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Abstract

The use of attention mechanisms in deep learn-
ing approaches has become popular in natural
language processing due to its outstanding per-
formance. The use of these mechanisms al-
lows one managing the importance of the el-
ements of a sequence in accordance to their
context, however, this importance has been ob-
served independently between the pairs of el-
ements of a sequence (self-attention) and be-
tween the application domain of a sequence
(contextual attention), leading to the loss of rel-
evant information and limiting the representa-
tion of the sequences. To tackle these partic-
ular issues we propose the self-contextualized
attention mechanism, which trades off the pre-
vious limitations, by considering the internal
and contextual relationships between the ele-
ments of a sequence. The proposed mech-
anism was evaluated in four standard collec-
tions for the abusive language identification
task achieving encouraging results. It outper-
formed the current attention mechanisms and
showed a competitive performance with re-
spect to state-of-the-art approaches.

1 Introduction

The integration of social media platforms into the
everyday lives of billions of users has increased
the number of online social interactions, promoting
the exchange of different opinions and points of
view that would otherwise be ignored by traditional
media. The use of these social media platforms has
revolutionized the way people communicate and
share information. Unfortunately, not all of these
interactions are constructive, as the presence of
Abusive Language (AL) has spread to these media.

AL is characterized by the presence of insults,
teasing, criticism and intimidation (Cecillon et al.,
2019). Mainly, it includes epithets directed at an
individual’s characteristic, which are personally of-
fensive, degrading and insulting. Because of its
negative social impact (Kumar et al., 2018), the

automatic identification of AL has stimulated the
interest of social media companies and govern-
ments (Hinduja and Patchin, 2010). Derived from
this, multiple efforts have been made to combat
the proliferation of AL, starting from the codes
of conduct, norms and regulations in the content
publication on social media1, to the use of Natural
Language Processing (NLP) for the computational
analysis of language (Schmidt and Wiegand, 2017).

Concerning the several efforts and approxima-
tions made by the NLP community, one of the most
relevant issues in the AL identification task is to dis-
tinguish between the use of profane words and vul-
garities in offensive and non-offensive texts. This
indicates that the importance and interpretation of
each word is highly context dependent, and, ac-
cordingly, this particular issue evidences one of the
reasons why traditional bag-of-words methods tend
to generate many false positives in their predictions.
Few works related to this task have explored the im-
portance of words according to their context; partic-
ularly, the use of Deep Learning (DL) approaches
with the addition of the Attention Mechanism (AM)
has been explored as an alternative to solve this is-
sue (Pavlopoulos et al., 2017; Chakrabarty et al.,
2019; Jarquín-Vásquez et al., 2020).

The idea behind the use of the AM is to pro-
vide the classification model with the ability to
focus on a subset of inputs (or features), handling
in this way the importance of words in accordance
to their context. Due to their outstanding perfor-
mance in many NLP tasks, several AM have been
proposed in recent years (Chaudhari et al., 2020),
which can be divided into two main approaches:
Self-Attention (SA) (Vaswani et al., 2017) and Con-
textual Attention (CA) (Yang et al., 2016) mech-
anisms. Specifically, SA takes the relationships
among words within the same sentence, whereas,

1http://ec.europa.eu/justice/
fundamental-rights/files/hate_speech_
code_of_conduct_en.pdf

http://ec.europa.eu/justice/fundamental-rights/files/hate_speech_code_of_conduct_en.pdf
http://ec.europa.eu/justice/fundamental-rights/files/hate_speech_code_of_conduct_en.pdf
http://ec.europa.eu/justice/fundamental-rights/files/hate_speech_code_of_conduct_en.pdf
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CA selectively focuses on words with respect to
some external query vector, which adjusts accord-
ing to the training task. The more important the
word is in determining the answer to that query, the
more focus it is given.

