Therefore, the globally
normalized model does not exhibit its superiority
on the Spider dataset.

6 Conclusion

In this work, we propose to apply global normal-
ization for neural semantic parsing. Our approach
predicts the score of different grammar rules at an
autoregressive step, and thus it does not suffer from
the label bias problem. We observe that our pro-
posed method is able to improve performance on
small datasets with LSTM-based encoders. How-
ever, global normalization becomes less effective
on the large dataset with a BERT architecture.
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Abstract
In this work, we empirically compare span
extraction methods for the task of semantic
role labeling (SRL). While recent progress
incorporating pre-trained contextualized rep-
resentations into neural encoders has greatly
improved SRL F1 performance on popular
benchmarks, the potential costs and benefits
of structured decoding in these models have
become less clear. With extensive experi-
ments on PropBank SRL datasets, we find
that more structured decoding methods out-
perform BIO-tagging when using static (word
type) embeddings across all experimental set-
tings. However, when used in conjunction
with pre-trained contextualized word represen-
tations, the benefits are diminished. We also
experiment in cross-genre and cross-lingual
settings and find similar trends. We further per-
form speed comparisons and provide analysis
on the accuracy-efficiency trade-offs among
different decoding methods.

1 Introduction

Semantic role labeling (SRL) is a core natural lan-
guage processing (NLP) task that aims to identify
predicate-argument structures in text (Gildea and
Jurafsky, 2002; Palmer et al., 2010). Following
the neural encoder-decoder paradigm, we can view
an SRL model as combining an encoder, which
builds hidden representations for the input words,
with a decoder, which extracts the argument spans
based on the encoded representations. While recent
SRL models achieve high performance on popular
benchmarks (Zhou and Xu, 2015; He et al., 2017;
Tan et al., 2018; Strubell et al., 2018; Shi and Lin,
2019), most improvements come from better neu-
ral encoders, such as the Transformer (Vaswani
et al., 2017) and pre-trained contextualized word
representations, such as BERT (Devlin et al., 2019).
However, influence on end-task performance due
to the choice of decoder has become less clear.

B-A0  I-A0       B-V       B-A1 B-A3 I-A3  I-A3   O

A0 A1 A3

A0 A1 A3

(a)BIO-based:   TV stations bought them for record prices .

(b)Span-based:  TV stations bought them for record prices .

(c)Two-step:      TV stations bought them for record prices .

Figure 1: Illustration of decoding methods explored
in this work. For the predicate “bought”, we iden-
tify argument spans by: (a) BIO-based sequence label-
ing; (b) direct span-based extraction; (c) two-step ap-
proach: first identifying head words, then expanding to
full spans by deciding left and right boundaries.

In this work, we perform an empirical investiga-
tion of different decoding methods for span extrac-
tion, as illustrated in Figure 1. The most common
strategy casts the task as a sequence labeling prob-
lem using the BIO-tagging scheme (Zhou and Xu,
2015; He et al., 2017; Tan et al., 2018; Strubell
et al., 2018; Shi and Lin, 2019). While this ap-
proach is simple, it does not directly model the
arguments at the span level. Alternatively, the span-
based method directly builds representations for all
possible1 spans and selects among them (He et al.,
2018a; Ouchi et al., 2018). Though this approach is
straightforward for explicitly modeling span-level
information, composing a representation for every
span can lead to higher computational cost. In-
spired by dependency-based SRL (Surdeanu et al.,
2008; Hajič et al., 2009), a third option first identi-
fies a head word then decides the span boundaries.
This two-step strategy has been explored in previ-
ous work on information extraction (Peng et al.,
2015; Lin et al., 2019; Zhang et al., 2020), and we
apply it here to SRL. Compared with the sequential
BIO-tagger, the latter two approaches more directly
model the argument span structures; we thus refer

1Up to a fixed length, decided as a hyperparameter.
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to them as more structured decoders.
We perform careful comparisons of these decod-

ing methods upon the same encoding backbone,
based on a deep Transformer encoder. We first ex-
periment in the standard fully-supervised settings
on English PropBank datasets (CoNLL-2005 and
CoNLL-2012). The results show that more struc-
tured decoders, especially the two-step approach
with syntactic guidance, consistently perform bet-
ter than BIO-tagging when using static word em-
beddings. However, if including strong contex-
tualized BERT embeddings, the benefits of more
structured decoding are diminished and the sim-
plest BIO-tagging method performs well across dif-
ferent experimental settings. Error analysis shows
that contextualized embeddings help in deciding
span boundaries. Furthermore, we explore cross-
genre and cross-lingual settings on the CoNLL-
2012 datasets, and find similar trends. Finally,
we perform speed comparisons and analyze the
accuracy-efficiency trade-offs among different de-
coding methods.

