
Proceedings of the 5th Workshop on Structured Prediction for NLP, pages 12–21
August 1–6, 2021. ©2021 Association for Computational Linguistics

12

SMBOP: Semi-autoregressive Bottom-up Semantic Parsing

Ohad Rubin
Tel Aviv University

ohadr@mail.tau.ac.il

Jonathan Berant
Tel Aviv University

Allen Institute for AI
joberant@cs.tau.ac.il

Abstract

The de-facto standard decoding method for se-
mantic parsing in recent years has been to au-
toregressively decode the abstract syntax tree
of the target program using a top-down depth-
first traversal. In this work, we propose an
alternative approach: a Semi-autoregressive
Bottom-up Parser (SMBOP) that constructs
at decoding step t the top-K sub-trees of
height ≤ t. Our parser enjoys several benefits
compared to top-down autoregressive parsing.
From an efficiency perspective, bottom-up
parsing allows to decode all sub-trees of a cer-
tain height in parallel, leading to logarithmic
runtime complexity rather than linear. From
a modeling perspective, a bottom-up parser
learns representations for meaningful seman-
tic sub-programs at each step, rather than for
semantically-vacuous partial trees. We apply
SMBOP on SPIDER, a challenging zero-shot
semantic parsing benchmark, and show that
SMBOP leads to a 2.2x speed-up in decoding
time and a∼5x speed-up in training time, com-
pared to a semantic parser that uses autoregres-
sive decoding. SMBOP obtains 71.1 denota-
tion accuracy on SPIDER, establishing a new
state-of-the-art, and 69.5 exact match, compa-
rable to the 69.6 exact match of the autoregres-
sive RAT-SQL+GRAPPA.

1 Introduction

Semantic parsing, the task of mapping natural lan-
guage utterances into programs (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Clarke et al.;
Liang et al., 2011), has converged in recent years on
a standard encoder-decoder architecture. Recently,
meaningful advances emerged on the encoder side,
including developments in Transformer-based ar-
chitectures (Wang et al., 2020a) and new pretrain-
ing techniques (Yin et al., 2020; Herzig et al., 2020;
Yu et al., 2020; Deng et al., 2020; Shi et al., 2021).
Conversely, the decoder has remained roughly con-
stant for years, where the abstract syntax tree of
the target program is autoregressively decoded in a

top-down manner (Yin and Neubig, 2017; Krishna-
murthy et al., 2017; Rabinovich et al., 2017).

Bottom-up decoding in semantic parsing has re-
ceived little attention (Cheng et al., 2019; Odena
et al., 2020). In this work, we propose a bottom-up
semantic parser, and demonstrate that equipped
with recent developments in Transformer-based
(Vaswani et al., 2017) architectures, it offers sev-
eral advantages. From an efficiency perspective,
bottom-up parsing can naturally be done semi-
autoregressively: at each decoding step t, the parser
generates in parallel the top-K program sub-trees
of depth ≤ t (akin to beam search). This leads to
runtime complexity that is logarithmic in the tree
size, rather than linear, contributing to the rocket-
ing interest in efficient and greener artificial intelli-
gence technologies (Schwartz et al., 2020). From
a modeling perspective, neural bottom-up parsing
provides learned representations for meaningful
(and executable) sub-programs, which are sub-trees
computed during the search procedure, in contrast
to top-down parsing, where hidden states represent
partial trees without clear semantics.

Figure 1 illustrates a single decoding step of
our parser. Given a beam Zt with K = 4 trees
of height t (blue vectors), we use cross-attention
to contextualize the trees with information from
the input question (orange). Then, we score the
frontier, that is, the set of all trees of height t +
1 that can be constructed using a grammar from
the current beam, and the top-K trees are kept
(purple). Last, a representation for each of the new
K trees is generated and placed in the new beam
Zt+1. After T decoding steps, the parser returns
the highest-scoring tree in ZT that corresponds to
a full program. Because we have gold trees at
training time, the entire model is trained jointly
using maximum likelihood.

We evaluate our model, SMBOP 1 2 (SeMi-

1Originally published in NAACL 2021.
2Rhymes with ‘MMMBop’.

13

age 60

...

actorname

Cross Attention

...

Score-frontier

actor 60name actor age 60

What are the names of actors over 60?

