
Proceedings of the 5th Workshop on Structured Prediction for NLP, pages 53–60
August 1–6, 2021. ©2021 Association for Computational Linguistics

53

Using Hierarchical Class Structure to Improve
Fine-Grained Claim Classification

Erenay Dayanik1, André Blessing1, Nico Blokker2, Sebastian Haunss2,
Jonas Kuhn1, Gabriella Lapesa1, and Sebastian Padó1

1IMS, University of Stuttgart, Germany
2SOCIUM, University of Bremen, Germany

Abstract

The analysis of public debates crucially re-
quires the classification of political demands
according to hierarchical claim ontologies (e.g.
for immigration, a supercategory “Controlling
Migration” might have subcategories “Asylum
limit” or “Border installations”). A major chal-
lenge for automatic claim classification is the
large number and low frequency of such sub-
classes. We address it by jointly predicting
pairs of matching super- and subcategories.
We operationalize this idea by (a) encoding
soft constraints in the claim classifier and (b)
imposing hard constraints via Integer Linear
Programming. Our experiments with differ-
ent claim classifiers on a German immigra-
tion newspaper corpus show consistent perfor-
mance increases for joint prediction, in partic-
ular for infrequent categories and discuss the
complementarity of the two approaches.

1 Introduction

Newspaper articles are an invaluable source for the
analysis of public debates. In political science, it
is common to manually annotate the articles by
identifying claims (text spans which report a de-
mand on a specific policy aspect), assigning them
fine-grained claim categories from domain-specific
claim ontologies and attributing them to actors
(e.g., politicians or parties). Actors and claim cate-
gories together can be used to construct expressive
discourse networks (Leifeld, 2016) for in-depth
analysis of debate structure and dynamics.

In line with the trend of applying NLP methods
to questions from political science (e.g., Bamman
and Smith, 2015; Glavaš et al., 2019) claim classifi-
cation has been framed as generic text classification
(Padó et al., 2019). That study however addresses
only coarse-grained categories and reports mixed
results even at that level, with a macro F1 of 46.
This is arguably due to the well-known problems

of fine-grained classification: The larger the set of
classes, the more data would be desirable, while in
actuality, the number of instances per class shrinks
(Mai et al., 2018; Chang et al., 2020).

Our paper aims at developing practically use-
ful models of fine-grained claim classification. Its
main proposal is to exploit the hierarchical nature
of claim ontologies by jointly predicting (frequent)
supercategories and (informative) subcategories.
By enforcing consistency between the levels, the
predictions can profit off each other. We experi-
ment with two operationalizations of this idea. The
first one, Hierarchical Label Encoding (HLE, Shi-
maoka et al. (2017a)) introduces “soft” constraints
through parameter sharing between classes in the
classifier. The second one, Integer Linear Program-
ming (ILP, e.g., Punyakanok et al. (2004)) intro-
duces “hard” constraints in a post-processing step.

Both methods can be applied to a range of claim
classifier architectures. We present experiments
with four architectures on a German manually an-
notated corpus from the so-called refugee crisis in
Germany in 2015. We answer the following ques-
tions: Do HLE and ILP improve the performance
in our experimental setup? (Yes.) Is there comple-
mentarity between them? (Yes.) Does the effect
depend on the underlying architectures. (Broadly,
no.) What types of classes is the improvement most
pronounced for. (Low-frequency ones.)

2 Dataset and Claim Ontology

Our experiments are conducted on an extended
version of the DebateNet-migr15 (Lapesa et al.,
2020).1 This corpus comprises 1361 articles pub-
lished in 2015 on the German quality newspaper
taz. The corpus is annotated manually according
to a two-level claim ontology developed by politi-

1For details on the availability of the dataset and code used
in our experiments, see mardy-spp.github.io

mardy-spp.github.io

54

Original corpus
Code Label f n.sub mean f.sub
1xx Controlling Migration 998 16 62 ± 46.2
2xx Residency 726 18 40 ± 41.2
3xx Integration 475 15 31 ± 35.5
4xx Domestic Security 230 9 25 ± 17.9
5xx Foreign Policy 689 9 76 ± 17.8
6xx Economy 194 12 16 ± 13.1
7xx Society 749 19 39 ± 37.9
8xx Procedures 676 20 33 ± 37.7

(a)