2 Model

For a given predicate,2 SRL aims to extract all argu-
ment spans and assign them role labels. To model
this task, we follow the neural encoder-decoder
paradigm: the encoder produces hidden representa-
tions for the input words, upon which the decoder
decides the structured outputs. All our models
adopt the same encoding architecture: a deep Trans-
former encoder (Vaswani et al., 2017), which has
been shown effective for SRL (Tan et al., 2018;
Strubell et al., 2018). For a given input sequence
of words {w1, . . . , wn}, we obtain their contextu-
alized representations {h1, . . . , hn} from the en-
coder. Upon these, we stack different decoders to
extract the argument spans corresponding to differ-
ent extraction strategies, which will be described
in the following.

2.1 BIO-based

Since argument spans do not overlap in the datasets
we explore, the BIO-tagging scheme (Ramshaw
and Marcus, 1999) can be utilized to extract them,
casting SRL as a sequence labeling problem.

For each word, we feed its representation h to a
multi-layer perceptron (MLP) based scorer, which
assigns the scores of the BIO tags. Assuming that

2In this work, we focus on argument extraction and assume
given predicates.

we have k possible argument roles in the output
space, each of them will have its “B-” and “I-” tags.
Together with the “O” (NIL) tag, the tagging space
has a dimension of 2k + 1.

Furthermore, we consider the option of adopting
a standard linear-chain conditional random field
(CRF; Lafferty et al., 2001) to model pairwise tag-
ging transitions. If adopting the CRF (BIO w/
CRF), we train the model with sequence-level nega-
tive log likelihood and use the Viterbi algorithm for
inference. If not using the CRF (BIO w/o CRF), we
simply use tag-level cross entropy as the learning
objective and perform argmax greedy decoding at
inference time, following Tan et al. (2018).

2.2 Span-based

In the span-based method, we build neural repre-
sentations for all candidate spans and directly select
and assign role labels (or NIL). Following He et al.
(2018a), for a span a, we compose its represen-
tation from start and end points, soft head-word
vectors and span width features by concatenation:

g(a) = [hstart(a), hend(a), soft(a),width(a)]

Here, soft(a) denotes a soft-head representation
obtained from an attention mechanism:

soft(a) =
∑

start(a)≤i≤end(a)
att(i, a)hi

att(i, a) =
wT
atthi∑

start(a)≤i′≤end(a)w
T
atthi′

and width(a) denotes a width embedding corre-
sponding to the span size (width).

All valid candidate spans are first assigned an
unlabeled score, using an MLP scorer. This unary
score is then used as the criterion for beam pruning
to reduce the computational costs of full labeling.
Since each predicate will not have too many argu-
ments (most have less than 5), we adopt a fixed
beam size of 10. We also limit the maximum width
of candidate spans to 30, which covers around 99%
of the cases. Surviving candidates are further as-
signed label scores with another MLP scorer, with
which we decide output arguments.

2.3 Two-step

In this approach, we decompose the problem into
two steps: head-selection and boundary-decision.
In the first step, each individual word is directly
scored for argument labels (or NIL). We again
adopt an MLP classifier to obtain the probability
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that a word can be the head of an argument with
label r (r can be NIL). The non-NIL labeled words
are selected as the head words of the arguments.
Since the annotations usually do not contain head
words for the argument spans, we further consider
two strategies to provide supervision for training:

HeadSyntax A straightforward method is
to adopt guidance from syntax. Following
dependency-style SRL (Surdeanu et al., 2008;
Hajič et al., 2009), we use syntactic dependency
parse trees and select the highest word (the one
that is closest to the root) in the span as the head.
In training, we only assign the argument role to
the syntactic head word, and all other words in the
span get a label of NIL.