Prune frontier

Represent-beam

Figure 1: An overview of the decoding procedure of SMBOP. Zt is is the beam at step t, Z ′
t is the contextualized

beam after cross-attention, Ft+1 is the frontier (κ, σ,≥ are logical operations applied on trees, as explained below),
F ′
t+1 is the pruned frontier, and Zt+1 is the new beam. At the top we see the new trees created in this step. For
t = 0 (depicted here), the beam contains the predicted schema constants and DB values.

autoregressive Bottom-up semantic Parser), on SPI-
DER (Yu et al., 2018), a challenging zero-shot
text-to-SQL dataset. We implement the RAT-
SQL+GRAPPA encoder (Yu et al., 2020), currently
the best model on SPIDER, and replace the autore-
gressive decoder with the semi-autoregressive SM-
BOP. SMBOP obtains an exact match accuracy
of 69.5, comparable to the autoregressive RAT-
SQL+GRAPPA at 69.6 exact match, and to current
state-of-the-art at 69.8 exact match (Zhao et al.,
2021), which applies additional pretraining. More-
over, SMBOP substantially improves state-of-the-
art in denotation accuracy, improving performance
from 68.3 → 71.1. Importantly, compared to au-
toregressive semantic parsing , we observe an aver-
age speed-up of 2.2x in decoding time, where for
long SQL queries, speed-up is between 5x-6x, and
a training speed-up of ∼5x.3

2 Background

Problem definition We focus in this work on
text-to-SQL semantic parsing. Given a training set
{(x(i), y(i), S(i))}Ni=1, where x(i) is an utterance,
y(i) is its translation to a SQL query, and S(i) is the
schema of the target database (DB), our goal is to

3Our code is available at https://github.com/
OhadRubin/SmBop

learn a model that maps new question-schema pairs
(x, S) to the correct SQL query y. A DB schema S
includes : (a) a set of tables, (b) a set of columns for
each table, and (c) a set of foreign key-primary key
column pairs describing relations between table
columns. Schema tables and columns are termed
schema constants, and denoted by S.

RAT-SQL encoder This work is focused on de-
coding, and thus we implement the state-of-the-art
RAT-SQL encoder (Wang et al., 2020b), on top of
GRAPPA (Yu et al., 2020), a pre-trained encoder
for semantic parsing. We now briefly review this
encoder for completeness.

The RAT-SQL encoder is based on two main
ideas. First, it provides a joint contextualized rep-
resentation of the utterance and schema. Specif-
ically, the utterance x is concatenated to a lin-
earized form of the schema S, and they are passed
through a stack of Transformer (Vaswani et al.,
2017) layers. Then, tokens that correspond to a sin-
gle schema constant are aggregated, which results
in a final contextualized representation (x, s) =
(x1, . . . , x|x|, s1, . . . , s|s|), where si is a vector rep-
resenting a single schema constant. This contextu-
alization of x and S leads to better representation
and alignment between the utterance and schema.

https://github.com/OhadRubin/SmBop
https://github.com/OhadRubin/SmBop

14

Second, RAT-SQL uses relational-aware self-
attention (Shaw et al., 2018) to encode the structure
of the schema and other prior knowledge on rela-
tions between encoded tokens. Specifically, given
a sequence of token representations (u1, . . . ,u|u|),
relational-aware self-attention computes a scalar
similarity score between pairs of token representa-
tions eij ∝ uiWQ(ujWK + rKij). This is identical
to standard self-attention (WQ and WK are the
query and key parameter matrices), except for the
term rKij , which is an embedding that represents
a relation between ui and uj from a closed set of
possible relations. For example, if both tokens
correspond to schema tables, an embedding will
represent whether there is a primary-foreign key
relation between the tables. If one of the tokens is
an utterance word and another is a table column,
a relation will denote if there is a string match be-
tween them. The same principle is also applied
for representing the self-attention values, where an-
other relation embedding matrix is used. We refer
the reader to the RAT-SQL paper for details.

Overall, RAT-SQL jointly encodes the utterance,
schema, the structure of the schema and alignments
between the utterance and schema, and leads to
state-of-the-art results in text-to-SQL parsing.

RAT-SQL layers are typically stacked on top
of a pre-trained language model, such as BERT
(Devlin et al., 2019). In this work, we use GRAPPA

(Yu et al., 2020), a recent pre-trained model that
has obtained state-of-the-art results in text-to-SQL
parsing. GRAPPA is based on ROBERTA (Liu et al.,
2019), but is further fine-tuned on synthetically
generated utterance-query pairs using an objective
for aligning the utterance and query.

