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Abstract

With the development of robotics, the use of
robots in daily life is increasing, which has led
to the need for anyone to easily train robots to
improve robot use. Interactive reinforcement
learning(IARL) is a method for robot train-
ing based on human–robot interaction; prior
studies on IARL provide only limited types
of feedback or require appropriately designed
shaping rewards, which is known to be diffi-
cult and time consuming. Therefore, in this
study, we propose interactive deep reinforce-
ment learning models based on voice feedback.
In the proposed system, a robot learns the task
of cooperative table balancing through deep
Q-network using voice feedback provided by
humans in real time, with automatic speech
recognition(ASR) and sentiment analysis to
understand human voice feedback. As a result,
an optimal policy convergence rate of up to
96% was realized, and performance was im-
proved in all voice feedback-based models.

1 Introduction

Service robots equipped with artificial intelligence
technology are increasing in daily life. Examples in-
clude museum exhibition guide robot(Thrun et al.,
1999), café-serving robot(Maxwell et al., 1999),
and object carrying robot(Yokoyama et al., 2003).
Robots increasingly perform tasks instead of or
together with humans in various environments in
daily life, and there has been an active research
on robots that cooperate with humans(Calinon and
Billard, 2007; Du et al., 2018).

Reinforcement learning (RL) ––a robot learning
technique– is a method in which an agent robot
learns the action of obtaining maximum rewards
through trial and error. In RL, rewards are generally
given by agent action in a state, and if rewards are
given through real-time human-agent interaction, it
is called interactive reinforcement learning(IARL).

Reward shaping(RS)(Ng et al., 1999)––an IARL
method––is a technique in which a human trainer
modifies reward functions by providing positive
or negative feedback on the action of RL agents.
In previous studies on IARL using natural lan-
guage, the type of feedback is very limited using
fewer than 10 feedbacks(Cruz et al., 2015; Tenorio-
Gonzalez et al., 2010).To facilitate the use of robots,
the need for a training system through various feed-
backs is raised so that robot training can be natu-
rally performed using various voice feedbacks.

Therefore, in this study, we propose an interac-
tive deep RL model based on voice feedback to
facilitate robot use. In the proposed system, a robot
uses deep Q-networks(DQNs)(Mnih et al., 2013)
to perform table balancing(Kim and Kang, 2020)
tasks that require cooperation with humans and
learns the RL policy through RS by human voice
feedback. Using RS, a human trainer who collab-
orates table balancing task with robot and knows
how to perform a task provides positive or negative
feedback in real time about a robot’s action via
speech. Therefore, the agent provided with voice
feedback learns the optimal policy––a policy that
always leads to the balanced table state––faster and
more naturally than when feedback is not used.

The rest of the paper is organized as follows.
Section 2 explores the flow and limitations of prior
IARL studies through related work, and Section 3
describes the proposed interactive deep RL system
based on voice feedback. In Section 4, we describe
the results of table balancing task training based on
the proposed system, and compare the difference
in learning performance against conventional DQN
as a baseline and between voice feedback provision
types. Finally, Section 5 concludes this study and
suggests future research directions.
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2 Related Work

One of the strategies to improve learning perfor-
mance in RL is that humans guide agents as ex-
ternal trainers. Representative examples include
learning by imitation(Bandera et al., 2012), demon-
stration(Argall et al., 2009; Zhu and Hu, 2018), and
by feedback. Among them, focusing on feedback-
providing learning, we examine: (1) the design
of IARL platforms that provide feedback through
mouse or remote controls (Thomaz et al., 2006;
Ullerstam and Mizukawa, 2004), (2) design of
IARL algorithms(Knox and Stone, 2009; Griffith
et al., 2013; Faulkner et al., 2020) and (3) studies of
IARL through voice feedback(Tenorio-Gonzalez
et al., 2010; Cruz et al., 2015). What these studies
have in common is that RS reduces training time
and fosters the robot or computer to learn the target
action.