HeadAuto In this strategy, all words in an argu-
ment span can be considered as the potential head
word. We adopt the bag loss from Lin et al. (2019)
to train the model to automatically identify head
words. Specifically, for a word wi inside an ar-
gument span a which has the role r, the loss is
computed as:

Loss(wi) = δi · [− log p(r|hi)]
+ (1− δi) · [− log p(NIL|hi)]

δi =
p(r|hi)

maxstart(a)≤j≤end(a) p(r|hj)
Here, words that are more indicative for the ar-
gument will be assigned higher probabilities to
the argument role. This will give them larger loss
weights (δ) and thus further encourage them to be
the heads. In this way, the head words are decided
automatically by the model.

In the second step, we determine span bound-
aries for these head words. Here we adopt the span
selection method from extractive question answer-
ing (Wang and Jiang, 2016; Devlin et al., 2019)
using two classifiers to decide the start and end
words ([s, e]) of a span:

p(s, e) = pstart(s) · pend(e)

pstart(s) =
exp scorestart(h′s)∑
i exp scorestart(h′i)

pend(e) =
exp scoreend(h′e)∑
i exp scoreend(h′i)

Here, we first add indicator embeddings to the head
word’s encoder representations to mark its posi-
tions, and then stack one self-attention layer to
obtain head-word-aware representations for the in-

put sequence: {h′1, · · · , h′n}. We further introduce
two linear scorers to assign the start and end scores
for each word, which are further normalized across
the input sequence. For training, the objective is
minimizing the sum of negative log-likelihoods of
picking the correct start and end positions. When
decoding, we select the maximum scoring span
whose boundaries s and e satisfy s ≤ e.

We observe that at inference time, sometimes
different head words may expand to overlapping
spans, which do not appear in the datasets we ex-
plore. To deal with this, we adopt a greedy post-
processing procedure to remove overlapping argu-
ment spans: iterating through all argument spans
ranked by model score and only keeping the ones
that do not overlap with previous surviving ones.

3 Experiments

3.1 Settings

Data The models are evaluated on standard Prop-
Bank datasets from the CoNLL-2005 shared task
(Carreras and Màrquez, 2005) and the CoNLL-
2012 subset of OntoNotes 5.0 (Pradhan et al.,
2013). Table 1 lists the relevant statistics. For
CoNLL-2005, we follow the splits from the
CoNLL-2005 shared task.3 For the English part of
CoNLL-2012, we adopt the data from Pradhan et al.
(2013)4 but follow the splits of the CoNLL-2012
shared task.5 For the Chinese part of CoNLL-2012,
we directly utilize those provided by the CoNLL-
2012 shared task. For evaluation, we adopt the
standard evaluation script of srl-eval.pl.6 For
the “HeadSyntax” method that requires dependency
trees, we convert the original constituencies to Uni-
versal Dependencies (Nivre et al., 2020) using Stan-
ford CoreNLP (Manning et al., 2014) version 4.1.0.
Notice that we only need syntactic information to
be provided during training, since the model pre-
dicts head words itself at test time.

Input Features and Encoder For fair com-
parison, we adopt the same input features, deep
Transformer-based encoders and training schemes
across all experiments. We consider two types
of word features: static word embeddings and

3https://www.cs.upc.edu/˜srlconll/
4https://cemantix.org/data/ontonotes.

html
5https://conll.cemantix.org/2012/
6https://www.cs.upc.edu/˜srlconll/soft.

html
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CoNLL 2005 CoNLL 2012 (English) CoNLL 2012 (Chinese)

Train Dev Test Brown Train Dev Test Train Dev Test

Sent. 39.8k 1.3k 2.4k 0.4k 75.2k 9.6k 9.5k 36.5k 6.1k 4.5k
Pred. 90.8k 3.2k 5.3k 0.8k 188.9k 23.9k 24.5k 117.1k 16.6k 15.0k
Arg. 333.7k 11.7k 19.6k 3.0k 622.5k 78.1k 80.2k 365.3k 51.0k 46.7k

Table 1: Statistics of the datasets: Number of sentences (Sent.), predicates (Pred.) and arguments (Arg.).

pre-trained contextualized embeddings7 from
BERTbase. In the English experiments, we adopt
fastText8 embeddings (Mikolov et al., 2018)
and frozen features from bert-base-cased.
In the cross-lingual experiments, we only
utilize multi-lingual BERT features from
bert-base-multilingual-cased. Be-
fore feeding the word-level features to the encoder,
we concatenate them and apply a linear layer
to project them to the encoding dimension. We
further add indicator embeddings to let the model
be aware of the positions of the predicates. For
both cases of static embedding and BERT features,
we adopt a 10-layer Transformer module as the
encoder. The head number, model dimension
and feed-forward dimension are set to 8, 512
and 1024, respectively. In addition, we adopt
relative positional encodings for the Transformer
(Shaw et al., 2018) since we found slightly better
performance in preliminary experiments.