Autoregressive top-down decoding The pre-
vailing method for decoding in semantic parsing
has been grammar-based autoregressive top-down
decoding (Yin and Neubig, 2017; Krishnamurthy
et al., 2017; Rabinovich et al., 2017), which guar-
antees decoding of syntactically valid programs.
Specifically, the target program is represented as an
abstract syntax tree under the grammar of the for-
mal language, and linearized to a sequence of rules
(or actions) using a top-down depth-first traversal.
Once the program is represented as a sequence,
it can be decoded using a standard sequence-to-
sequence model with encoder attention (Dong and
Lapata, 2016), often combined with beam search.
We refer the reader to the aforementioned papers
for further details on grammar-based decoding.

Algorithm 1: SMBOP
1 input: utterance x, schema S
2 x, s← EncodeRAT(x, S)
3 Z0 ← Top-K schema constants and DB values
4 for t← 0 . . . T − 1 do
5 Z′

t ← Attention(Zt, x, x)
6 Ft+1 ← Score-frontier(Z′

t)
7 F ′

t+1 ← argmaxK(Ft+1)
8 Zt+1 ← Represent-beam(Zt, F

′
t+1)

9 return argmaxz(ZT)

We now turn to describe our method, which pro-
vides a radically different approach for decoding in
semantic parsing.

3 The SMBOP parser

We first provide a high-level overview of SMBOP
(see Algorithm 1 and Figure 1). As explained in
§2, we encode the utterance and schema with a
RAT-SQL encoder. We initialize the beam (line 3)
with the K highest scoring trees of height 0, which
include either schema constants or DB values. All
trees are scored independently and in parallel, in a
procedure formally defined in §3.3.

Next, we start the search procedure. At every
step t, attention is used to contextualize the trees
with information from input question representa-
tion (line 5). This representation is used to score
every tree on the frontier: the set of sub-trees of
depth ≤ t + 1 that can be constructed from sub-
trees on the beam with depth ≤ t (lines 6-7). After
choosing the top-K trees for step t+1, we compute
a new representation for them (line 8). Finally, we
return the top-scoring tree from the final decoding
step, T . Steps in our model operate on tree rep-
resentations independently, and thus each step is
efficiently parallelized.

SMBOP resembles beam search as in each step
it holds the top-K trees of a fixed height. It is also
related to (pruned) chart parsing, since trees at step
t+ 1 are computed from trees that were found at
step t. This is unlike sequence-to-sequence models
where items on the beam are competing hypotheses
without any interaction.

We now provide the details of our parser. First,
we describe the formal language (§3.1), then we
provide precise details of our model architecture
(§3.2) including beam initialization (§3.3, we de-
scribe the training procedure (§3.4), and last, we
discuss the properties of SMBOP compared to prior
work (§3.5).

15

Operation Notation Input→ Output
Set Union ∪ R×R→ R
Set Intersection ∩ R×R→ R
Set difference \ R×R→ R
Selection σ P ×R→ R
Cartesian product × R×R→ R
Projection Π C ′ ×R→ R
And ∧ P × P → P
Or ∨ P × P → P
Comparison {≤ , ≥ , = , 6=} C × C → P
Constant Union t C ′ × C ′ → C ′

Order by τasc/dsc C ×R→ R

Group by γ C ×R→ R
Limit λ C ×R→ R
In/Not In ∈, 6∈ C ×R→ P
Like/Not Like ∼, 6∼ C × C → P
Aggregation Gagg C → C
Distinct δ C → C
Keep κ Any→ Any

Table 1: Our relational algebra grammar, along with
the input and output semantic types of each opera-
tion. P : Predicate, R: Relation, C: schema con-
stant or DB value, C ′: A set of constants/values, and
agg ∈ {sum,max,min, count, avg}.

3.1 Representation of Query Trees

Relational algebra Guo et al. (2019) have
shown recently that the mismatch between natu-
ral language and SQL leads to parsing difficulties.
Therefore, they proposed SemQL, a formal query
language with better alignment to natural language.

In this work, we follow their intuition, but in-
stead of SemQL, we use the standard query lan-
guage relational algebra (Codd, 1970). Relational
algebra describes queries as trees, where leaves
(terminals) are schema constants or DB values, and
inner nodes (non-terminals) are operations (see
Table 1). Similar to SemQL, its alignment with
natural language is better than SQL. However, un-
like SemQL, it is an existing query language, com-
monly used by SQL execution engines for query
planning.