Regarding methods that adopt hardware input
devices, some approaches use a mouse or remote
control to design an IARL platform(Thomaz et al.,
2006; Ullerstam and Mizukawa, 2004). Thomaz
et al. (2006) revealed that IARL can improve
robot’s learning efficiency in an interactive Q-
learning platform for cooking simulation robots,
where humans can use mouse scrolls to provide
feedback for robot actions by giving a number be-
tween -1 and +1. In the study of Ullerstam and
Mizukawa (2004), AIBO robots learned action se-
quences such as singing after hearing a command
from a human feedback given by remote control.
However, in these prior studies on the design of
such an IARL platform, input hardware, such as a
mouse and remote control, is required to provide
human feedback, which is difficult to see as a natu-
ral interaction with human.

Studies on developing IARL algorithms using
human feedback include TAMER (Knox and Stone,
2009), Advise (Griffith et al., 2013) and REPaIR
algorithm (Faulkner et al., 2020). In TAMER––an
interactive reinforcement learning algorithm pro-
posed by Knox and Stone (2009)––an agent learns
a human feedback function by receiving two eval-
uation signals of positive and negative from the
human on their keyboards; it was tested in Tetris
game and mountain car problem. In Advise pro-
posed by Griffith et al. (2013), a human modifies
an agent’s action choice probability, i.e., the policy,
by giving the agent binary feedback––positive or
negative. As a result, Advise outperformed con-
ventional RL algorithms on game tasks such as

Pac-Man. Faulkner et al. (2020) proposed the RE-
PaIR algorithm, which estimates the correctness
of human feedback over time; virtual and physical
robots performed tasks, such as putting a ball into
the box in a simulation environment and grasping
cup in the real world. They proved that the REPaIR
algorithm matched or improved the performance
of conventional Q-learning algorithms. However,
these approachs that focused on feedback learn-
ing algorithms for IARL required the design of an
appropriate shaping function, and additional time
to calculate rewards or policies. Moreover, in the
framework proposed in this study, natural language
voice feedback is directly integrated into a reward
so that the amount of additional computation re-
quired for DQN learning is relatively small.

Studies that investigated IARL using natural
language speech voice feedback itself include dy-
namic RS (Tenorio-Gonzalez et al., 2010) and
IARL through speech guidance(Cruz et al., 2015).
Tenorio-Gonzalez et al. (2010) showed that robots
can use human voice feedback in RL to learn navi-
gation tasks by assigning specific scalar rewards to
feedback vocabulary, such as +100 to ”excellent”
and -10 to ”bad” in simulation environments. Cruz
et al. (2015) used voice commands and automatic
speech recognition(ASR) to transcribe input voice
commands, and then compared the input sentence
and predefined lists using Levenshtein distance for
cleaning tasks of robot arm agents. However, in
these approaches using voice feedback, the RS
function was designed by assigning a static reward
value to a list of very limited words and sentences
defined in advance. Therefore, when a feedback
vocabulary that has not been defined in the list is
input, the agent may have difficulty in learning.
Moreover, the framework proposed in this study
analyzes the positive and negative degrees of in-
put voice feedback using a pretrained sentiment
analysis module and converts it into a reward value.
Therefore, no matter what feedback phrase is input,
the sentiment polarity of voice feedback can be
analyzed and used for DQN RL.

Through the examination of prior studies, we can
summarize that IARL ordinarily improves learning
performance. However, most studies did not adopt
a natural interaction method with humans by re-
quiring hardware input devices such as a keyboard
or mouse. Further, studies using voice feedback
used a small number of feedbacks. In this current
study, we designed an IARL system for natural
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Figure 1: Interactive deep reinforcement learning
model for table balancing based on human voice feed-
back

robot learning using voice feedback with ASR and
sentiment analysis techniques to resolve these limi-
tations.

3 Proposed Method

In this section, we describe the proposed deep RL
framework for table balancing robots based on
voice feedback. The task that the robot aims to
learn is to maintain balance when lifting a table
cooperatively with a human. Figure 1 shows the
overall work diagram of the proposed system.

First, the robot takes a table state image with
a camera and forwards it to the DQN. Next,the
robot drives the balancing action predicted by
DQN through image analysis. Then, the robot re-
ceives evaluative feedback from humans on the
executed action; the voice feedback is input via the
robot’s microphone, converted to numerical values
by voice feedback recognition and conversion mod-
ule, and then incorporated into the environmental
rewards of the DQN algorithm. Through repetition
of the above process, the robot learns a policy in
which the sum of environmental rewards and hu-
man voice feedback are maximized, and because of
the learning, the robot can perform a cooperative ta-
ble balancing task. In this work, the robot that will
learn the table balancing task is Softbank’s NAO
robot, and the table is a rectangular box with width,
length, and height of 31, 23, 6cm respectively. In
addition, the table states to be used for learning
were imaged using the lower camera mounted on
the NAO robot.

