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Abstract

As hate speech spreads on social media and on-
line communities, research continues to work
on its automatic detection. Recently, recogni-
tion performance has been increasing thanks to
advances in deep learning and the integration
of user features. This work investigates the ef-
fects that such features can have on a detection
model. Unlike previous research, we show that
simple performance comparison does not ex-
pose the full impact of including contextual-
and user information. By leveraging explain-
ability techniques, we show (1) that user fea-
tures play a role in the model’s decision and
(2) how they affect the feature space learned
by the model. Besides revealing that—and
also illustrating why—user features are the rea-
son for performance gains, we show how such
techniques can be combined to better under-
stand the model and to detect unintended bias.

1 Introduction

Communication and information exchange be-
tween people is taking place on online platforms at
a continuously increasing rate. While these means
allow everyone to express themselves freely at any
time, they are massively contributing to the spread
of negative phenomenons such as online harass-
ment and abusive behavior. Among those, which
are all to discourage, online hate speech has at-
tracted the attention of many researchers due to its
deleterious effects (Munro, 2011; Williams et al.,
2020; Duggan, 2017).

The extremely large volume of online content
and the high speed at which new one is generated
exclude immediately the chance of content moder-
ation being done manually. This realization has
naturally captured the attention of the Machine
Learning (ML) field, seeking to craft automatic
and scalable solutions (MacAvaney et al., 2019;
Waseem et al., 2017; Davidson et al., 2017).

Methods for detecting hate speech and similar
abusive behavior have been thus on the rise, consis-
tently improving in terms of performance and gen-
eralization (Schmidt and Wiegand, 2017; Mishra
et al., 2019b). However, even the current state
of the art still faces limitations in accuracy and
is yet not ready to be deployed in practice. Hate
speech recognition remains an extremely difficult
task (Waseem et al., 2017), in particular when the
expression of hate is implicit and hidden behind
figures of speech and sarcasm.

Alongside language features, recent works have
considered utilizing user features as an additional
source of knowledge to provide detection mod-
els with context information (Fehn Unsvåg and
Gambäck, 2018; Ribeiro et al., 2018). As a gen-
eral trend, models incorporating context exhibit
improved performance compared to their pure text-
based counterparts (Mishra et al., 2018, 2019a).
Nevertheless, the effect, which these additional fea-
tures have on the model, has not been interpreted
or understood yet. So far, models have mostly been
compared only in terms of performance metrics.
The goal of this work is to shed light on the impact
generated by including user features—or more in
general context—into hate speech detection meth-
ods. Our methodology heavily relies on a combi-
nation of modern techniques coming from the field
of eXplainable Artificial Intelligence (XAI).

We show that adding user and social context to
models is the reason for performance gains. We
also explore the model’s learned features space to
understand how such features are leveraged for de-
tection. At the same time, we discover that models
incorporating user features suffer less from bias in
the text. Unfortunately, those same models contain
a new type of bias that originates from adding user
information.



92

2 Related Work

2.1 Explainability for Recognition Models
A limited amount of research has focused on apply-
ing XAI techniques to the hate speech recognition
case. For instance, Wang (2018) adapts a number
of explainability techniques from the computer vi-
sion and applies them to a hate speech classifier
trained on Davidson et al. (2017). Feature occlu-
sion was used to highlight the most relevant words
for the final classifier prediction and activation max-
imization selected the terms that the classifier cap-
tured and judged as relevant at a dataset-level. Vija-
yaraghavan et al. (2019) constructs an interpretable
multi-modal detector that uses text alongside social
and cultural context features. The authors leverage
attention scores to quantify the relevance of differ-
ent input features. Wich et al. (2020) applies post-
hoc explainability on a custom dataset in German
to expose and estimate the impact of political bias
on hate speech classifiers. More in detail, left- and
right-wing political bias within the training data
is visualized via DeepSHAP-based explanations
(Lundberg and Lee, 2017).