We write a grammar for relational algebra, aug-
mented with SQL operators that are missing from
relational algebra. We then implement a transpiler
that converts SQL queries to relational algebra for
parsing, and then back from relational algebra to
SQL for evaluation. Table 1 shows the full gram-
mar, including the input and output semantic types
of all operations. A relation (R) is a tuple (or tu-
ples), a predicate (P) is a Boolean condition (eval-
uating to True or False), a constant (C) is a
schema constant or DB value, and (C ′) is a set of
constants/values. Figure 2 shows an example re-

Π

σ

actor≥

60age

name

Π

σ

κ

actor

≥

60age

κ

κ

name

(a) Unbalanced tree (b) Balanced tree

Figure 2: An unbalanced and balanced relational al-
gebra tree (with the unary KEEP operation) for the
utterance “What are the names of actors older than
60?”, where the corresponding SQL query is SELECT
name FROM actor WHERE age ≥ 60.

lational algebra tree with the corresponding SQL
query. More examples illustrating the correspon-
dence between SQL and relational algebra (e.g.,
for the SQL JOIN operation) are in Appendix B.
While our relational algebra grammar can also be
adapted for standard top-down autoregressive pars-
ing, we leave this endeavour for future work.

Tree balancing Conceptually, at each step SM-
BOP should generate new trees of height ≤ t+ 1
and keep the top-K trees computed so far. In prac-
tice, it is convenient to assume that trees are bal-
anced. Thus, we want the beam at step t to only
have trees that are of height exactly t (t-high trees).

To achieve this, we introduce a unary KEEP oper-
ation that does not change the semantics of the sub-
tree it is applied on. Hence, we can always grow
the height of trees in the beam without changing
the formal query. For training (which we elaborate
on in §3.4), we balance all relational algebra trees
in the training set using the KEEP operation, such
that the distance from the root to all leaves is equal.
For example, in Figure 2, two KEEP operations
are used to balance the column actor.name. Af-
ter tree balancing, all constants and values are at
height 0, and the goal of the parser at step t is to
generate the gold set of t-high trees.

3.2 Model Architecture

To fully specify Alg. 1, we need to define the fol-
lowing components: (a) scoring of trees on the fron-
tier (lines 5-6), (b) representation of trees (line 8),
and (c) representing and scoring of constants and
DB values during beam initialization (leaves). We
now describe these components. Figure 3 illus-
trates the scoring and representation of a binary
operation.

Scoring with contextualized beams SMBOP
maintains at each decoding step a beam Zt =

16

((z
(t)
1 , z(t)

1), . . . , (z
(t)
K , z(t)

K)), where z(t)
i is a sym-

bolic representation of the query tree, and z(t)
i is its

corresponding vector representation. Unlike stan-
dard beam search, trees on our beams do not only
compete with one another, but also compose with
each other (similar to chart parsing). For exam-
ple, in Fig. 1, the beam Z0 contains the column
age and the value 60, which compose using the
≥ operator to form the age ≥ 60 tree.

We contextualize tree representations on the
beam using cross-attention. Specifically, we use
standard attention (Vaswani et al., 2017) to give
tree representations access to the input question:
Z ′
t ← Attention(Zt, x, x), where the tree represen-

tations (z(t)
1 , . . . , z(t)

K) are the queries, and the input
tokens (x1, . . . , x|x|) are the keys and values.

Next, we compute scores for all (t + 1)-high
trees on the frontier. Trees can be generated by
applying either a unary (including KEEP) operation
u ∈ U or binary operation b ∈ B on beam trees.
Let wu be a scoring vector for a unary operation
(such as wκ, wδ, etc.), let wb be a scoring vector
for a binary operation (such as wσ, wΠ, etc.), and
let z′i, z′j be contextualized tree representations on
the beam. We define a scoring function for frontier
trees, where the score for a new tree znew generated
by applying a unary rule u on a tree zi is defined
as follows:

s(znew) = w>
u FFU ([zi; z′i]),

where FFU is a 2-hidden layer feed-forward layer
with relu activations, and [·; ·] denotes concatena-
tion. Similarly the score for a tree generated by
applying a binary rule b on the trees zi, zj is:

s(znew) = w>
b FFB([zi; z′i; zj ; z′j]),

where FFB is another 2-hidden layer feed-forward
layer with relu activations.