Training We use the Adam optimizer (Kingma
and Ba, 2014) for training. The learning rate is
linearly increased towards 2e-4 within the first 8k
steps as warm up. After this, we decay the learning
rate by 0.75 each time the performance on the de-
velopment set does not increase for 10 checkpoints.
We train the model for a maximum of 150k steps
and do validation every 1k steps to select the best
model. One model contains around 40M parame-
ters (excluding BERT). For each update, the batch
size is around 4096 tokens. We apply dropout rates
of 0.2 to the hidden layers. For models using static
embeddings, we further replace input words by a
special UNK token with a probability of 0.5 if it
appears less than 3 times in the training set. At
test time, a word is represented by UNK if it is
not found in the collection of static word embed-
dings. All the experiments are run with our own

7We concatenate layer 7, 8 and 9 of BERT hidden repre-
sentations. For words that are split into sub-tokens, we utilize
the representations of the first sub-token.

8https://fasttext.cc/docs/en/
english-vectors.html

Model WSJ Brown OntoNotes

He et al. (2018a) 87.4 80.4 85.5
Ouchi et al. (2018) 87.6 78.7 86.2
Shi and Lin (2019) 88.8 82.0 86.5
Ours (BIO w/ CRF) 87.9 82.1 86.6

Table 2: Comparisons of F1 scores with previous work
in the fully-supervised settings (with single model).

implementation9. All the models are trained and
evaluated on one TITAN-RTX GPU, and training
one model takes around 1 day in our environment.

3.2 Fully-supervised Experiments

We first experiment in the fully-supervised settings
on English data. Table 2 lists the comparisons of
our test results (BIO w/ CRF using BERT features)
to previous work. Generally our model can obtain
comparable results, which verifies the quality of
our implementation.

Tables 3 and 4 list our main comparisons on
the development and test sets. The overall trends
are very similar. For BIO-tagging, incorporat-
ing a structured CRF layer is generally helpful,
which can improve the F1 scores by around 0.5
points. When not using BERT features, more struc-
tured decoders generally perform better than BIO-
tagging. With the head word oracles from the syn-
tax trees, “HeadSyntax” performs the best over-
all. This agrees with Strubell et al. (2018) and
Swayamdipta et al. (2018), showing the helpful-
ness of syntactic information for SRL. However,
when utilizing BERT features, the benefits of more
structured decoders are diminished and the simple
BIO-tagger robustly performs well. It seems that
with a powerful encoder, the choice of the decoder
plays a smaller role for final performance.

To further investigate this phenomenon, we per-
form error analysis on the development outputs of
“BIO (w/ CRF)” and “HeadSyntax,” which are the
two that perform the best overall. We group the
errors into four categories: “Boundary” denotes
that the predicted head words and role labels match

9https://github.com/zzsfornlp/zmsp/
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CoNLL2005 In-domain (WSJ) CoNLL 2012 (OntoNotes)

P R F1 P R F1

Without BERT

BIO (w/o CRF) 83.11 83.89 83.49±0.20 81.43 82.75 82.09±0.22
BIO (w/ CRF) 83.66 84.27 83.96±0.26 82.41 83.77 83.09±0.11
Span 84.60 83.57 84.08±0.23 82.89 83.04 82.96±0.12
HeadSyntax 84.81 84.48 84.65±0.18 83.12 83.42 83.27±0.18
HeadAuto 84.52 84.38 84.45±0.22 82.50 83.16 82.83±0.15

With BERT

BIO (w/o CRF) 86.47 87.50 86.98±0.12 85.22 86.94 86.08±0.15
BIO (w/ CRF) 86.78 87.84 87.31±0.13 85.66 87.19 86.42±0.12
Span 86.94 86.76 86.85±0.16 85.83 86.37 86.10±0.11
HeadSyntax 87.35 87.48 87.41±0.14 86.04 86.79 86.41±0.12
HeadAuto 87.10 87.67 87.38±0.22 85.80 86.75 86.27±0.15

Table 3: Development results for the fully-supervised experiments. All the numbers are averaged over 5 runs with
different random seeds, standard deviations of F1 scores are also reported.

