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Abstract

This paper describes Kata.ai’s submission for
the Social Media Mining for Health (SMM4H)
2021 shared task. We participated in three
tasks: classifying adverse drug effect, COVID-
19 self-report, and COVID-19 symptoms. Our
system is based on BERT model pre-trained on
the domain-specific text. In addition, we per-
form data cleaning and augmentation, as well
as hyperparameter optimization and model en-
semble to further boost the BERT performance.
We achieved the first rank in both classify-
ing adverse drug effects and COVID-19 self-
report tasks.

1 Introduction

Over the years, social media has been used as a
massive data source to monitor health-related is-
sues (Weissenbacher et al., 2018, 2019; Klein et al.,
2020), such as flu trends (Achrekar et al., 2011;
Paul and Dredze, 2012), adverse drug effects (Co-
cos et al., 2017; Pierce et al., 2017), or viral dis-
ease outbreak such as the COVID-19 (Sarker et al.,
2020; Klein et al., 2021). In general, leveraging
massive self-reported data is considered useful for
supplementing the otherwise long and costly pro-
cess of clinical trials in obtaining a more compre-
hensive picture of the issue in hand.

Nevertheless, analyzing text data from social
media is challenging due to its noisy nature, which
stems from the prevalence of linguistic errors and
typos. In this work, we leverage BERT (Devlin
et al., 2018) to handle noisy text through domain-
specific pre-training, data cleaning, augmentation,
hyperparameter optimization, and model ensemble.
With this training pipeline, we achieved the best
performance in Social Media Mining for Health
(SMM4H) 2021 shared task (Magge et al., 2021)

Text Label
How is it that Vyvanse gives me dry mouth, but
I still produce this much saliva in my sleep? ADE
I need Temazepam and alprazolam.... Is there
any doctor can prescribe for me?? :/ NoADE

(a) Task 1a : Classification of adverse drug effect (ADE)
mentions in English tweets

Text Label
This girl in my class really had the
coronavirus, I’m booking an appointment with my
doctor for a check up 1
Read someone on facebook say she hopes the
coronavirus doesn’t come with the goods she
ordered online. Either way, you’re
quarantined from my facebook, you racist bitch! 0

(b) Task 5 : Classification of tweets self-reporting potential
cases of COVID-19

Text Label
Maybe they’ve been asked too early. I had
a total loss of smell and taste in week 3.
In week 1 I only had phantom smells
and that’s when you test positive. Self
My brother came home from Paris with a
sore throat and a fever and I know he gave
me coronavirus. I KNOW IT. Nonpersonal
Months after Covid-19 infection, patients
report breathing difficulty and fatigue
https://t.co/H3wcVLxL6y Lit-News

(c) Task 6 : Classification of COVID-19 tweets containing
symptoms

Table 1: Task data examples.

for classifying Adverse Drug Effect and COVID-19
self-report from Twitter text.

2 BERT Goes Brrr

We participated in 3 classification tasks: Task 1a
to classify the adverse drug effect (ADE), Task 5
to classify COVID-19 potential case, and Task 6 to
classify COVID-19 symptoms. The distribution of
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Task 1 Task 5 Task 6
Label Train Valid Label Train Valid Label Train Valid
ADE 1231 65 0 5439 594 Lit-News_mentions 4277 247
NoADE 16113 848 1 1026 122 Nonpersonal_reports 3442 180

Self_reports 1348 73
All 17344 913 All 6465 717 All 9067 500

Table 2: Distribution of datasets.

the datasets are given in Table 2. All tasks’ text data
are taken from Twitter, with some examples shown
in Table 1. More detailed information about the
dataset can be found in (Klein et al., 2021; Magge
et al., 2021).