We use semantic types to detect invalid rule ap-
plications and fix their score to s(znew) = −∞.
This guarantees that the trees SMBOP generates are
well-formed, and the resulting SQL is executable.
Overall, the total number of trees on the frontier is
≤ K|U|+K2|B|. Because scores of different trees
on the frontier are independent, they are efficiently
computed in parallel. Note that we score new trees
from the frontier before creating a representation
for them, which we describe next.

Recursive tree representation after scoring the
frontier, we generate a recursive vector representa-
tion for the top-K trees. While scoring is done with

age 60

 60age

 Transformer(, ,)

Represent-beam Score-frontier

 FFB(; ; ;)
)

Figure 3: Illustration of our tree scoring and representa-
tion mechanisms. z is the symbolic tree, z is its vector
representation, and z′ its contextualized representation.

contextualized trees, representations are not contex-
tualized. We empirically found that contextualized
tree representations slightly reduce performance,
possibly due to optimization issues.

We represent trees with another standard Trans-
former layer. Let znew be the representation for a
new tree, let e` be an embedding for a unary or bi-
nary operation, and let zi, zj be non-contextualized
tree representations from the beam we are extend-
ing. We compute a new representation as follows:

znew =

Transformer(e`, zi) unary `

Transformer(e`, zi, zj) binary `
zi ` = KEEP

where for the unary KEEP operation, we simply
copy the representation from the previous step.

Return value As mentioned, the parser returns
the highest-scoring tree in ZT . More precisely, we
return the highest-scoring returnable tree, where
a returnable tree is a tree that has a valid semantic
type, that is, Relation (R).

3.3 Beam initialization
As described in Line 3 of Alg. 1, the beam Z0 is
initialized with K schema constants (e.g., actor,
age) and DB values (e.g., 60, “France”). In
particular, we independently score schema con-
stants and choose the top-K2 , and similarly score
DB values and choose the top-K2 , resulting in a
total beam of size K.

Schema constants We use a simple scoring func-
tion fconst(·). Recall that si is a representation of a

17

constant, contextualized by the rest of the schema
and the utterance. The function fconst(·) is a feed-
forward network that scores each schema constant
independently: fconst(si) = wconst tanh (Wconstsi),
and the top-K2 constants are placed in Z0.

DB values Because the number of values in the
DB is potentially huge, we do not score all DB
values. Instead, we learn to detect spans in the
question that correspond to DB values. This leads
to a setup that is similar to extractive question an-
swering (Rajpurkar et al., 2016), where the model
outputs a distribution over input spans, and thus we
adopt the architecture commonly used in extractive
question answering. Concretely, we compute the
probability that a token is the start token of a DB
value, Pstart(xi) ∝ exp(w>

startxi), and similarly the
probability that a token is the end token of a DB
value, Pend(xi) ∝ exp(w>

endxi), where wstart and
wend are parameter vectors. We define the probabil-
ity of a span (xi, . . . , xj) to be Pstart(xi) ·Pend(xj),
and place in the beam Z0 the top-K2 input spans,
where the representation of a span (xi, xj) is the
average of xi and xj .

A current limitation of SMBOP is that it cannot
generate DB values that do not appear in the input
question. This would require adding a mechanism
such as “BRIDGE” proposed by Lin et al. (2020).

3.4 Training
To specify the loss function, we need to define
the supervision signal. Recall that given the gold
SQL program, we convert it into a gold balanced
relational algebra tree zgold, as explained in §3.1
and Figure 2. This lets us define for every decoding
step the set of t-high gold sub-trees Zgold

t . For
example Zgold

0 includes all gold schema constants
and input spans that match a gold DB value,4 Zgold

1

includes all 1-high gold trees, etc.
During training, we apply “bottom-up Teacher

Forcing” (Williams and Zipser, 1989), that is, we
populate5 the beam Zt with all trees from Zgold

t

and then fill the rest of the beam (of size K) with
the top-scoring non-gold predicted trees. This guar-
antees that we will be able to compute a loss at
each decoding step, as described below.

Loss function During search, our goal is to give
high scores to the possibly multiple sub-trees of

4In Spider, in 98.2% of the training examples, all gold DB
values appear as input spans.