CoNLL 2005 In-domain (WSJ) Out-of-domain (Brown) CoNLL 2012 (OntoNotes)

P R F1 P R F1 P R F1

Without BERT

BIO (w/o CRF) 84.42 84.94 84.68±0.25 73.56 73.03 73.29±0.43 81.74 82.98 82.35±0.24
BIO (w/ CRF) 85.04 85.35 85.20±0.12 74.25 73.92 74.08±0.31 82.79 84.11 83.44±0.21
Span 85.68 84.62 85.14±0.32 75.88 74.23 75.05±0.42 83.42 83.49 83.46±0.15
HeadSyntax 85.84 85.38 85.61±0.11 75.92 74.74 75.33±0.58 83.55 83.82 83.68±0.11
HeadAuto 85.30 85.17 85.23±0.14 74.98 73.85 74.41±0.50 83.09 83.71 83.40±0.09

With BERT

BIO (w/o CRF) 87.21 87.95 87.58±0.28 81.26 81.79 81.52±0.23 85.33 86.97 86.14±0.10
BIO (w/ CRF) 87.54 88.32 87.93±0.16 81.91 82.37 82.14±0.20 85.93 87.32 86.62±0.14
Span 87.75 87.33 87.54±0.14 81.87 81.60 81.73±0.77 85.97 86.26 86.12±0.09
HeadSyntax 87.76 87.96 87.86±0.08 82.10 81.60 81.85±0.90 86.17 86.77 86.47±0.10
HeadAuto 87.70 88.15 87.93±0.12 81.52 81.36 81.44±0.37 86.00 86.84 86.42±0.09

Table 4: Test results of the fully-supervised experiments. All the results are averaged over five runs with different
random seeds, standard deviations of the F1 scores are also reported.
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Figure 2: Error breakdown for “BIO” and “HeadSyn-
tax” on the CoNLL-2005 development set.

the gold ones but the span boundaries are incor-
rect; “Label” denotes that the predicted spans are
correct but the role labels are wrong; “Attachment”
denotes the errors caused by incorrect phrase attach-
ments, while “Others” denotes the remaining errors,
which are other missing and over-predicted argu-

ments. The results are shown in Figure 2. When
not using BERT features, the main advantages of
“HeadSyntax” over “BIO” are on the “Boundary”
and “Attachment” errors, where the former makes
11% fewer “Boundary” and 17% fewer “Attach-
ment” errors. Notice that these two types of errors
are closely related to syntax, and they are mainly
caused by incorrect phrase boundary predictions.
In this way, it seems natural that incorporating syn-
tactic information with head words can be help-
ful in this scenario. Nevertheless, when utilizing
BERT features, these advantages are reduced to a
negligible level. This indicates that BERT may pro-
vide sufficient information overlapping with syntax
to help on boundary decisions.

3.3 Cross-genre Experiments

We further explore English cross-genre settings.
We utilize English CoNLL-2012 subsets of
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nw∗ bc bn mz pt tc wb Avg.

Without BERT

BIO (w/o CRF) 77.51±0.17 59.91±0.31 73.28±0.62 71.15±0.37 81.03±0.31 67.90±0.37 72.36±0.07 71.88
BIO (w/ CRF) 78.42±0.39 60.15±0.40 73.97±0.15 71.37±0.13 81.51±0.36 68.72±0.34 72.54±0.41 72.38
Span 79.08±0.16 62.74±0.49 74.80±0.30 72.77±0.36 82.42±0.41 68.93±0.12 74.17±0.15 73.56
HeadSyntax 79.54±0.37 62.81±0.58 75.06±0.25 73.17±0.32 82.10±0.30 68.74±0.54 74.82±0.19 73.75
HeadAuto 79.04±0.22 61.97±0.30 74.09±0.25 72.56±0.40 81.80±0.40 69.25±0.39 73.96±0.19 73.24