Despite their outstanding performance, both ap-
proaches have their own limitations. On one hand,
CA ignores the internal relationships between the
words of a sequence, correspondingly, SA does
not consider the global relationships within the
words of different sequences, which causes the loss
of relevant information in the application domain
(training task). Clearly, the limitations of these
AM are complimentary and a hybrid AM could
overcome the individual issues. In this work we
extend the use of the AM by proposing the Self-
Contextualized Attention (SCA) mechanism, an
AM that trades off the previous limitations, by tak-
ing advantage of both SA and CA mechanisms.
The proposed SCA mechanism is designed to be
applied to any sequence of word encoding features,
nevertheless, due to the high context-dependency
of words that this specific task has, in this work we
exclusively focus on the AL identification task.

The main contributions in this paper are: After
identifying a Deep Neural Network (DNN) archi-
tecture that is rather stable and well-performing,
we propose and integrate the SCA mechanism into
the DL architecture, subsequently we conduct a
quantitative and qualitative study of the effective-
ness of our proposed AM against the use of SA, CA
and some other novel approaches to the AL identi-
fication task. To the best of our knowledge this is
the first effort in combining both AM variants.

This paper is organized as follows: In Section
2, we present some previous works related to the
AL identification task, along with other hybrid AM
approaches. In Section 3, we describe our pro-
posed SCA mechanism, as well as the employed
classification framework; in Section 4, we present
the datasets used to evaluate our SCA mechanism,
their implementation details, as well as the external
resources fed to the classification framework. Sec-
tion 5 reports and discusses our quantitative and
qualitative results. Finally, Section 6 summarizes
our findings and discusses future work.

2 Related work

Considering the well-acknowledged increase of AL
on social media platforms, several datasets (Zeerak
and Dirk, 2016; Davidson et al., 2017; Marcos et al.,

2019) and evaluation campaigns (Fersini et al.,
2018; Kumar et al., 2018; Aragón et al., 2020),
have been proposed in order to mitigate the impact
of such a kind of messages.

The detection of AL has been mainly addressed
from a supervised perspective, considering a great
variety of features. Initial works used a combina-
tion of hand-crafted features such as bag-of-words
representations, considering word and character n-
grams (Burnap and Williams, 2016), as well as,
syntactical and linguistical features (Nobata et al.,
2016). Aiming to improve the generalization of the
classifiers, some other works have explored the use
of DL by taking word or character sequences from
texts to learn abusive patterns without the need for
explicit feature engineering; the use of word em-
beddings as features predominates in these works
(Zhang et al., 2018; Saksesi et al., 2018; Amrutha
and Bindu, 2019). More recently, there has been
a trend within the NLP community regarding the
use of Transformers for the improvement of text
representations. In particular, for the identification
of AL, transfer learning has been applied consid-
ering different pre-trained models, such as ELMO,
GPT-2 and BERT (Liu et al., 2019; Nikolov and
Radivchev, 2019).

Regarding the classification stage, a vast range
of approaches and techniques have also been pro-
posed. These approaches could be divided into
two main categories; the first category relies on
traditional classification algorithms such as Naive
Bayes, Support Vector Machines (SVM), Logis-
tic Regression and Random Forest (Burnap and
Williams, 2016; Nobata et al., 2016; Davidson
et al., 2017; Schmidt and Wiegand, 2017). On
the other hand, the second category includes DL
approaches, which rely on the use of Convolutional
Neural Networks (CNN) and Recurrent Neural Net-
works (RNN), to accomplish the tasks of feature
extraction (Badjatiya et al., 2017; Gambäck and
Sikdar, 2017) and dependency learning (Badjatiya
et al., 2017; Saksesi et al., 2018). In addition to this,
the combination of both types of Neural Networks
have been used for the development of powerful
structures that capture order information between
the extracted features (Zhang et al., 2018; Amrutha
and Bindu, 2019).