Algorithm 1 Interactive Deep Q-Network Based
on Voice Feedback

Initialize action-value function with random weights θ
Initialize target action-value function Q̂ with random
weights θ− = θ
for episodes = 1, 20000 do

Initialize sequence
for t = 1, T do

Get table state image st = xt
With probability ε select a random action at
Otherwise select at = argmaxa∈AQt(st, at)
Execute action at and observe reward rt and image

xt+1

if Human trainer provides voice feedback ft on
state st then

Let rt←rt + ft
end if

yt =

{
rt if episode done at step t+ 1

rt + γmax
a′∈A

Q̂(s′, a′; θ−)) otherwise

(1)
Perform a gradient descent step on

L(θ) = E[(yt −Q(st, at; θt))
2]

with respect to the network parameters θ
Every 5 steps reset θ− = θ

end for
end for

3.1 Deep Reinforcement Learning Process
Based on Voice Feedback

The robot in the proposed system uses the DQN to
recognize the table state image and output the table
balancing action based on human voice feedback.
A DQN combines Q-learning with a deep convo-
lutional neural network to estimate a state–action
value function (Q function) given an input image
and action.

Depending on the degree of raising and balanc-
ing state of the table, the human action states are
divided into five in our system: up (sup), keep
(s0), down (sdown), up a lot(supup) and down a lot
(sdowndown). The subscripts of s represent human
actions. The robot executes the table balancing ac-
tion a by adjusting the knee joint drive value. Five
robot actions are defined depending on the direction
and degree of table movement: aup, aup, a0, adown,
and adown.

Algorithm 1 represents the training process of
an interactive DQN based on voice feedback. This
training process is identical to the DQN training
process;an interactive voice feedback-based pro-
cess is added after the robot action operation. The
input state s is a table image(xt),which is an RGB
image of 128× 170 size representing the balance
status of the table imaged by the robot camera.
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Agent action Reward
Reaching the target state +0.5
Returning undefined action -0.5
Reaching non-target states -0.3

Table 1: DQN environmental reward model.

The environment selects a table state image from
the training dataset and feeds it to the robot, which
is a DQN agent. The robot determines the action
in the current time step according to the ε-greedy
policy, which selects a random action with a prob-
ability of ε for exploration. If no random action is
selected, the agent chooses the action that maxi-
mizes the value of the Q function. The Q function
that DQN aims to predict is as follows:

Qπ(s, a) = Eπ
∞∑
t=1

γtrt (2)

where r is the reward that the robot receives when
it moves to the next state from the current state
by performing the action. The Q function is rep-
resented as the expected value of the cumulative
reward received when executing the action a in
state s, and γ is the discount rate, which reduces
the influence of the Q value in the future state.

After executing an action, the agent receives eval-
uative voice feedback from human and environ-
mental rewards. Table 1 defines the environmental
rewards of the proposed system. The environment
provides a positive reward of +0.5 when the robot
reaches the target state, the balancing maintenance
state (s0). A negative reward of −0.3 is given when
the agent outputs an action that reaches a state other
than the target. Finally the agent receives negative
reward of −0.5 when returning an undefined action
other than the one in the balancing task model in
Kim and Kang (2020)’s work, such as returning
adown while recognizing the human action state as
supup.

Interactive voice feedback is a human speech
evaluation of the robot’s action. After checking the
balance state of the table that has changed by the
robot’s action, the human provides positive voice
feedback when the robot reaches the target state,
and negative voice feedback otherwise. The pro-
vided voice feedback is converted into a numerical
value through the voice feedback recognition and
conversion module, and then added to the RL envi-
ronment rewards. When the human provides voice
feedback, the robot uses both feedback and envi-

ronmental reward; and without feedback, the robot
uses only environmental reward for learning. In
Subsection 3.2, the voice feedback recognition and
conversion module is described in depth.