MacAvaney et al. (2019) combines together mul-
tiple simple classifiers to assemble a transparent
model. Risch et al. (2020) reviews and com-
pares several explainability techniques applied to
hate speech classifiers. Their experimentation in-
cludes popular post-hoc approaches such as LIME
(Ribeiro et al., 2016) and LRP (Bach et al., 2015)
as well as self-explanatory detectors (Risch et al.,
2020).

For our use case, we apply post-hoc explainabil-
ity approaches (Lipton, 2018). We use external
techniques to explain models that would otherwise
be black-boxes (Arrieta et al., 2020). In contrast,
transparent models are interpretable thanks to their
intuitive and simple design.

2.2 Context Features for Hate Speech
Detection

Models have been continuously improving since
the first documented step towards automatic hate
speech detection Spertus (1997). The evolution
of recognition approaches has been favored by ad-
vances in Natural Language Processing (NLP) re-
search (Mishra et al., 2019b). For instance, s.o.t.a
detectors like Mozafari et al. (2020) exploit high-
performing language models such as BERT (Devlin
et al., 2019).

A different research branch took an alternative

path and explored the inclusion of social context
alongside text. These additional features are usu-
ally referred to with the terms user features, context
features, or social features. Some tried incorporat-
ing the gender (Waseem, 2016) and the profile’s ge-
olocation and language (Galán-Garcı́a et al., 2016).
Others instead utilized the user’s number of follow-
ers or friends (Fehn Unsvåg and Gambäck, 2018).

Modeling users’ social and conversational in-
teractions via their corresponding graph was also
shown to be rewarding (Mishra et al., 2019b; Ce-
cillon et al., 2019). Ribeiro et al. (2018) creates
additional features by measuring properties like
betweenness and eigenvector centrality. Mishra
et al. (2018) and Mishra et al. (2019a) instead fed
the graph directly to the model either embedded
as matrix or via using graph convolutional neural
network (Hamilton et al., 2017).

While previous work explored the usage of a
wide range of context features (Fehn Unsvåg and
Gambäck, 2018), detection models have only been
compared in terms of performance metrics. Besides
accuracy, researchers have not focused on other
changes that such features could have on the model.
Our work shows that indeed this addition entails a
large impact on the recognition algorithm’s behav-
ior and substantially changes its characteristics.

3 Experimental Setup

In this section, we describe in detail the different
datasets and detection models that we include in
our interpretability-driven analysis.

3.1 Data and Preprocessing

Previous research has produced several datasets to
support further developments in the hate speech
detection area (Founta et al., 2018; Warner and
Hirschberg, 2012). Some became relatively popu-
lar to benchmark and test new ideas and improve-
ments in recognition techniques. For our experi-
mentation, we pick the DAVIDSON (Davidson et al.,
2017) and the WASEEM (Waseem and Hovy, 2016)
datasets. The choice was motivated by their vari-
ety of speech classes and popularity as detection
benchmarks.

Both benchmarks consist of a collection of
tweets coupled with classification tasks with three
possible classes. DAVIDSON contains ∼ 25, 000
tweets of which 1, 430 are labeled as hate, 19, 190
as offensive, and 4, 163 as neither (Davidson et al.,
2017). As classification outcomes in WASEEM in-
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stead, we have racism, sexism, and neither. The
three classes contain 3, 378, 1, 970, and 11, 501
tweets respectively (Waseem and Hovy, 2016). We
were not able to retrieve the remaining 65 of the
original 16, 914 samples.

We follow the same preprocessing steps for both
datasets. First, terms belonging to categories like
url, email, percent, number, user, and time are
annotated via a category token. For instance, “341”
is replaced by “<number>”. After that, we apply
word segmentation and spell correction based on
Twitter word statistics. Both methods and statistics
were provided by the ekphrasis 1 text preprocessing
tool (Baziotis et al., 2017).