Finally, most recent works in abusive AL iden-
tification have considered DL architectures with
the addition of an AM. One of the first works
introducing attention into the task used the SA
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mechanism to detect abuse in portal news and
Wikipedia (Pavlopoulos et al., 2017). Subsequently,
(Chakrabarty et al., 2019) showed that the use of
CA introduced by (Yang et al., 2016) improved
the results of SA in this task. Later in (Jarquín-
Vásquez et al., 2020) the use of the CA is extended
at a word n-grams level, showing the advantages in
the usage of word sequences when identifying AL.
Regarding other tasks outside the AL identification,
some hybrid AMs have been proposed for the com-
bination and representation of different instances
and modalities (Khullar and Arora, 2020; Zhang
et al., 2020), unlike these hybrid approaches, the
proposed SCA mechanism combines the features
of the SA and CA mechanisms at an instance level.
Motivated by these previous works and with the
goal of creating an AM that handles both, the in-
ternal and external relationships between words, in
this paper we propose the SCA mechanism.

3 Self-contextualized attention

This section is divided into two subsections. First
we introduce our proposed SCA mechanism, which
is designed to be applied to any sequence of encod-
ing features. Subsequently, we present the DNN
architecture used as our classification framework.
For more details related to the AMs, we refer the
reader to the following work: (Chaudhari et al.,
2020).

3.1 Self-contextualized attention mechanism

Given a sequence of encoding features H =

{h1, h2, ..., hn}, where H ∈ Rk×n, k is the number
of the encoding features and hi refers to the i-th
element of H , the purpose of our proposed SCA
mechanism is to generate a global context-aware
representation G, that considers both the internal
and external relationships between the encoding
features of H . Figure 1 shows the general archi-
tecture of our proposed SCA mechanism. This
architecture is divided into three major stages, each
of them is illustrated by the 3 rectangles, corre-
sponding to the SA, CA and SCA stages. Below,
we present in detail the aforementioned stages.

SA stage: as in (Pavlopoulos et al., 2017) the
main purpose of SA is the building of connections
within the elements of the same sequence, but at
different positions. The use of SA allows the mod-
eling of both long-range and local dependencies,
this is captured by the attention filter αs ∈ Rn×n

defined in the Equation 1. This attention filter is

Figure 1: Proposed self-contextualized attention mech-
anism.

calculated with the dot product similarity between
all the pairs of elements of H , later these values
are smoothed with the use of a softmax function.
Finally, the context-aware representation S ∈ Rk×n

shown in the Equation 2, is calculated with the ma-
trix multiplication of H and αT

s , where αs is used
to highlight and filter out the most and less relevant
encoding features, respectively.

αs = softmax(H
T
⋅H) (1)

S =HαT
s (2)

CA stage: unlike the previous stage, the CA
mechanism uses a context vector uh ∈ Rk, which is
randomly initialized and jointly learned during the
training process, this vector is used as a query vec-
tor in order to obtain the attention values αc ∈ Rn

by measuring the similarity between the elements
of the sequence H and the application domain rep-
resented by uh. This similarity is calculated in the
Equation 3 by calculating the scalar dot product
of uTh and H; the resulting values are smoothed
with the use of a softmax function. Contrasting the
CA mechanism proposed by (Yang et al., 2016), in-
stead of using a weighted sum between each atten-
tion value and its corresponding encoding features
for the final sequence representation, our context-
aware representation C ∈ Rk×n shown in Equa-
tion 4, takes all the information of the attention
values, by doing an element-wise multiplication
⊙, within each scalar of αc and its corresponding
encoding features hi.

αc = softmax(u
T
h ⋅H) (3)

C = αc ⊙H (4)

SCA stage: since the previous stages generate
two different context-aware representations S and
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C, respectively. The purpose of this stage is to
merge these representations in order to create a
global context-aware representation G ∈ Rk×n that
integrates both, the internal and external relation-
ships. These relationships are captured with the
global attention filter αg ∈ Rn×n, which is calcu-
lated by the smoothed dot product similarity be-
tween S and C, as shown in Equation 5. This
attention filter can be seen as a high level attention
representation, since it is calculated based on the
local dependencies and the application domain. Fi-
nally, the global context-aware representation G is
calculated in Equation 6 with the matrix multipli-
cation of H and αT

g .

αg = softmax(S
T
⋅C) (5)

G =HαT
g (6)

The proposed SCA mechanism can be applied
to any sequence of encoding features H . For the
purposes of this work, each element of the sequence
is represented by the word encoding features hi.