In Algorithm 1, θ stands for the parameters of
neural networks. DQN considers yt as a target and
proceeds learning in a direction that reduces the
error of yt and estimated Q(st, at) by neural net-
works. Therefore, the DQN model is updated in
every episode via the loss function L(θ), which
computes the mean squared error. With a repetitive
update of θ in the direction of minimizing L(θ), the
Q function gets closer to the optimal state-action
value function, and the agent learns the optimal
action in the given state. Through this process, the
robot can train DQN for table balancing with hu-
man voice feedback. To incorporate voice feedback
in the DQN framework, we implemented voice
feedback recognition and conversion module.

3.2 Voice Feedback Recognition and
Conversion Modules

The voice feedback recognition and conversion
module analyzed whether input voice feedback
evaluated the robot’s action positively or negatively.
The voice feedback recognition and conversion
module, shown in Figure 1, consisted of two pro-
cesses: ASR and sentiment analysis.

First, the robot received an voice feedback signal
from the microphone. ASR transcribed the signal
into a character string and output it. We adopted
Google Cloud speech-to-text as the ASR system,
a cloud-based service that supported speech input
and corresponding transcription in real time. This
ASR system supports online streaming and offline
voice audio processing, which was suitable for the
agent’s learning environment in our experimental
setting.

Using a string of sentences obtained through
ASR, sentiment analysis identified the positive and
negative degrees of voice feedback phrases. The
analyzed sentiment was returned in real value be-
tween −1 and 1 with positive and negative feed-
back being closer to +1 and −1. Moreover, if ASR
could not correctly recognize speech signal, this
module takes feedback as ’none’ and only uses en-
vironmental reward. Google Natural Language API
was used for sentiment analysis because of the ease
of processing and modifying the sentiment analysis
results in the implementation process.
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Feedback phrases Converted value
Well done 0.8
Fine 0.6
That is not how you do it −0.699
Try again −0.5

Table 2: Examples of feedback phrase with converted
numeric value.

4 Experimental Results

In this section, we discuss the construction of a
feedback dataset for the experiment, evaluation
of the voice feedback recognition and conversion
module, and verification of the proposed interactive
deep RL model through experiments.

4.1 Voice Feedback Dataset and Recognition
Rate

First, we constructed the voice feedback phrase
dataset to test the proposed DQN model from cor-
pora. The corpora used to build the dataset were
Sentiment lexicon (Hu and Liu, 2004), AFINN lex-
icon (Nielsen, 2011), and Classroom English(Hong
and Sohn, 2013). A total of 100 feedback dataset
phrases were extracted for experiments from the
corpora, with 50 positive feedback phrases and
50 negative feedback. The feedback phrases were
mainly short sentences or words that evaluated ac-
tions. Table 2 shows an example of some feedback
phrases in the dataset and their converted sentiment
analysis values which were incorporated in the RL
reward function.

As a result of testing the recognition accuracy
of Google Cloud speech-to-text, which is the ASR
used in this study, the average sentence recogni-
tion rate was 86% using the built feedback phrase
dataset. Three times of tests with the feedback
phrase datasets on Google Natural Language APIs
showed an average sentence recognition rate of
96%. An accuracy of less than 100% meant that
the agent might receive an erroneous reward sig-
nal due to the malfunction of the voice feedback
recognition and conversion module. In this study,
all cases in which wrong rewards were given from
malfunction of ASR or sentiment analysis were
considered, and it was confirmed via experiments
that using interactive voice feedback could foster
the agent’s target task learning despite such errors.

Figure 2: Comparison of Consec-VF and Prdc-VF
model

Parameter Value
Learning rate α 0.001
Discount factor γ 0.9
Epsilon ε 20
Number of episodes 20,000
Number of voice feedbacks 100

Table 3: Hyperparameters of DQN training.

4.2 Interactive Voice Feedback DQN Model

In this paper, we employed two voice feedback
models: consecutive voice feedback (Consec-VF)
and periodical voice feedback (Prdc-VF) models
(Figure 2). During the training, the human can
provide (1) Consec-VF in the early stages of
learning, or (2) Prdc-VF throughout learning.
Consec-VF provided 100 consecutive feedback
earlier in training, and Prdc-VF provided 10
feedbacks every 2,000 episodes. Training was
conducted in simulation where random state im-
ages are given in every episode and human trainer
provides voice feedback via microphone while
observing the next state. We also run experiments
on a physical NAO robot as a proof of concept,
and robot training video can be found at this
link. (http://air.knu.ac.kr/index.php/evolutionary-
cooperative-robot-development-using-distributed-
deep-reinforcement-learning) We compared the
two feedback-providing models with conventional
DQN without voice feedback as a baseline.
Additional four optimizer comparison experiments
were conducted on Consec-VF.