With BERT

BIO (w/o CRF) 83.55±0.24 73.37±0.51 80.02±0.19 78.45±0.34 87.63±0.19 74.89±0.41 79.49±0.29 79.63
BIO (w/ CRF) 83.73±0.28 75.24±0.89 80.64±0.15 78.75±0.56 87.94±0.42 75.38±0.42 79.66±0.39 80.19
Span 83.41±0.18 74.22±0.89 80.85±0.29 78.69±0.39 87.44±0.16 75.05±0.36 79.44±0.33 79.87
HeadSyntax 83.96±0.34 75.98±0.94 80.88±0.17 79.36±0.37 87.40±0.25 75.12±0.41 80.05±0.20 80.39
HeadAuto 83.76±0.28 74.98±0.77 80.69±0.21 79.01±0.27 87.33±0.36 75.66±0.54 79.98±0.10 80.20

Table 5: F1 scores of the (English) cross-genre experiments (averaged over 5 runs with different random seeds).
“*” denotes that models are trained on the “nw∗” portion. “Avg.” denotes macro average over all genres.

bc bn mz

BIO (w/o CRF) 71.19±0.61 77.56±0.68 76.63±0.51
BIO (w/ CRF) 72.11±0.98 76.28±0.61 75.87±0.69
Span 73.30±1.07 79.90±0.58 77.90±0.59
HeadSyntax 75.23±1.00 79.95±0.49 78.69±0.41
HeadAuto 73.60±0.49 78.97±0.53 77.60±0.41

Table 6: F1 scores of the (English) cross-genre exper-
iments (averaged over 5 runs with different random
seeds) on specific genres without excluding auxiliary
predicates (with BERT).

OntoNotes and split the corpus according to the
genres. There are seven genres, including broadcast
conversation (bc), broadcast news (bn), newswire
(nw), magazine (mz), pivot (Bible) (pt), telephone
conversation (tc) and web (wb) text. The mod-
els are trained on the newswire (nw) portion and
directly evaluated on portions of all the genres. Ta-
ble 5 shows the test results. The overall trends
are similar to those in the fully-supervised setting.
Without BERT, more span-aware structured de-
coders perform better by more than for 1 point
compared to BIO-tagging. After including BERT
features, the gaps decrease. Nevertheless, more
structured decoders can still perform competitively.

Note that in this setting, we perform evaluations
with a correction to an annotation inconsistency
that originally favored more structured (direct) de-
coders. We find that there are inconsistent anno-
tations for the predicates of auxiliary verbs across
some genres, we thus exclude them10 for evalua-
tion. In the genres of “bc”, “bn” and “mz”, there
are many more auxiliary verbs annotated than those
in “nw”. Interestingly, if not excluding these exam-

10We exclude [“be.03”, “become.03”, “do.01”, “have.01”].
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Figure 3: F1 results versus genre similarities according
to BERT representations.

ples, the more structured decoders perform better
than BIO-tagging even with BERT, as shown in
Table 6. A possible explanation is that the more
structured decoders usually see more negative ex-
amples during training and might be more conserva-
tive when predicting arguments for these auxiliary
verbs, which do not have any arguments. On the
contrary, the BIO-tagger tends to over-predict ar-
guments in these cases, leading to worse results.
Nevertheless, this phenomenon is only the result of
an annotation inconsistency in the dataset and we
thus exclude these auxiliary verbs from evaluation
in this setting.

We further compare cross-genre results with
genre (domain) similarities. Following Aharoni
and Goldberg (2020), we obtain similarity scores
from target genres to the source genre (nw) by cal-
culating cosine similarity of the centroids of BERT
representations. Specifically, we first compute
sentence-level representations by average pooling
the final hidden vectors with a vanilla BERT, then
the genre-level representations are obtained by fur-
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Dev Test

BIO (w/o CRF) 56.73±0.63 56.18±0.61
BIO (w/ CRF) 56.86±1.05 56.47±0.95
Span 56.61±0.51 55.97±0.39
HeadSyntax 57.05±0.36 56.48±0.34
HeadAuto 57.05±0.59 56.51±0.66

Table 7: Unlabeled F1 scores of English→Chinese
zero-shot cross-lingual experiments (averaged over five
runs with different random seeds).

Gold [你] [在纽约时报上]写了 [一篇文章]
Literally [you] [at New York Times] wrote [an article]

Predicted [你] [在纽约时报上]写 [了一篇文章]

Table 8: A typical error of cross-lingual systems. Here,
the predicate is the underlined “写”(wrote) and the gold
and predicted arguments are presented in [the brack-
ets]. The cross-lingual models wrongly include the ex-
tra auxiliary word “了” in the last argument.

ther averaging all sentence-level ones in the cor-
pus. We show the results of “BIO (w/ CRF)” and
“HeadSyntax” in Figure 3. Generally, F1 scores on
target genres have a weak correlation with genre
similarities to the source (Pearson’s correlation is
0.45). The outlier “pt” is a special case (biblical
text) which mainly contains simple instances.