3.2 Classification framework
In order to integrate our proposed SCA mechanism
into the AL identification task, we adapt a modu-
lar and well-performing DNN architecture, as our
classification framework. This architecture was
presented in (Yang et al., 2016; Chakrabarty et al.,
2019) and its designed to modularly manage dif-
ferent AM. The adapted architecture is shown in
Figure 2; it consists of four main stages, which are
described below.

The first and second stages correspond to the
input and encoding stages, respectively. The in-
put stage is integrated by the embedding matrix
X ∈ Rd×n, which is represented by a sequence of
n d-dimensional word vectors xi. Subsequently,
the embedding matrix X passes as input to the
encoding stage, which is conformed by a Bidirec-
tional Gated Recurrent Unit (Bi-GRU) layer. The
Bi-GRU layer accomplish the sequence encoding
task by summarizing the information of the whole
sequenceX centered around each word annotation;
the producing encoding stage generates a sequence
of encoding features H ∈ Rk×n.

Since not all words contribute equally for the
meaning and representation of a sequence, the third
stage corresponds to the attention stage, including
the SCA mechanism and the average pooling layer.
Specifically, the sequence encoded features H are

Figure 2: Adapted classification framework, based on
a DNN architecture.

passed as input to the SCA mechanism, which
generates a global context-aware representation G;
since the next stage uses a vector for the classi-
fication layers, the matrix G is reduced with the
average pooling layer, generating a high level rep-
resentation vector g ∈ Rk, which summarizes the
most relevant information from G. Finally, the
Fourth stage uses the representation vector g as
input for the classification layers; two layers han-
dle the final classification, a dense layer with a
Rectified Linear Unit (ReLU) activation function,
and a fully-connected softmax layer to obtain the
class probabilities and get the final classification.
The implementation details and the hyperparameter
settings are presented in Section 4.2.

4 Experimental settings

This section presents the experimental settings.
First, we introduce the four evaluation datasets,
which correspond to Twitter collections. Then,
with the purpose of facilitating the replicability
of our results, we present our method’s implemen-
tation details, starting from the text preprocessing
phase, up to the configuration of the classification
framework.
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4.1 Datasets for AL identification

AL can be of different types, its main divisions
are distinguished by the target and severity of the
insults. Accordingly, different collections and eval-
uation campaigns have considered different kinds
of AL for its study. Below we present a brief de-
scription of the four English datasets we used in
our experiments. From now on we will refer to
them as DS1, DS2, DS3, and DS4.

DS1 (Davidson et al., 2017) and DS2 (Zeerak
and Dirk, 2016) were some of the first large-scale
datasets for abusive tweet detection; DS1 focuses
on the identification of racist and sexist tweets,
whereas DS2 focuses on identifying tweets with
abusive language and hate speech. On the other
hand, DS3 (Marcos et al., 2019) and DS4 (Fersini
et al., 2018) were used in the SemEval-2019 Task
6, and in the Evalita 2018 Task on Automatic
Misogyny Identification (AMI) respectively. DS3
focuses on identifying offensive tweets, whereas
DS4 focuses on identifying misogyny in tweets.
Both shared tasks provide a fine-grained evaluation
through different sub-tasks; in this work, we focus
on the sub-task A (binary classification of offenses
and misogyny, respectively).

Figure 3 resumes the information about the
classes distribution of the four collections.

4.2 Implementation details

Different text preprocessing operations were ap-
plied: user mentions and links were replaced by
the default tokens <user> and <url>; in order to en-
rich the vocabulary, all hashtags were segmented by
words (e.g. #BuildTheWall - build the wall) with
the use of the ekphrasis library, proposed in (Bazio-
tis et al., 2017); in addition to this, all emojis were
converted into words (e.g. , - smiley face) using
the demoji2 library; stop words were removed, with
the exception of personal pronouns; all text was
lowercased and non-alphabetical characters as well
as consecutive repeated words were removed. For
word representation we used pre-trained fastText
embeddings (Mikolov et al., 2018), trained with
subword information on Common Crawl, which
have been recognized as useful for this task ac-
cording to the study presented in (Corazza et al.,
2020).