5We compute this through an efficient tree hashing proce-
dure. See Appendix A.

0 20 40 60 80 100
0

100

200

300

400

500

600

700
Size
Depth

Figure 4: A histogram showing the distribution of the
height of relational algebra trees in SPIDER, and the
size of equivalent SQL query trees.

the gold tree. Because of teacher forcing, the fron-
tier Ft+1 is guaranteed to contain all gold trees
Zgold
t+1 . We first apply a softmax over all frontier

trees p(znew) = softmax{s(znew)}znew∈Ft+1 and
then maximize the probabilities of gold trees:

1

C

T∑
t=0

∑
zt∈Zgold

t

log p (zt)

where the loss is normalized byC, the total number
of summed terms. In the initial beam, Z0, the
probability of an input span is the product of the
start and end probabilities, as explained in §3.3.

3.5 Discussion

To our knowledge, this work is the first to present
a semi-autoregressive bottom-up semantic parser.
We discuss the benefits of our approach.

SMBOP has theoretical runtime complexity that
is logarithmic in the size of the tree instead of lin-
ear for autoregressive models. Figure 4 shows the
distribution over the height of relational algebra
trees in SPIDER, and the size of equivalent SQL
query trees. Clearly, the height of most trees is at
most 10, while the size is 30-50, illustrating the
potential of our approach. In §4, we demonstrate
that indeed semi-autoregressive parsing leads to
substantial empirical speed-up.

Unlike top-down autoregressive models, SM-
BOP naturally computes representations z for all
sub-trees constructed at decoding time, which are
well-defined semantic objects. These representa-
tions can be used in setups such as contextual se-
mantic parsing, where a semantic parser answers
a sequence of questions. For example, given the

18

questions “How many students are living in the
dorms?” and then “what are their last names?”,
the pronoun “their” refers to a sub-tree from the
SQL tree of the first question. Having a repre-
sentation for such sub-trees can be useful when
parsing the second question, in benchmarks such
as SPARC (Yu et al., 2019).

Another potential benefit of bottom-up parsing
is that sub-queries can be executed while parsing
(Berant et al., 2013; Liang et al., 2017), which can
guide the search procedure. Recently, Odena et al.
(2020) proposed such an approach for program syn-
thesis, and showed that conditioning on the results
of execution can improve performance. We do not
explore this advantage of bottom-up parsing in this
work, since executing queries at training time leads
to a slow-down during training.

SMBOP is a bottom-up semi-autoregressive
parser, but it could potentially be modified to be
autoregressive by decoding one tree at a time. Past
work (Cheng et al., 2019) has shown that the perfor-
mance of bottom-up and top-down autoregressive
parsers is similar, but it is possible to re-examine
this given recent advances in neural architectures.

4 Experimental Evaluation

We conduct our experimental evaluation on SPIDER

(Yu et al., 2018), a challenging large-scale dataset
for text-to-SQL parsing. SPIDER has become
a common benchmark for evaluating semantic
parsers because it includes complex SQL queries
and a realistic zero-shot setup, where schemas at
test time are different from training time.

4.1 Experimental setup
We encode the input utterance x and the schema S
with GRAPPA, consisting of 24 Transformer layers,
followed by another 8 RAT-SQL layers, which we
implement inside AllenNLP (Gardner et al., 2018).
Our beam size is K = 30, and the number of
decoding steps is T = 9 at inference time, which
is the maximal tree depth on the development set.
The transformer used for tree representations has
one layer, 8 heads, and dimensionality 256. We
train for 60K steps with batch size 60, and perform
early stopping based on the development set.

Evaluation We evaluate performance with the
official SPIDER evaluation script, which computes
exact match (EM), i.e., whether the predicted SQL
query is identical to the gold query after some
query normalization. The evaluation script uses

Model EM Exec
RAT-SQL+GP+GRAPPA 69.8% n/a
RAT-SQL+GAP 69.7% n/a
RAT-SQL+GRAPPA 69.6% n/a
RAT-SQL+STRUG 68.4% n/a
BRIDGE+BERT (ensemble) 67.5% 68.3
RAT-SQLv3+BERT 65.6% n/a
SMBOP+GRAPPA 69.5% 71.1%

Table 2: Results on the SPIDER test set.

anonymized queries, where DB values are con-
verted to a special value token. In addition, for
models that output DB values, the evaluation script
computes denotation accuracy, that is, whether ex-
ecuting the output SQL query results in the right
denotation (answer). As SMBOP generates DB
values, we evaluate using both EM and denotation
accuracy

Models We compare SMBOP to the best non-
anonymous models on the SPIDER leaderboard at
the time of writing. Our model is most compara-
ble to RAT-SQL+GRAPPA, which has the same
encoder, but an autoregressive decoder.