In addition to the tweets that represent the text
(or content) component of our input features, we
also retrieve information about the tweet’s authors
and their relationships. In a similar fashion as done
in Mishra et al. (2018), we construct a community
graph G = (V,E) where each node represents a
user and two nodes are connected if at least one of
the two users follows the other one. We were able
to retrieve |V | = 6, 725 users and |E| = 19, 597
relationships for DAVIDSON, while for WASEEM

we have |V | = 2, 024 and |E| = 9, 955.
The respective average node degrees are 2, 914

and 4, 918 and the overall graphs’ densities:

D =
2 · |E|

|V |(|V | − 1)

are 0.00087 and 0.00486 respectively.
We immediately notice that both graphs are

very sparse. In particular, we have 3, 393 users
not connected to anyone in DAVIDSON and 927
in WASEEM. For reference, Mishra et al. (2018)
achieves a graph density of 0.0075 on WASEEM,
with only ∼ 400 authors being solitary, i.e. with
no connections. We assume the difference is rea-
sonable as data availability considerably decreases
over time.

3.2 Detection Models

Our experimentation and findings are based on
the comparison of two detection models, one that
solely relies on text features and one that instead
incorporates context features. To better capture
their behavioral differences, we build them to be
relatively simple and also to not differ in the text-
processing part.

1https://github.com/cbaziotis/ekphrasis

The first model, shown in figure 1, computes the
three classification probabilities only based on the
tweets’ content. The input text is fed to the model
as Bag of Words (BoW), which is then processed by
two fully connected layers. We refer to this model
as text model.
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Figure 1: Architecture of the text model.

The second model instead leverages the informa-
tion coming from three input sources: the tweet’s
text, the user’s vocabulary, and the follower net-
work. The first input is identical to what is fed to
the text model. The second is constructed from all
the tweets of the author in the dataset and aims to
model their overall writing style. Concretely, we
merge the tweets’ BoW representations, i.e. we
apply a logical-OR to their corresponding vectors.
The third is the author’s follower network and de-
scribes their online surrounding community. On
a more technical note, this can be extracted as a
row from the adjacency matrix of our community
graph described in section 3.1. Note that s.o.t.a
hate speech detector used similar context features
(Mishra et al., 2018, 2019a). We refer to this model
as social model.

As sketched in figure 2, the different input
sources are initially processed separately in the
model’s architecture. After the first layer, the inter-
mediate representations from the different branches
are concatenated together and fed to two more lay-
ers to compute the final output. Note that the text-
and social models have the same dimensions for
their final hidden layer and can be seen as equiva-
lent networks working on different inputs.

4 Proposed Analysis

We now describe our methodology in detail. Recall
that our models differ precisely on the usage of
user features. As we will see shortly, their com-
parison beyond accuracy measurements sheds light
on the different model properties and hence on the
potential impact of incorporating context features.
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Figure 2: Architecture of the social model.

4.1 Training and Performance
We apply the same training and testing procedure
to all models and datasets. We keep the 60% of
the data for training while splitting the remaining
equally between validation and test set, i.e. 20%
each.

Tables 1 and 2 report our results in terms of F1
scores for WASEEM (Waseem and Hovy, 2016) and
DAVIDSON (Davidson et al., 2017) respectively. To
increase our confidence in their validity, we aver-
age the performance over five runs with randomly
picked train/validation/test sets. We observe differ-
ent trends for the two datasets.

Speech Class Text Model Social Model
Racism 0.711 0.735
Sexism 0.703 0.832
Neither 0.881 0.907
Overall 0.829 0.872

Table 1: F1 Scores on Waseem and Hovy (2016).

On WASEEM, the social model considerably out-
performs (by 4.3%) our text model. The perfor-
mance gain is general and not restricted to any
single class. Quite surprisingly, our text model
performs better on racist tweets than sexist ones, al-
though the sexism class is almost twice as big. This
suggests that sexism is, at least in this case, some-
what harder to detect by just looking at the tweet
content. On the contrary, our social model shows
an impressive improvement in the sexism class (al-

most 13%), suggesting the presence of detectable
patterns in sexist users and their social interactions.

Speech Class Text Model Social Model
Hate 0.154 0.347
Offensive 0.939 0.939
Neither 0.809 0.815
Overall 0.876 0.886

Table 2: F1 Scores on Davidson et al. (2017).