Modified corpus
Code f low mid high
1xx 994 2 3 7
2xx 726 4 4 4
3xx 470 1 3 2
4xx 229 3 3 0
5xx 686 3 2 3
6xx 192 3 2 0
7xx 744 4 3 5
8xx 667 5 3 3

(b)

Table 1: (a): Claim distribution by supercategories: Code; Label; frequency (f); number of subcategories (n.sub);
mean subcategory frequency with SD (mean f.sub). (b): Claim distribution for each supercategory after very
infrequent classes are merged. low/mid/high represents the distribution of subcategory frequencies.

cal science experts for the migration domain. The
corpus contains 3827 annotated textual spans, each
of which is assigned one or more categories from
the claim ontology described below: spans can be
assigned multiple categories when the statements
touch on more than one policy issue.

Claim ontology Policy debates are inherently
complex, as a reflection of the complexity of
the problems which the policy addresses: in our
case, control of migration, but also integration of
refugees, foreign policy, etc. In our case, the claim
ontology consists of 100 subcategories which are
grouped into 8 supercategories (cf. Table 1a). For
example, ‘border controls’ and ‘quota for refugees’
are subcategories of the supercategory ‘migration
control’. The fine-grained annotation is crucial
to build a satisfactory picture of a policy debate:
what we are interested in is the position of certain
politicians with respect to specific policy aspects
over time (i.e., being in favor or against refugee
quotas), while the supercategories are not expres-
sive enough for the analysis of the debate itself.
At the same time, Table 1a shows the drop in fre-
quency between supercategories (in the hundreds)
and subcategories (in the tens), with pronounced
differences between categories, resulting in a clear
modeling challenge. We return to this point in Sec-
tion 5.

3 Basic Claim Classification

Given the properties described above, we model
claim classification as multi-label classification.
We follow previous work on coarse-grained claim
classification (Padó et al., 2019) in comparing a set

of neural models, ranging from baselines to state-
of-the-art architectures. All models are trained us-
ing cross entropy loss with the sigmoid activation
function. All models except BERT use custom Fast-
Text (Bojanowski et al., 2017) word embeddings
pretrained on a German newswire corpus.2

LSTM This model passes the input through a
single-layer LSTM. The final hidden state is
used as input to a fully connected layer.

BiLSTM A single-layer Bidirectional LSTM
(Graves et al., 2013) traverses the input. The
final hidden states in both directions are con-
catenated and fed to a fully connected layer.

BiLSTM+Attention This model combines the
BiLSTM architecture with the attention mech-
anism described in Shimaoka et al. (2017a).
The input is fed to a single-layer BiLSTM.
Then, the attention-weighted sum of the hid-
den states corresponding to the input sequence
is fed to a fully connected layer.

BERT This is a pretrained BERT (Devlin et al.,
2019) model trained solely on German cor-
pora 3 and a fully connected layer which is
trained while the BERT encoder is fine-tuned.
After each input is encoded, we use the final
hidden state of the first token, corresponding
to the special token [CLS], as the contextual-
ized representation of the input which serves
as input to a fully connected layer.

2Further details regarding the architecture and training
parameters can be found in the appendix.

3https://deepset.ai/german-bert

55

4 Integrating Hierarchical Class
Structure

The obvious shortcoming of the model architec-
tures sketched above is that they make the standard
assumption of class independence – even though
we know that the classes in claim classification are
related. We therefore build on the idea that we can
label all documents with both sub- and supercat-
egories during training time, and then encourage
the model to jointly predict categories at both lev-
els so that these predictions are consistent with
one another. The expectation is that this creates
an incentive to learn better representations for the
fine-grained classes. We now sketch two generally
applicable methods that implement this idea.

Hierarchical Label Encoding (HLE). The idea
behind this approach is to inject the inference re-
lation between sub- and supercategories into the
representation learning process. Following Shi-
maoka et al. (2017a), we create a binary square
matrix, S ∈ {0, 1}l×l, where l is the number of
claim classes in dataset. Each cell in the matrix is
filled with 1 either if the column class is subclass
of or same as the row class, and filled with 0 other-
wise. The matrix S is not updated during training
and integrated into models by multiplying it by the
weight matrix W of the final fully connected layer
of each model: p(y = 1) = sigm(h(W>S)>)
where W ∈ Rl×hs, h ∈ R1×hs, |y| = l, and hs is
the size of the hidden state of (Bi)LSTM or BERT.
HLE introduces parameter sharing between classes
in the same hierarchy (e.g. 100 and 101), but does
not guarantee that the prediction output contains
both a super- and a subcategory.