3.4 Cross-lingual Experiments

We further explore a simple zero-shot cross-lingual
setting. We still take the CoNLL-2012 subset of
the Ontonotes corpus. The models are trained on
the English sets, and then directly applied to the
Chinese sets. This time we exclude word embed-
dings and only use representations from multilin-
gual BERT as the input features, which has shown
to be effective for cross-lingual transfer (Wu and
Dredze, 2019). Since the Chinese and English
PropBanks use different frames, the labeled results
might not be directly comparable. We thus perform
unlabeled training and evaluate unlabeled argument
F1 scores, which reveal how well the models ex-
tract argument spans. We simply collapse all the
role labels into one special “IsArg” label.

The results are listed in Table 7. The trends
are still similar to the previous monolingual ex-
periments with BERT, different decoders obtain
similar results, especially considering the devia-
tions of multiple runs. In this setting, the CRF does
not help as much as in the case of monolingual
experiments. The main reason might be that we
are training unlabeled systems, and the main transi-

Decoding Without BERT With BERT

BIO (w/o CRF) 709.8±10.6 412.3±4.6
BIO (w/ CRF) 497.0±4.5 335.1±4.3
Span 355.8±5.4 261.3±3.7
HeadSyntax 561.6±5.1 372.8±4.5
HeadAuto 454.9±7.9 311.0±5.8

Table 9: Speed comparisons of decoding methods (eval-
uated by number of sequences per second, averaged
over 5 runs, on one TITAN-RTX GPU).
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Figure 4: Comparing speed vs. F1 with different de-
coding methods (on CoNLL05 development set).

tion that CRF is capturing is ”I” after ”B”, which
does not provide too much enhancement. Inter-
estingly, in our preliminary experiments, we also
tried labeled training, and found that the CRF is
actually harmful, since the distributions of the tag
transitions might be different across languages.

We further investigate the systems’ outputs and
find similar error patterns. Table 8 lists a typical
example, where in Chinese the auxiliary word “了”
(which denotes perfective aspect11) is incorrectly
included in the argument. This error is not sur-
prising if considering that in the English training
corpus, the predicate verbs usually have directly-
following arguments. All extraction methods ex-
plored in this work are unlikely to fix such errors
without language-specific knowledge.

3.5 Speed Comparisons

Finally we compare the decoding speed of dif-
ferent extraction methods. Results are shown in
Table 9 and we further compare them against F1
scores in Figure 4. Greedy BIO-tagging (w/o CRF)
obtains the highest speed. However, this comes
with a drop of around 0.5 F1 points without BERT
and 0.3 F1 points with BERT. Although the two-
step approaches require two decoding steps, they

11https://universaldependencies.org/zh/
dep/aux_.html
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are still efficient thanks to the simplicity of both
steps. When trained with syntactic information,
this model is the second best in terms of decoding
speed. On the other hand, even with beam prun-
ing, the span-based decoder still needs to score a
number of span candidates quadratic in the input
sequence length, making it less efficient compared
to other decoders.

4 Related Work

Argument Extraction Before the incorporation
of end-to-end neural models, traditional SRL sys-
tems usually depend on input constituency trees
to obtain argument candidates (Xue and Palmer,
2004; Màrquez et al., 2008). Although straightfor-
ward, this may suffer from error propagation from
syntax parsers. Recent neural systems utilize end-
to-end models to solve the task. Casting SRL as
BIO-based sequence labeling problem is the most
common decoding scheme and can obtain impres-
sive results (Zhou and Xu, 2015; He et al., 2017;
Tan et al., 2018; Strubell et al., 2018; Shi and Lin,
2019). On the other hand, span-based methods (He
et al., 2018a; Ouchi et al., 2018) directly select and
label among argument span candidates. This is ac-
tually similar to the traditional approaches, though
the argument candidates are obtained by the model
rather than from input syntax trees. In addition to
span-based SRL, the focus of this work, there is
another category of dependency-style SRL, which
only requires the extraction of head words of ar-
gument spans (Surdeanu et al., 2008; Hajič et al.,
2009). Inspired by this, for span-based SRL, we
can extract argument head words as the first step
and then expand to the full spans in a second step.
This idea has also been applied in information ex-
traction, such as coreference resolution (Peng et al.,
2015), entity detection (Lin et al., 2019) and event
argument extraction (Zhang et al., 2020). Another
interesting direction is considering the structured
constraints of the arguments, including works on in-
teger linear programming (Punyakanok et al., 2004,
2008), dynamic programming (Täckström et al.,
2015) and structure-aware tuning (Li et al., 2020).