On DAVIDSON, we only observe a contained
improvement (1%). Moreover, the jump in perfor-
mance is restricted to the hate class, containing
a tiny amount of samples. We believe the differ-
ence between the two datasets should be expected
due to the lower amount of user data available for
DAVIDSON. Considering these results, we focus
on applying our technique on the WASEEM dataset
in the remainder of this paper. Nevertheless, the re-
spective results on DAVIDSON can be found in the
appendix A. While on both datasets we do not out-
perform the current s.o.t.a—Mishra et al. (2019a)
on WASEEM and Mozafari et al. (2020) on DAVID-
SON—our results are comparable and thus satisfac-
tory for our purposes.

4.2 Shapley Values Estimation

We now apply a first post-hoc explainability
method. For each feature we calculate its corre-
sponding Shapley value (Shapley, 1953; Lundberg
and Lee, 2017). That is, we quantify the relevance
that each feature has for the prediction of a specific
output. Shapley values have been shown—both the-
oretically and empirically—to be an ideal estimator
for feature relevance (Lundberg and Lee, 2017).

As exact Shapley values are exponentially com-
plex to determine, we use accurate approxima-
tion methods as done in (Lundberg and Lee, 2017;
Štrumbelj and Kononenko, 2014). Figure 3 shows
concrete examples in which Shapley values are cal-
culated for both models on two test tweets from
WASEEM.

For our social model, we consider the user vocab-
ulary and the follower network as single features
for simplicity. Notably, the context is used by the
social model and can play a significant role in its
prediction. Hence, we can confirm the context fea-
tures to be the reason for the performance gains.
We can empirically exclude that the differences be-
tween the text- and the social model architectures
justify the jump in performance.
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Figure 3: Example of features contribution, computed via Shapley value approximation, for our text and social
models. In (a) and (c) we use as input the tweet “<user> I think Arquette is a dummy who believes it. Not
a Valenti who knowingly lies.”. The sexist tweet refers to the actress Patricia Arquette, who spoke in favour of
gender equality, and the feminist writer Jessica Valenti. Some words are missing in the plot as our BoW dimension
is limited during preprocessing. In (b) and (d), we use the racist tweet “These girls are the equivalent of the
irritating Asian girls a couple of years ago. Well done, 7. #MKR”. The hashtag refers to the Australian cooking
show “My Kitchen Rules”.

4.3 Feature Space Exploration

We have seen that detection models can benefit
from the inclusion of context features. We now
focus on understanding why this is the case. Shap-
ley values and more in general feature attribution
methods can quantify how much single features
contribute to the prediction. Yet, alone, they do not
give us any intuition to answer our why-question.

We look at the feature space learned by our mod-
els, which can be considered a global explainability
technique. For our text model, we remove the last
layer and feed the tweets to the remaining architec-
ture. The output is a 50-dimensional embedding for
each tweet. We employ the t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) (Van der Maaten
and Hinton, 2008) to reduce the embeddings to two
dimensions for visualization purposes.

The resulting plot, in figure 4d, shows all the
tweets in a single cluster. Racist tweets look more
concentrated in one area than sexist ones, suggest-

ing that sexism is somewhat harder to detect for the
model. This result is coherent with our per-class
performance scores.

We apply the same procedure to the social model.
In this case, we visualize the hidden layer of each
separate branch as well as the final hidden layer
analogous to the text model. Not surprisingly, the
tweet branch (figure 4a) looks very similar to the
feature space learned by our text model. The user’s
vocabulary branch (figure 4b) instead shows the
samples distributed in well-separated clusters. No-
tably, racist tweets have been restricted to one clus-
ter and we can also observe pure-sexist and pure-
neither clusters. The follower network branch (fig-
ure 4c) looks similar though cluster separation is
not as strong. Once more, we notice racism more
concentrated than sexism, which is considerably
more mixed with regular tweets. To some extent,
this result is in line with the notion of homophily
among racist users (Mathew et al., 2019).
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Figure 4: WASEEM tweets, colored by label, in the features space learned by our text model (d) and social model
(a,b,c for the independent branches, e combined).

Intuitively, being able to divide users into dif-
ferent clusters based on their behavior should be
helpful for classification at later layers. This is con-
firmed by the combined feature space plot (figure
4e). Indeed, tweets are now structured in multi-
ple clusters instead of a single one as for our text
model. Also in this case, we observe several pure
or almost-pure groups.