Integer Linear Programming (ILP). ILP has
been applied to enforce linguistically motivated
constraints on predicted structures such as seman-
tic roles (Punyakanok et al., 2004), dependency
parsing (Riedel and Clarke, 2006), or entailment
graphs (Berant et al., 2011). Formally, an integer
linear program is an optimization problem over a
set of integer variables x, given a linear objective
function with a set of coefficients c and a set of lin-
ear inequality (and equality) constraints (Schrijver,
1984):

max cᵀx so that Ax ≥ b

We use ILP to select the most likely legal output
from the probabilities estimated by the classifiers.

Legal outputs are those where (a) for each pre-
dicted subcategory, the matching supercategory is
predicted, and (b) for each predicted supercategory,
at least one matching subcategory is predicted. We
introduce a binary variable xi for each supercate-
gory and subcategory in the claim ontology, indi-
cating whether this class is being predicted. This
makes our task a binary optimization problem, a
subclass of ILP. The coefficients c are given by the
probability estimates of the neural claim classifiers
(NCCs):

ci = PNCC(xi = 1)

The objective function is the log likelihood of the
complete model output, including both predicted
and non-predicted classes:∑

i

log cixi + log[1− ci](1− xi)

The first constraints we impose on the solution is
that each predicted subcategory must be accompa-
nied by the matching supercategory. Let sup(i) de-
note the supercategory for the subcategory i. Then
this constraint can be formalized as:

for each subcategory xi : xi − xsup(i) ≤ 0

The second constraint is that each predicted su-
percategory is accompanied by at least one if its
subcategories. Let subs(i) denote the set of subcat-
egories for supercategory i. The constraint is:

for each supercategory xi : xi −
∑

j∈subs(i)

xj ≤ 0

ILP has a complementary profile to HLE in enforc-
ing hard constraints on the output, without propa-
gating the errors back to representation learning.

5 Experimental Evaluation

Setup. We remove very infrequent subcategories
in the dataset by applying a threshold of 20 in-
stances. Smaller categories are merged with the
preexisting subcategory x99, which exists for each
supercategory as a ‘catch-all’ category for outlier
cases. After filtering, there are 8 super- and 72
subcategories left in the dataset (cf. Table 1b). We
experiment with four model variations: Plain (base
claim classifiers as in Section 3); ILP and HLE as
described in Section 4; and ILP+HLE.

We split our dataset to train (90%) test (10%)
splits and run the experiments on our own cluster
with two Nvidia GeForce 1080GTX Ti GPUs. For

56

each experiment, we perform grid search guided
by cross-validation on the training set to find the
best hyperparameters. We report Precision, Recall
and F1 scores weighted over all subcategories.

Main Results. Table 2 summarizes the results
of our experiments. In the ‘plain’ setting, LSTM
and BiLSTM perform significantly worse than BiL-
STM+Attention and BERT. This finding is consis-
tent with the generally observed benefit of attention
and previous results by Padó et al. (2019).

The addition of ILP (2nd column) leads to incon-
sistent changes in precision but always yields better
Recall and F-Scores. LSTM and BiLSTM still per-
form significantly worse than the other two models.
When we switch to HLE, all metrics for all models
are boosted significantly, showing that parameter
sharing via the super/sub-category co-occurrence
matrix is a successful across the board. We ob-
serve the largest improvement for BERT, where
HLE yields an improvement of 12 points in F1, and
leads to the overall highest Precision (0.75).

The last column (HLE + ILP) shows a substan-
tial complementarity of the two methods: models
consistently improve over both the HLE only and
ILP only setting. Specifically, HLE+ILP models
achieves better Recall scores than HLE models (+7
points on average) and better Precision (+8 points
on average) scores than ILP models. The effect is
least pronounced for the best architecture (BERT);
nevertheless, BERT with HLE and ILP achieves the
overall highest Recall (0.59) and F-Score (0.60),
corresponding to an improvement of 13 points F1
compared to the ‘plain’ version. The fact that the
F1 boost is fueled mainly by Recall is particularly
promising because optimizing for Recall is the best
strategy when NLP tools are employed in semi-
automatic annotation (Ganchev et al., 2007; Am-
bati et al., 2011).