Table 1 presents the hyperparameter settings of
the adapted DNN. The network was trained for a
total of 15 epochs, with a learning rate of 1e–4,

2https://pypi.org/project/demoji/

Vectors and Variables Size
n 50
d 300
k, uh 128
Layer Input size Output size
Embedding 50 50x300
Bi-GRU 50x300 50x128
SCA 50x128 50x128
Avg Pooling 50x128 128
Dense1 128 64
Dense2 64 #Classes

Table 1: DNN architecture hyperparameters.

using the Adam optimizer (Kingma and Ba, 2015)
and a Dropout rate of 15%. In order to compare the
robustness of our proposal, we consider four base-
line architectures: the first architecture is based on
a simple Bi-GRU network, which receives words
as input but does not use any attention layers; the
second and third architectures employ the same
Bi-GRU network with the addition of a SA and
CA layer, respectively; finally, in order to com-
pare the performance of our proposed SCA mech-
anism against a novel AL identification approach,
the fourth baseline is based on a fine-tuned BERT3

base model (12 layers, 768 hidden size, 12 attention
heads per layer), built with the addition of the task-
specific inputs and the end-to-end fine-tuning of all
parameters. As described in (Devlin et al., 2019),
we take the last layer encoding of the classification
token <CLS> and use it as input for the softmax
classification layer. These four baselines architec-
tures and our classification framework are referred
in the experiments as: Bi −GRU , Bi −GRUSA,
Bi −GRUCA, BERTBASE , and Bi −GRUSCA,
respectively. It is important to mention that the first
three baseline architectures used the same hyperpa-
rameter settings.

5 Experimental results

This section is organized in three subsections. Sec-
tions 5.1 and 5.2 present the quantitative results
of the experimentation, corresponding to the com-
parison of our proposed SCA mechanism against
the baselines and state-of-the-art results. Finally,
Section 5.3 presents some qualitative results of the
SCA mechanism, through the analysis and visual-
ization of the attention values.

3https://tfhub.dev/tensorflow/small_
bert/bert_en_uncased_L-12_H-768_A-12/1

https://pypi.org/project/demoji/
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-768_A-12/1
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-768_A-12/1
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Figure 3: The classes distribution of the four used datasets.

5.1 Quantitative effectiveness of the SCA
mechanism

Table 2 shows the results of the mean and stan-
dard deviation corresponding to the 10-fold cross
validation evaluation applied to our classification
framework DNN architecture (Bi − GRUSCA),
as well as the four baselines simplified architec-
tures Bi−GRU , Bi−GRUSA, Bi−GRUCA and
BERTBASE . For sake of comparison, we evalu-
ate all the collections using the macro-average F1

score, which is commonly used in the AL identifi-
cation task.

Centering the analysis of results on the first
three baselines and on our classification framework
(columns 2 - 5), the results indicate that the use of
AM outperformed the base Bi-GRU network (col-
umn 2 vs columns 3 - 5) by at least a margin of
1.1%. In addition, the use of the CA outperformed
the use of SA (column 4 vs column 3) by at least a
margin of 1.2%, which is consistent according to
the results obtained in (Chakrabarty et al., 2019).
Finally, comparing the use of our proposed SCA
mechanism against the use of SA and CA (column
5 vs columns 3 and 4), better results are obtained in
the four evaluation datasets, improving the results
by at least a margin of 1.1%. Since the use CA
baseline outperforms the SA based one, we com-
pared Bi − GRUSCA vs Bi − GRUCA with the
Chi Squared Test, obtaining statistically significant
values with p ≤ 0.001.

Table 2 also compares the results from our
proposed SCA mechanism with respect to the
BERTBASE baseline (column 5 vs column 6). It
is shown that theBi−GRUSCA DNN obtained bet-
ter results in 3 out of 4 datasets. In addition to the
outstanding results, the use of our Bi −GRUSCA

DNN has a considerably lower number of parame-
ters compared to theBERTBASE model (110M vs
7M), which greatly reduces the computing power
necessary to run our DNN. Finally, compared to
some novel approaches for the AL identification

task (Alshaalan and Al-Khalifa, 2020), our DNN
improves the model interpretability, through the
SCA mechanism.