The corresponding visualizations and results for
DAVIDSON can be found in appendix A.

4.4 Targeted Behavioral Analysis:
Explaining a Novel Tweet

We have seen how different explainability tech-
niques convey different types of information on
the examined model. Computing Shapley values
and visualizing the learned feature space can also
be used in combination as they complement each
other. If used together, they can both quantify the
relevance of each feature as well as show how cer-
tain types of features are leveraged by the model to
better distinguish between classes.

So far, our explanations are relative to the
datasets used for model training and testing. How-
ever, to better understand a classifier it should also
be tested beyond its test set. This can be sim-

ply done by feeding the model with a novel tweet.
Via artificially crafting tweets, we can check the
model’s behavior in specific cases. For instance,
we can inspect how it reacts to specific sub-types
of hate.

Let us consider the anti-Islamic tweet “muslims
are the worst, together with their god”. If fed to
our model, it is classified as racist with a 75% con-
fidence following our expectations. Figures 5a and
5c show explanations for the tweet. We can see that
the word “muslim” plays a big role by looking at
its corresponding Shapley value. At the same time,
the projection of the novel tweet onto the feature
space shows how the sample is collocated together
with the other racist tweets by the text model.

If we now change our hypothetical tweet to be
anti-black—“black people are the worst, together
with their slang”—we observe a different model
behavior (figures 5b and 5d). In fact, now the tweet
is not classified as racist. No word has a substan-
tial impact on the prediction. We can also notice
a slight shift of the sample in the features space,
away from the racism cluster. If changing the tar-
get of the hate changes the prediction, then the
model/dataset probably contains bias against that
target. Model interpretability further reveals how
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Figure 5: Features contribution (Shapley values w.r.t. the racism class) and embedding in the text model’s latent
space of an islamophobic and a anti-black racist tweets. The two sentences had, according to our text model, the
75% and 24% probability of being racist respectively.

its behavior reacts to different targets.

We run the same experiment with our social
model. This time, it correctly classifies the anti-
black tweet as racist (55% confidence). This sug-
gests that text bias could be mitigated by using
models that do not only rely on the text input. How-
ever, the social model is much more sensitive to
changes in the user-derived features. To test this,
we feed the model the same tweet and only change
the author that generated it. For a fair comparison,
we pick one random user with other racist tweets,
one random user with other sexist tweets, and one
random user with no hateful tweets in the dataset.
We refer to these users as racist, sexist, and regular
users respectively.

Our crafted tweet is classified as racist when
coming from a racist user (64%). However, it is
instead judged non-hateful in both the other cases
(12% and 19% for a sexist and user with no hate
background respectively). Evidently, racist tweets
also need some contribution from the social fea-
tures to be judged as racist.

A very informative explanation comes again
from both the Shapley values and the feature space
exploration (figure 6). On the left side, we can see
the Shapley value for the racist and regular users.
Results relative to the sexist user are analogous to
the regular user and reported in the supplementary
material (A.3). All the words have a similar con-
tribution to the racism class in all cases. However,
the difference in the authors plays a substantial role
in the decision. Only the racist user positively con-
tributes to the racism class. On the right side of
6, we can see the embedding in the latent space
for each case. Different input authors cause the
tweet to be embedded in different clusters. Only
in the first one the model actually considers the
possibility of the tweet being racist.

Hence, while adding user-derived features might
mitigate the effects of bias in the text, it generates
a new form of bias that could discriminate users
based on their previous behavior and hinder the
model from classifying correctly hateful content.
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Figure 6: Features contribution (w.r.t. racism class) and embeddings of the islamophobic tweet in the social
model’s latent space. The two pairs of plots are w.r.t. two predictions done with different users as input: a racist
one (a,b, 64%), and a regular one (c,d, 19%).

5 Conclusion and Future Work

In our work, we investigated the effects of user
features in hate speech detection. In previous stud-
ies, this was done by comparing models based on
performance metric. We have shown that post-hoc
explainability techniques provide a much deeper
understanding of the models’ behavior. In our case,
when applied to two models that differ specifically
on the usage of context features, the in-depth com-
parison reveals the impact that such additional fea-
tures can have.