In addition, we perform the following ablations
and oracle experiments:
• NO X-ATTENTION: We remove the cross atten-

tion that computes Z ′
t and uses the representa-

tions in Zt directly to score the frontier. In this
setup, the decoder only observes the input ques-
tion through the 0-high trees in Z0.

• WITH CNTX REP.: We use the contextualized
representations not only for scoring, but also as
input for creating the new treesZt+1. This tests if
contextualized representations on the beam hurt
or improve performance.

• NO DB VALUES: We anonymize all SQL queries
by replacing DB values with value, as de-
scribed above, and evaluate SMBOP using EM.
This tests whether learning from DB values im-
proves performance.

• Z0-ORACLE: An oracle experiment where Z0 is
populated with the gold schema constants (but
predicted DB values). This shows results given
perfect schema matching.

4.2 Results

Table 2 shows test results of SMBOP compared to
the top (non-anonymous) entries on the leaderboard
(Zhao et al., 2021; Shi et al., 2021; Yu et al., 2020;
Deng et al., 2020; Lin et al., 2020; Wang et al.,
2020a). SMBOP obtains an EM of 69.5%, only

19

20 40 60 80 100 120 140
Size

1

2

3

4

5

6
Sp

ee
du

p

Figure 5: Speed-up on the development set compared
to autoregressive decoding, w.r.t the size of the SQL
query.

0 10 20 30 40 50 60 70
Wall Clock Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EM

SmBoP-GraPPa
RATSQL-GraPPa
RATSQL-BERT

Figure 6: EM as a function of wall clock time on the
development set of SPIDER during training.

0.3% lower than the best model, and 0.1% lower
than RAT-SQL+GRAPPA, which has the same en-
coder, but an autoregressive decoder. Moreover,
SMBOP outputs DB values, unlike other models
that output anonymized queries that cannot be ex-
ecuted. SMBOP establishes a new state-of-the-art
in denotation accuracy, surpassing an ensemble of
BRIDGE+BERT models by 2.9 denotation accu-
racy points, and 2 EM points.

Turning to decoding time, we compare SMBOP
to RAT-SQLv3+BERT, since the code for RAT-
SQLv3+GRAPPA was not available. To the best
of our knowledge the decoder in both is identical,
so this should not affect decoding time. We find
that the decoder of SMBOP is on average 2.23x
faster than the autoregressive decoder on the devel-
opment set. Figure 5 shows the average speed-up
for different query tree sizes, where we observe a
clear linear speed-up as a function of query size.
For long queries the speed-up factor reaches 4x-
6x. When including also the encoder, the average
speed-up obtained by SMBOP is 1.55x.

In terms of training time, SMBOP leads to

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1m 1.1m
Examples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EM

SmBoP-GraPPa
RATSQL-GraPPa
RATSQL-BERT

Figure 7: EM as a function of the number of examples
on the development set of SPIDER during training.

much faster training and convergence. We com-
pare the learning curves of SMBOP and RAT-
SQLv3+BERT, both trained on an RTX 3090, and
also to RAT-SQLv3+GRAPPA using performance
as a function of the number of examples, sent to
us in a personal communication from the authors.
SMBOP converges much faster than RAT-SQL
(Fig. 7). E.g., after 120K examples, the EM of SM-
BOP is 67.5, while for RAT-SQL+GRAPPA it is
47.6. Moreover, SMBOP processes at training time
20.4 examples per second, compared to only 3.8 for
the official RAT-SQL implementation. Combining
these two facts leads to much faster training time
(Fig. 6), slighly more than one day for SMBOP vs.
5-6 days for RAT-SQL.

5 Conclusions

In this work we present the first semi-
autoregressive bottom-up semantic parser
that enjoys logarithmic theoretical runtime, and
show that it leads to a 2.2x speed-up in decod-
ing and ∼5x faster taining, while maintaining
state-of-the-art performance. Our work shows
that bottom-up parsing, where the model learns
representations for semantically meaningful
sub-trees is a promising research direction, that
can contribute in the future to setups such as
contextual semantic parsing, where sub-trees often
repeat, and can enjoy the benefits of execution at
training time. Future work can also leverage work
on learning tree representations (Shiv and Quirk,
2019) to further improve parser performance.