Syntax and SRL There has been discussion of
the relation between syntax and SRL (Gildea and
Palmer, 2002; Punyakanok et al., 2008), consid-
ering the close connections between these two
tasks. Though syntax trees are usually the inputs
to traditional SRL systems, some recent works find
that syntax-agnostic neural models also work well

(Marcheggiani et al., 2017; Cai et al., 2018). Never-
theless, with recent neural models, syntax informa-
tion has still been found helpful for SRL in various
ways, including multi-task learning (Swayamdipta
et al., 2018; Strubell et al., 2018), argument prun-
ing (He et al., 2018b), and tree-based modeling
(Marcheggiani and Titov, 2017; Li et al., 2018;
Marcheggiani and Titov, 2020). In this work, our
“HeadSyntax” decoder incorporates syntax in a par-
tial way, utilizing dependency trees to decide the
head words in training. This method indeed per-
forms the best overall if only adopting static word
embeddings. However, the incorporation of BERT
features diminishes the advantages. This indicates
that BERT may already cover much of the syn-
tactic (surface) features of the input sentences, as
suggested by recent works on BERT interpretation
(Goldberg, 2019; Hewitt and Manning, 2019; Ten-
ney et al., 2019; Clark et al., 2019).

Cross-lingual SRL There has also been increas-
ing interest in cross-lingual transfer for SRL, where
data transfer and model transfer are the main ap-
proaches. Data transfer usually depends on trans-
lation and annotation projection to obtain training
resources for target languages (Padó and Lapata,
2009; Akbik et al., 2015; Aminian et al., 2019; Fei
et al., 2020a; Daza and Frank, 2020). On the other
hand, model transfer techniques directly reuse an
SRL model trained on source languages to trans-
fer to target languages (Kozhevnikov and Titov,
2013; Fei et al., 2020b), based on common repre-
sentations. In particular, the recent development of
multilingual neural representations, such as multi-
lingual BERT, has been shown to be effective for
cross-lingual transfer (Wu and Dredze, 2019; Pires
et al., 2019). In this work, we explore a simple
zero-shot unlabeled setting for cross-lingual SRL.
We leave more explorations on this to future work.

5 Conclusion

In this work, we empirically compare several span
extraction methods for SRL. Extensive results
show that in fully supervised settings, simple BIO-
tagging is a robustly good option when utilizing
BERT features. Similar trends are also found in
cross-genre and cross-lingual settings. We also
analyze the accuracy-efficiency trade-offs for dif-
ferent decoders; although methodologically more
complex, two-step approaches are still efficient in
decoding. Future work could explore other NLP
tasks that require extracting textual spans.
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Sebastian Padó and Mirella Lapata. 2009. Cross-
lingual annotation projection for semantic roles.
Journal of Artificial Intelligence Research, 36:307–
340.

Martha Palmer, Daniel Gildea, and Nianwen Xue. 2010.
Semantic role labeling. Synthesis Lectures on Hu-
man Language Technologies, 3(1):1–103.

Haoruo Peng, Kai-Wei Chang, and Dan Roth. 2015. A
joint framework for coreference resolution and men-
tion head detection. In Proceedings of the Nine-
teenth Conference on Computational Natural Lan-
guage Learning, pages 12–21, Beijing, China. Asso-
ciation for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

76



Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 143–152,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2):257–287.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav
Zimak. 2004. Semantic role labeling via integer
linear programming inference. In COLING 2004:
Proceedings of the 20th International Conference
on Computational Linguistics, pages 1346–1352,
Geneva, Switzerland. COLING.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157–176. Springer.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Peng Shi and Jimmy Lin. 2019. Simple bert models for
relation extraction and semantic role labeling. arXiv
preprint arXiv:1904.05255.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 5027–5038, Brussels, Belgium.
Association for Computational Linguistics.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
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