The two utilized techniques—Shapley values es-
timation and learned feature space exploration—
convey different kinds of information. The first one
quantifies how each feature plays a role but does
not tell us what is happening in the background.
The second one illustrates the model’s perception
of the tweets but does not provide any quantita-
tive information for the prediction. Furthermore,
we have seen that artificially crafting and modify-
ing a tweet can be useful to examine the models’
behavior in particular scenarios. In concrete exam-

ples, the two approaches worked as bias detectors
present in the text as well as in the user features.

We believe that analyzing detection models is
vital for understanding how certain features shape
the way data is processed. Accuracy alone is by no
means a sufficient metric to decide which model
to prefer. Our work shows that even models that
perform significantly better can potentially lead
to new types of bias. We urge researchers in the
field to compare recognition approaches beyond
accuracy to avoid potential harm to affected users.

Data scarcity is still a main issue faced by current
researchers, especially when it comes to context
features. We believe that larger and more complete
datasets will improve our understanding of how cer-
tain features interact and will help future research
in advancing both in accuracy and bias mitigation.
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A Results on the Davidson Dataset

A.1 Feature Space learned by the Text Model
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Figure 7: DAVIDSON tweets, colored by label, in the
feature space learned by the text model.

Figure 7 shows the feature space learned by our
text model on DAVIDSON. Overall, the distribution
looks similar as the one of WASEEM visualized
in figure 4d. We can notice that hate tweets are
extremely sparse and mixed with the offensive ones.
This is reflected by the poor model performance on
the hate class, possibly caused by the conceptual
overlap that these two classes have. On the other
hand, non-harmful tweets are mostly concentrated
in one area of the plot, confirming the satisfactory
F1 scored achieved.

A.2 Feature Space learned by the Social
Model

Figure 8 shows the feature space learned by our so-
cial model on DAVIDSON. As done for WASEEM,
we report the plots both for the single branches as
well as for their combination. The tweet branch
(figure 8a) has a similar structure to figure 7. How-
ever, hateful tweets are also concentrated in a small
portion of the space. This reflects the improved
performance that the social model had on the hate
class. This suggests that the information coming
from the other input sources reinforces the signal
backpropagated to the tweet branch, resulting in a
less chaotic mixture of hateful and offensive tweets.
The user vocabulary (figure 8b) and the follower
network branch (figure 8c) do not present the same
characteristics as seen on WASEEM. In this case,
we do not have the data points separated into multi-
ple clusters. The same goes for the overall learned
feature space (figure 8d), where all the tweets are
contained in one single cloud. This is consistent
with what we observed in terms of F1 Scores. In

contrast to what occurred on WASEEM, user fea-
tures did not cause a substantial impact on the fea-
ture space on DAVIDSON and thus did not produce
a large leap in performance.

A.3 Complement to Figure 6
Figure 6 compares the model’s behavior on the
same tweet but with different authors, one racist
and one regular. For completeness, figure 9 shows
the corresponding plots—Shapley values and em-
bedding onto the features space—for the same
tweet when generated by a sexist user. The result
is analogous to the one obtained with the regular
user. Also in this case the tweet is not classified
as racist (12% confidence). The estimated Shap-
ley values show a substantial impact of the user
vocabulary against the racism class. The embed-
ding onto the latent space shows once more that
changing the author caused the tweet to embed in
a different cluster, hence excluding the possibility
of the content being classified correctly.
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Figure 8: Latent space visualization of our social model on DAVIDSON, colored by label. The features are extracted
from the single branches before the concatenation: tweet (a), user’s vocabulary (b), follower network (c). The last
plot (d) shows instead the final learned features space, after all branches are combined and processed together.
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(a) Sexist User, Shapley Values
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(b) Sexist User, Embedding in Latent Space

Figure 9: Features contribution (w.r.t. racism class) and embeddings of the islamophobic tweet in the social
model’s latent space. The pair of plots are w.r.t. the prediction done with sexist author.