Frequency Band Analysis. As discussed in the
introductory section, fine-grained classification
struggles in particular with infrequent classes. We
therefore ask how hierarchical class structure af-
fects performance in relation to frequency. To do
so, we analyze the performance of the best architec-
ture (BERT), splitting the fine-grained categories
into three equal-sized frequency bands.4

4Thresholds: high-frequency (265≥f≥ 67), mid-frequency
(65≥f≥ 40) and low-frequency (20≥f≥ 39). Complete lists
of the categories in the frequency bands and detailed results
of other models are available in Table 5 and Table 6 in the
appendix.

The results in Table 3 show that the prediction
quality of plain BERT differs significantly across
frequency bands. It fails badly in the low freq band
(F1=0.1) while doing a fair job in the mid and high
bands (F1=0.42 and 0.57, respectively). Again, we
see consistent improvements for both ILP and HLE,
but the improvements are more substantial for HLE,
in particular for the low-freq band (+27 point F1).
Combining HLE and ILP further increases Recall,
but reduces Precision somewhat.5

In sum, we observe that both ILP and HLE im-
prove fine-grained classification. The parameter
sharing introduced by HLE particularly helps the
lowest-frequency categories and increases both Pre-
cision and Recall. ILP generally boosts Recall
by enforcing that both super- and a subcategories
need to be predicted. There appears to be a mid-
frequency “sweet spot” where this is particularly
effective: Less frequent, and the probability esti-
mates are not reliable enough; more frequent, the
Precision–Recall trade-off is not worth it.

Qualitative Considerations. Finally, we investi-
gate which subcategories benefit most from HLE
and ILP in our best model (BERT). Table 4 again
shows complementarity between HLE and ILP, in-
dicating that a better combination of the two meth-
ods could lead to further improvements. HLE+ILP
overlaps largely with HLE, mirroring the larger im-
pact of HLE. Analysis of these classes shows that
they belong to the mid and low frequency bands.

However, not all low and mid frequency classes
profit equally. To explain this, we note that the fine-
grained classes in the migration ontology differ
substantially with regard to concreteness: While
the high-level category ‘Foreign policy’ (5xx) con-
tains relatively concrete sub-categories (‘Enforcing
Dublin III regulations’ or ‘Expanding the list of
safe countries of origin’), the supercategory ‘So-
ciety’ (7xx) mostly consists of less manifest pol-
icy measures (‘Uphold Human Rights’, ‘Oppose
Xenophobia’). With regard to that distinction, the
highest-gain subcategories are of the concrete kind
(cf. Table 1): 106 (‘Border defence’), 303 (‘Forced
integration’), 801 (‘Constitutional law’), 807 (‘Re-
ducing bureaucracy’), 405 (‘Counterterrorism’).
Conversely, we do not find any subcategories of the
less concrete supercategory 700 (‘Society’).

5We confirmed the relationship between frequency and
performance with a correlation analysis to rule out a binning
artifact. See Table 7 in the appendix.

57

Model plain ILP HLE HLE + ILP
P R F1 P R F1 P R F1 P R F1

LSTM 0.50 0.24 0.30 0.45 0.28 0.32 0.60 0.33 0.39 0.52 0.38 0.41
BiLSTM 0.51 0.26 0.32 0.51 0.33 0.38 0.57 0.30 0.36 0.63 0.42 0.48
BiLSTM+Att 0.67 0.39 0.46 0.63 0.42 0.48 0.69 0.41 0.48 0.66 0.46 0.51
BERT 0.61 0.42 0.47 0.56 0.50 0.50 0.75 0.52 0.59 0.66 0.59 0.60

Table 2: Test results (weighted averages for fine-grained claim classification) for four architectures and two meth-
ods to integrate class structure (integer linear programming, hierarchical label encoding). Best results bolded.

Freq band plain ILP HLE HLE + ILP
P R F1 P R F1 P R F1 P R F1

Low freq 0.10 0.10 0.10 0.18 0.14 0.15 0.58 0.31 0.37 0.48 0.31 0.35
Mid freq 0.58 0.36 0.42 0.65 0.47 0.50 0.77 0.55 0.62 0.71 0.63 0.65
High freq 0.73 0.51 0.57 0.60 0.58 0.58 0.78 0.56 0.62 0.67 0.63 0.64

Table 3: Detailed results for BERT architecture: break down by frequency bands of fine-grained classes (highest
F1 score for each frequency band bolded).