5.2 Comparison with the state-of-the-art
In this subsection we compare our proposed DNN
architecture (Bi −GRUSCA) with state-of-the-art
approaches. Since the datasets DS1 and DS2 are
presented as a single dataset, in order to have a
fair comparison with other works, these were par-
titioned into 80% for training, 10% for validation
and 10% for testing, in addition, the weighted-
average F1 score was used as an evaluation mea-
sure for these datasets. In the case of DS3 and
DS4 datasets, the partitions corresponding to the
training and testing were considered for the evalua-
tion; since these datasets come from shared tasks,
the evaluation measures were adjusted to each of
them, specifically, DS3 and DS4 were evaluated
using the macro-average F1 score and the accuracy,
respectively.

Table 3 presents the results of our proposed
Bi −GRUSCA DNN architecture in comparison
with state-of-the-art results. It shows that the
Bi−GRUSCA DNN obtained better results in 2 out
of 4 datasets. It is important to note that the state-of-
the-art results from the DS2 and DS3 datasets only
improved our results by margin of 1% and 0.03%,
respectively. Specifically, in (Mozafari et al., 2019),
which corresponds to the DS1 and DS2 state-of-
the-art results, the use of a BERT-based CNN is
implemented for the feature extraction of the trans-
former encoders, generating a hierarchical encoded
vector, used for the AL classification.

Regarding the state-of-the-art results from the
DS3 and DS4 datasets, the best performance teams
corresponding to each shared task were consid-
ered, on the one hand, NULI the best performance
team in the DS3 shared task (Liu et al., 2019),
used a BERT-base-uncased model with default-
parameters, using a max sentence length of 64 and
a variety of text pre-processing techniques, on the
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Dataset Bi −GRU Bi −GRUSA Bi −GRUCA Bi −GRUSCA BERTBASE

DS1 0.7614 ±0.0083 0.8162 ±0.0079 0.8271 ±0.0069 0.8378 ±0.0082 0.8291 ±0.0076
DS2 0.7438 ±0.0072 0.7721 ±0.0081 0.7874 ±0.0074 0.7984 ±0.0078 0.8052 ±0.0083
DS3 0.7698 ±0.0081 0.8052 ±0.0078 0.8247 ±0.0085 0.8423 ±0.0064 0.8398 ±0.0081
DS4 0.6541 ±0.0096 0.6654 ±0.0073 0.6782 ±0.0067 0.6937 ±0.0086 0.6906 ±0.0076

Table 2: Comparison results from the four baselines architectures and our classification framework in four datasets
for AL identification (all the collections were evaluated with the macro-average F1).

Dataset Bi −GRUSCA state-of-the-art Reference
DS1 0.89 0.88 (Mozafari et al., 2019)
DS2 0.91 0.92 (Mozafari et al., 2019)
DS3 0.826 0.829 (Liu et al., 2019)
DS4 0.738 0.704 (Saha et al., 2018)

Table 3: Comparison results from our classification framework and state-of-the-art approaches in four datasets for
AL identification (DS1 and DS2 were evaluated with the weighted-average F1, DS3 and DS4 were evaluated using
the macro-average F1 and the accuracy, respectively).

Figure 4: Attention heatmaps visualization, corresponding to the αs, αc, and αg attention filter values. The
Example shown in the attention heatmaps was taken from the DS3 dataset.

other hand, hateminers achieved the highest perfor-
mance on the DS4 shared task (Saha et al., 2018),
with a run based on a vector representation that
concatenates sentence embedding, TF-IDF and av-
erage word embeddings coupled with a Logistic
Regression model. Unlike the reported state-of-the-
art approaches, the use of our SCA mechanism on
a simple and well-performed DNN, obtains com-
petitive results, without the use of complex DNN
(Mozafari et al., 2019), or large amounts of re-
sources and features (Saha et al., 2018).