Acknowledgments

We thank Tao Yu, Ben Bogin, Jonathan Herzig,
Inbar Oren, Elad Segal and Ankit Gupta for their
useful comments. This research was partially sup-

20

ported by The Yandex Initiative for Machine Learn-
ing, and the European Research Council (ERC)
under the European Union Horizons 2020 research
and innovation programme (grant ERC DELPHI
802800).

References
J. Berant, A. Chou, R. Frostig, and P. Liang. 2013. Se-

mantic parsing on Freebase from question-answer
pairs. In Empirical Methods in Natural Language
Processing (EMNLP).

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2019. Learning an executable neu-
ral semantic parser. Computational Linguistics,
45(1):59–94.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. Driving semantic parsing from the
world’s response. In Proceedings of the Fourteenth
Conference on Computational Natural Language
Learning (CoNLL).

E. F. Codd. 1970. A relational model of data for large
shared data banks. Commun. ACM, 13(6):377–387.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2020. Structure-grounded pretraining
for text-to-sql. arXiv preprint arXiv:2010.12773.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 33–43, Berlin, Ger-
many. Association for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-SQL in cross-
domain database with intermediate representation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (ACL),

pages 4524–4535, Florence, Italy. Association for
Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333, Online. Association for
Computational Linguistics.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

C. Liang, J. Berant, Q. Le, and K. D. F. N. Lao.
2017. Neural symbolic machines: Learning seman-
tic parsers on Freebase with weak supervision. In
Association for Computational Linguistics (ACL).

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies (ACL-HLT), pages
590–599, Portland, Oregon, USA. Association for
Computational Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888, Online. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ralph C. Merkle. 1987. A digital signature based on
a conventional encryption function. In Advances
in Cryptology - CRYPTO ’87, A Conference on
the Theory and Applications of Cryptographic Tech-
niques, Santa Barbara, California, USA, August 16-
20, 1987, Proceedings, volume 293 of Lecture Notes
in Computer Science.

Augustus Odena, Kensen Shi, David Bieber, Rishabh
Singh, and Charles Sutton. 2020. Bustle: Bottom-
up program-synthesis through learning-guided ex-
ploration.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code genera-
tion and semantic parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 1139–1149, Van-
couver, Canada. Association for Computational Lin-
guistics.

https://doi.org/10.1162/coli_a_00342
https://doi.org/10.1162/coli_a_00342
https://www.aclweb.org/anthology/W10-2903
https://www.aclweb.org/anthology/W10-2903
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://www.aclweb.org/anthology/P11-1060
https://www.aclweb.org/anthology/P11-1060
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
http://arxiv.org/abs/2007.14381
http://arxiv.org/abs/2007.14381
http://arxiv.org/abs/2007.14381
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105

21

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2020. Green AI. Communications of the
ACM, 63.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), Volume 2 (Short Papers),
pages 464–468, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Cicero
Nogueira dos Santos, and Bing Xiang. 2021. Learn-
ing contextual representations for semantic pars-
ing with generation-augmented pre-training. arXiv
preprint arXiv:2012.10309.

Vighnesh Leonardo Shiv and Chris Quirk. 2019. Novel
positional encodings to enable tree-structured trans-
formers. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020a. RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020b. RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Ronald J. Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–
280.

Pengcheng Yin and Graham Neubig. 2017. A syn-
tactic neural model for general-purpose code gen-
eration. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 440–450, Vancouver, Canada. Associ-
ation for Computational Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8413–
8426, Online. Association for Computational Lin-
guistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing. arXiv preprint arXiv:2009.13845.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3911–3921, Brussels, Belgium. Association
for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Irene Li Heyang Er,
Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Vincent Zhang
Jonathan Kraft, Caiming Xiong, Richard Socher,
and Dragomir Radev. 2019. Sparc: Cross-domain
semantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), Florence, Italy. Associa-
tion for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence (AAAI).

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence (UAI).

Liang Zhao, Hexin Cao, and Yunsong Zhao. 2021.
Gp: Context-free grammar pre-training for text-to-
sql parsers.

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
http://arxiv.org/abs/2101.09901
http://arxiv.org/abs/2101.09901