Setting Highest Improvement

ILP 204, 499, 507, 508, 803
HLE 106, 303, 314, 801, 807
ILP+HLE 106, 303, 405, 801, 807

Table 4: Subcategories that gain most in F1 score

6 Conclusion

This paper has identified automatic fine-grained
claim classification as a crucial, but underad-
dressed, component of political discourse analy-
sis. We have demonstrated that hierarchical class
structure can be exploited to lift fine-grained claim
classification to a usable level, showing robust im-
provements even for transformer architectures and
in particular for low-frequency claim categories.

Addressing the low-frequency issue is particu-
larly relevant in the broader context of the goals of
political science. Political discourse unfolds over
time, and every prominent issue starts out as infre-
quent. The true dynamics of debates can only be
captured if the classifiers are able to pick up the less
salient categories (Koopmans and Statham, 1999;
Kossinets, 2006). Future work involves investigat-
ing these concerns on a wider range of datasets, as
well as evaluating fine-grained claim classification
for semi-automatic discourse network construction.

Acknowledgments

We acknowledge funding by Deutsche Forschungs-
gemeinschaft (DFG) through MARDY (Model-
ing Argumentation Dynamics) within SPP RA-
TIO and by Bundesministerium für Bildung und
Forschung (BMBF) through E-DELIB (Powering
up e-deliberation: towards AI-supported modera-
tion).

References
Bharat Ram Ambati, Rahul Agarwal, Mridul Gupta,

Samar Husain, and Dipti Misra Sharma. 2011. Er-
ror detection for treebank validation. In Proceedings
of the 9th Workshop on Asian Language Resources,
pages 23–30, Chiang Mai, Thailand. Asian Federa-
tion of Natural Language Processing.

David Bamman and Noah A. Smith. 2015. Open
extraction of fine-grained political statements. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 76–
85, Lisbon, Portugal. Association for Computational
Linguistics.

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2011. Global learning of typed entailment rules. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 610–619, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

https://www.aclweb.org/anthology/W11-3405
https://www.aclweb.org/anthology/W11-3405
https://doi.org/10.18653/v1/D15-1008
https://doi.org/10.18653/v1/D15-1008
https://www.aclweb.org/anthology/P11-1062
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051

58

Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yim-
ing Yang, and Inderjit S. Dhillon. 2020. Tam-
ing pretrained transformers for extreme multi-label
text classification. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery; Data Mining, KDD ’20, page
3163–3171, New York, NY, USA. Association for
Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Kuzman Ganchev, Fernando Pereira, Mark Mandel,
Steven Carroll, and Peter White. 2007. Semi-
automated named entity annotation. In Proceedings
of the Linguistic Annotation Workshop, pages 53–56,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Goran Glavaš, Federico Nanni, and Simone Paolo
Ponzetto. 2019. Computational analysis of political
texts: Bridging research efforts across communities.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: Tutorial
Abstracts, pages 18–23, Florence, Italy. Association
for Computational Linguistics.

Alex Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional LSTM. In 2013 IEEE workshop on
automatic speech recognition and understanding,
pages 273–278. IEEE.

Ruud Koopmans and Paul Statham. 1999. Political
Claims Analysis: Integrating Protest Event and Po-
litical Discourse Approaches. Mobilization: An In-
ternational Quarterly, 4(2):203–221.

Gueorgi Kossinets. 2006. Effects of missing data in
social networks. Social Networks, 28(3):247–268.

Gabriella Lapesa, Andre Blessing, Nico Blokker, Er-
enay Dayanik, Sebastian Haunss, Jonas Kuhn, and
Sebastian Padó. 2020. DEbateNet-mig15: Tracing
the 2015 immigration debate in Germany over time.
In Proceedings of LREC, pages 919–927, Online.

Philip Leifeld. 2016. Policy Debates as Dynamic Net-
works: German Pension Politics and Privatization
Discourse. Campus Verlag, Frankfurt/New York.