We conducted 30 experiments for each model
setting and evaluated the performance by calcu-
lating the optimal policy convergence rate after
the training. Hyperparameter settings for training
DQNs are shown in Table 3. All hyperparameter
settings, except the number of voice feedbacks,
were equally applicable to both the proposed IARL
model and baseline model–DQNs.



76

(a) Baseline (b) Consec-VF (c) Prdc-VF

Figure 3: Loss graph of models

Optimizer Baseline Consec-VF Prdc-VF
SGD 80% 86% 80%
Adam 73 % 96% 60%

Table 4: Optimal policy convergence rate of 3 experi-
mental model

We analyze the difference in model performance
by the two methods of providing interactive voice
feedback: Consec-VF and Prdc-VF. Voice feedback
was provided 100 times out of 20,000 episodes (Ta-
ble 3), and other episodes only used environmental
rewards from Table 1. The Consec-VF model is
designed to intensively feed voice feedback at the
beginning of learning to establish the initial learn-
ing direction, whereas Prdc-VF model is designed
to reflect human feedback steadily in the overall
learning process so that human feedback could be
consistently reflected.

Table 4 shows the results of experiment with two
optimizers by applying the hyperparameter settings
of Table 3 to the two voice feedback models and
baseline DQNs. First, for the Consec-VF model,
the optimal policy convergence rate was 86% and
96% when SGD and Adam optimizers were used,
showing higher performance than the baseline with
optimal policy convergence rates of 80% and 73%
, respectively. Particularly, the convergence rate of
96% where 29 of 30 experiments learned optimal
policies with Adam optimizer showed that combin-
ing Consec-VF with DQN significantly improved
model performance.

Moreover, the Prdc-VF model showed lower per-
formance than the Consec-VF and baseline models,
which could be analyzed by training loss graphs.
Figure 3 shows the training loss of the baseline,
Consec-VF, and Prdc-VF models. In Figure 3-(a)
and -(b), the loss stably converged to zero in the
Consec-VF baseline model. However, in the Prdc-
VF model in Figure 3-(c), loss spikes were ob-

Optimizer Baseline Consec-VF
SGD 80% 86%
Adam 73 % 96%

Adagrad 43 % 56%
Adadelta 63 % 76%

Table 5: Optimal policy convergence rate of the base-
line and Consec-VF models using four different opti-
mizers

served during the training process. We analyzed
that the intermittent intervention of voice feedback
interfered with the convergence of losses during
the training, resulting in a lower performance of
the Prdc-VF model compared with others.

Experiment results showed that the Consec-VF
model learned optimal policies better than base-
line and Prdc-VF models. As in-depth experi-
ments, we examine the results of the experiment by
adding Adagrad, Adalta optimizers to the Consec-
VF model to ensure that the use of Consec-VF
consistently leads to model learning performance.
Table 5 shows the optimal policy convergence rate
after 30 experiments on the Consec-VF and base-
line model on four optimizers. In all experiments
Consec-VF showed improved optimal policy learn-
ing compared to the baseline DQN. These experi-
ment results indicated that incorporating interactive
voice feedback into DQN for table balancing tasks
improved model learning performance in all opti-
mizer settings.

5 Conclusion

In this study, we proposed an interactive deep RL
model based on voice feedback for table balancing
robot. The proposed system suggests DQN incorpo-
rating human voice feedback using ASR and senti-
ment analysis, where feedback given by humans are
incorporated into the reward function. Experiment
results show that the Consec-VF model, which pro-
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vides Consec-VF early in learning, achieves an
optimal policy convergence rate higher than the
baseline model in all optimizer settings. There are
several areas of extensions of our approach. Fu-
ture direction for our work includes incorporating
multimodal feedback to DQN using various robot
sensors. We could also focus on deepening model
optimization technique that improves learning per-
formance of interactive RL model in varying set-
tings. Robot could also learn when to use feedback
and when to discard it or incorporate text semantics
such as guiding robot behavior.
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