The boxplot graphs shown in Figure 5, compares
our Bi −GRUSCA performance results (red rhom-
bus) against the top-10 results corresponding to the
shared tasks SemEval 2019 Task 6 and AMI Evalita
2018, respectively. As shown in the graphs, our
results are competitive with respect to the top-10
results obtained by the best participating teams in

Figure 5: Comparative Boxplot graphs from our results
(red rhombus) vs. the top-10 results of the shared tasks.

each sub-task A. In both boxplot graphs our results
remain above the third quartile, specifically, in the
AMI Evalita 2018 shared task an outstanding per-
formance is obtained with the use of our proposed
SCA mechanism in the classification framework.
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5.3 Qualitative effectiveness of the SCA
mechanism

NOTE: This subsection contains examples of lan-
guage that may be offensive to some readers, these
do not represent the perspectives of the authors.

In order to understand the effectiveness of our
proposed SCA mechanism in the improvement
of the sequences representation, this subsection
presents the qualitative results of the analysis and
visualization of the attention values. Since the SCA
mechanism integrates both, the SA and CA mecha-
nisms, the attention values were considered at these
three different levels, with the analysis of the αs,
αc and αg attention filters, which correspond to the
SA, CA and SCA mechanisms.

Figure 4 shows the visualization of the attention
heatmaps corresponding to the three attention fil-
ters values integrated by the SCA mechanism. The
example shown in the figure “<user> who is the
loser bitch fuck you <url>" corresponds to an of-
fensive instance taken from the DS3 dataset. As
shown in the figure, the values of the attention fil-
ter αs, corresponding to the SA, tend to be more
relevant with respect to their own elements and
their closest neighbors, for example, in the case of
the most relevant words to “who", the same word

“who" is found, followed by the word “is", likewise,
in the case of the most relevant words to “fuck",
the words “fuck", “you" and “bitch" are found. On
the other hand, the values of the attention filter αc,
corresponding to the CA, indicate the most relevant
words for the AL identification; as can be seen in
the central heatmap from the Figure 4, the most
relevant words are: “loser", “bitch" and “fuck",
which indeed correspond to words potentially used
in offensive contexts.

Finally, the values of the attention filter αg, cor-
responding to the SCA, are shown in the right
heatmap from Figure 4. The attention filter αg

shows the combination of both AM, which im-
proves the representation of an instance. For ex-
ample, in the produced visualization from the most
relevant words to “<user>", a closer relationship
to offensive words is now presented, highlighting
the words: “loser", “bitch" and “fuck", which are
often used to offend, something similar is presented
with the words “who" and “is". On the other hand,
the words “fuck", “you" and “bitch", in addition
to having a better relationship with other offensive
words as “loser", are also related to the target of
the offense: “<user>".

6 Conclusions and future work

One of the main problems in the use of current
AMs is the loss of contextual or internal informa-
tion between the elements of a sequence. To tackle
this issue we proposed the SCA mechanism, which
integrates the SA and CA mechanisms for the con-
struction of a representation that considers both,
the internal and contextual relationships between
the elements of a sequence. Due to the highly
context-dependent interpretation of words in the
AL identification, in this work we explore the use
of the proposed SCA mechanism in the AL iden-
tification. The results obtained in four collections,
considering different kinds of AL, were encour-
aging; they improved state-of-the-art approaches
in 2 out of 4 datasets. In addition to this, the SA
and CA mechanisms were evaluated against the
SCA mechanism, the results show a quantitative
and qualitative improvement in the use of the SCA
mechanism, which allowed concluding that the use
of the SCA mechanism is useful for discriminating
between offensive and non-offensive contexts.

Since the most recent approaches are based on
Transformers, as future work we plan to explore
the use of our proposed SCA mechanism in the
design of a multi-head SCA architecture. Addition-
ally, we consider exploring new ways of combin-
ing the SA and CA mechanisms, as well as some
novel approaches in the building of the SCA mech-
anism without the need of computing the SA and
CA mechanisms individually. Finally, we consider
the application of the proposed SCA mechanism
in other related tasks where the interpretation of
words is highly context dependent such as the de-
tection of deception or the detection of depressed
social media users.
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