Khai Mai, Thai-Hoang Pham, Minh Trung Nguyen,
Tuan Duc Nguyen, Danushka Bollegala, Ryohei
Sasano, and Satoshi Sekine. 2018. An empirical
study on fine-grained named entity recognition. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 711–722, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Sebastian Padó, Andre Blessing, Nico Blokker, Ere-
nay Dayanik, Sebastian Haunss, and Jonas Kuhn.
2019. Who sides with whom? towards computa-
tional construction of discourse networks for politi-
cal debates. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2841–2847, Florence, Italy. Association for
Computational Linguistics.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav
Zimak. 2004. Semantic role labeling via integer
linear programming inference. In COLING 2004:
Proceedings of the 20th International Conference
on Computational Linguistics, pages 1346–1352,
Geneva, Switzerland. COLING.

Sebastian Riedel and James Clarke. 2006. Incremen-
tal integer linear programming for non-projective de-
pendency parsing. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing, pages 129–137, Sydney, Australia. As-
sociation for Computational Linguistics.

Alexander Schrijver. 1984. Linear and Integer Pro-
gramming. John Wiley & Sons, New York.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2017a. Neural architectures for
fine-grained entity type classification. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 1271–1280, Valencia,
Spain. Association for Computational Linguistics.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2017b. Neural architectures for
fine-grained entity type classification. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 1271–1280, Valencia,
Spain. Association for Computational Linguistics.

Appendix

A Results Details: Results by Frequency
Bands for all Architectures

Table 5 presents Precision, Recall and F1 scores
of models broken down for low, mid and high fre-
quency bands. We observe similar patterns with
other three models: (1) Prediction quality of mod-
els in plain setting differ significantly across fre-
quency bands and all three models perform sig-
nificantly worse on low frequency band and (2)
Extending models with HLE and ILP leads to sig-
nificantly better F1 scores on all frequency bands.

B Results Details: Correlation Analyses

We calculate Spearman’s correlation coefficient
in order to investigate the relationship between
amount of available data for each subcategory and

https://doi.org/10.1145/3394486.3403368
https://doi.org/10.1145/3394486.3403368
https://doi.org/10.1145/3394486.3403368
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/W07-1509
https://www.aclweb.org/anthology/W07-1509
https://doi.org/10.18653/v1/P19-4004
https://doi.org/10.18653/v1/P19-4004
https://doi.org/10.17813/maiq.4.2.d7593370607l6756
https://doi.org/10.17813/maiq.4.2.d7593370607l6756
https://doi.org/10.17813/maiq.4.2.d7593370607l6756
https://doi.org/10.1016/j.socnet.2005.07.002
https://doi.org/10.1016/j.socnet.2005.07.002
https://www.aclweb.org/anthology/2020.lrec-1.115
https://www.aclweb.org/anthology/2020.lrec-1.115
https://www.aclweb.org/anthology/C18-1060
https://www.aclweb.org/anthology/C18-1060
https://doi.org/10.18653/v1/P19-1273
https://doi.org/10.18653/v1/P19-1273
https://doi.org/10.18653/v1/P19-1273
https://www.aclweb.org/anthology/C04-1197
https://www.aclweb.org/anthology/C04-1197
https://www.aclweb.org/anthology/W06-1616
https://www.aclweb.org/anthology/W06-1616
https://www.aclweb.org/anthology/W06-1616
https://www.aclweb.org/anthology/E17-1119
https://www.aclweb.org/anthology/E17-1119
https://www.aclweb.org/anthology/E17-1119
https://www.aclweb.org/anthology/E17-1119

59

Model Freq band plain ILP HLE HLE + ILP
P R F1 P R F1 P R F1 P R F1

Low freq 0.19 0.07 0.10 0.23 0.08 0.12 0.32 0.11 0.16 0.33 0.18 0.21
LSTM Mid freq 0.57 0.20 0.28 0.53 0.25 0.31 0.66 0.33 0.42 0.58 0.38 0.43

High freq 0.53 0.29 0.35 0.47 0.34 0.37 0.64 0.37 0.42 0.54 0.42 0.45

Low freq 0.24 0.10 0.13 0.35 0.16 0.20 0.15 0.05 0.07 0.27 0.13 0.16
BiLSTM Mid freq 0.54 0.20 0.28 0.56 0.27 0.35 0.68 0.22 0.32 0.54 0.30 0.37

High freq 0.56 0.32 0.37 0.52 0.39 0.43 0.61 0.38 0.44 0.57 0.44 0.47

Low freq 0.10 0.07 0.07 0.23 0.13 0.14 0.17 0.10 0.10 0.24 0.11 0.13
BiLSTM Att Mid freq 0.82 0.47 0.56 0.69 0.45 0.53 0.71 0.46 0.53 0.64 0.52 0.55

High freq 0.74 0.42 0.50 0.69 0.47 0.53 0.79 0.45 0.54 0.75 0.51 0.57

Low freq 0.10 0.10 0.10 0.18 0.14 0.15 0.58 0.31 0.37 0.48 0.31 0.35
BERT Mid freq 0.58 0.36 0.42 0.65 0.47 0.50 0.77 0.55 0.62 0.71 0.63 0.65

High freq 0.73 0.51 0.57 0.60 0.58 0.58 0.78 0.56 0.62 0.67 0.63 0.64

Table 5: Detail results for all architectures by frequency band

performance change of BERT model across set-
tings further. For that, we measure the difference
between BERT model’s subcategory performances
in plan and other settings as well as amount of
data available for each subcategory. Table 6 shows
which subcategory belongs to which frequency
band and Table 7 shows Spearman’s correlation co-
efficients. We observe high negative values almost
always indicating that there is a strong negative
correlation between the amount of data exist for a
subcategory and amount of change in performance
which means that infrequent classes gain most from
ILP and HLE.

Frequency Band Label

111 199 201 209 213 214
LOW 406 408 499 502 505 508

602 603 605 701 706 707
708 801 802 807 811 814

106 107 109 204 211 212
MID 215 301 302 303 307 401

402 405 503 509 601 699
702 711 715 803 804 808

101 102 104 105 108 110
HIGH 190 202 203 207 299 309

399 501 504 507 703 705
709 712 799 805 812 899

Table 6: Lists of the categories in the frequency bands

PAIR P R F

BERT
Plain - ILP -0.20 -0.10 -0.20
Plain - HLE -0.24 -0.31 -0.29

Plain - (ILP+HLE) -0.28 -0.29 -0.32

Table 7: Spearman’s correlation coefficient results be-
tween change in evaluation metrics and subcategory
size for BERT model.

C Training Details

In the LSTM model, we set the number of hid-
den units to 500. We train 300-dimensional Fast-
Text word embeddings on a corpus consisting of
German Newspapers and use them as the input to
LSTM. We use Adam with learning rate of 0.003
as optimizer. Batch size and number of epochs are
set to 16 and 25 respectively.

In the BiLSTM model, we the set number of
units to 500 in each direction and batch size to 16.
The same 300-dimensional word embeddings as
in the LSTM are used. The model is trained with
Adam optimizer and a learning rate of 0.003 for 25
epochs.

In the BiLSTM+Attn model, we used the at-
tention mechanism variant described in Shimaoka
et al. (2017b). We set number of units to 500 in
each direction and batch size to 16. We use the
same 300-dimensional word embeddings used in
LSTM and BiLSTM models, and train model for
20 epochs using Adam optimizer with learning rate
of 0.003.

For the BERT model, we use a cased BERT
variant6 that was trained specifically for German
with default parameters for the number of attention
heads, hidden layers, and the number of hidden
units are 12, 12, and 768, respectively. During fine-
tuning, we use the Adam optimizer with learning
rates of 5e-5, β1 = 0.9, β2 = 0.999, and set the
maximum sequence length to 200, batch size to 16
and norm of maximum gradient to 1.0 and trained
for 20 epochs.

Table 8 and Table 9 show the number of param-
eters in each model and average time required to

6https://deepset.ai/german-bert

60

Parameter Numbers

Plain HLE
LSTM 4,731,080 4,731,500
BiLSTM 6,375,080 6,376,000
BiLSTM Att 6,475,180 6,476,100
BERT 109,142,864 109,143,552

Table 8: Number of parameters in each model.

Runtime (in Minutes)
LSTM 1.5
BiLSTM 2.2
BiLSTM Att 4.5
BERT 32.0

Table 9: Average runtime required to train each model

train each model used in our experiments respec-
tively.

Hyperparameter search details We perform
grid search for hyperparameter optimization and
use the hyperparameters leading highest average
F1 score during 5-Fold cross validation. Following
lower and upper bounds have been applied dur-
ing search for each hyperparameter: learning Rate
[1e-4, 5e-2], epoch:[5, 25], batch size:[16, 32].

D Details about Dataset
Figure 1 depicts the number of instances for each
category.

Figure 1: Claim distribution of subcategories. Green
dotted line: boundary between high and mid frequency
bands. Dark blue line: boundary between low and mid
bands.