We used BERT for all three tasks, implemented
with the Huggingface toolkit (Wolf et al., 2020).
For each task, we started off by fine-tuning the off-
the-shelf BERT-base (Devlin et al., 2018), which re-
sulted in a fairly good performance (Table 3). Then,
we improved by using domain-specific BERT in-
stead, then by performing data cleaning, data aug-
mentation, hyperparameter optimization, and fi-
nally model ensembling. Table 3 shows the F1-
Score improvement by incorporating each of those
techniques. Detailed experiments for each tech-
nique are in Section 3. Note that some techniques
are not used in certain tasks, specified by the dash
symbol on the table.

Among the 3 tasks, we achieved the best score
for Task 1a and Task 5. Our standing for Task 6 by
the time of this paper submission is currently un-
known. Still, our performance on Task 6 is above
the median, as seen in Table 4. We note that our
Task 1a performance on the test set drops signif-
icantly compared to its performance on the valid
set, indicating overfitting on the valid set. Unfor-
tunately, further analysis on the test set was not
feasible since the labels are not provided.

3 Improving BERT

In this section, we dissect each technique we intro-
duce to our submission model.

3.1 Baseline Model

BERT (Devlin et al., 2018) is a pretrained language
model based on the Transformer (Vaswani et al.,
2017). It is, alongside its many variants, the current
state-of-the-art for many NLP applications. It also
dominates the previous year’s SMM4H shared task
and comes out as the winning system (Klein et al.,
2020; Weissenbacher et al., 2019).

There are many BERT pre-trained models. To
have a good starting point, we explored several
pre-trained models. First, we compared gen-
eral BERT models such as DistilBERT, ALBERT,
BERT-base,1 and BERT-large.2 Then, knowing
that our datasets are tweets that potentially con-
tain medical terms, we explored some domain-
specific models: Bio-ClinicalBERT3 which is
trained on biomedical and clinical text (Alsentzer
et al., 2019), BERTweet4 which is trained on En-
glish tweets (Nguyen et al., 2020), and BERTweet-
Covid195 which is built by continuing the pre-
trained BERTweet using English tweets related to
COVID-19 (Nguyen et al., 2020). We found that
BERTweet-Covid19 gives the best result even in
the non-COVID-19 related data like Task 1’s ADE
(see Table 5).

We also considered another COVID-19 tweets
pretrained model, that is COVID-Twitter-BERT
(CT-BERT)6 (Müller et al., 2020). It is based
on the BERT-large model, while the BERTweet-
Covid19 is a BERT-base model. We found that
fine-tuning on this model using the recommended
hyperparameters is relatively unstable compared
to the BERTweet-Covid19 model, though it does
outperform it occasionally. As such, we used this
model in the later steps, that is, only with hyperpa-
rameter optimization and ensembling.

3.2 Data Cleaning

We focused on eliminating tokens that are potential
sources of bias. We found that masking Twitter
handles, URLs, emails, phone numbers, and money
yields the best results. In our experiments, masking
all numerical tokens produces worse results.

Furthermore, we also performed a routine
HTML tag cleanup, as well as hashtag expan-

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/bert-large-uncased
3https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
4https://huggingface.co/vinai/bertweet-base
5https://huggingface.co/vinai/bertweet-covid19-base-uncased
6https://huggingface.co/digitalepidemiologylab/covid-twitter-bert

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-large-uncased
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/vinai/bertweet-base
https://huggingface.co/vinai/bertweet-covid19-base-uncased
https://huggingface.co/digitalepidemiologylab/covid-twitter-bert
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Method
Valid F1-Score

Task 1a Task 5 Task 6
BERT-base model 70.87 73.03 98.27
+ Domain-specific BERT 79.14 74.60 98.55
+ Data Cleaning 82.93 77.64 98.87
+ Data Augmentation – 80.31 –
+ Hyperparameter Optimization 84.30 82.20 –
+ Model Ensembling (submitted system) 87.80 86.27 98.90

Table 3: Our system performance on valid set.

Task
Our Performance Median Performance

Standing
F1-Score Precision Recall F1-Score Precision Recall

Task 1a 0.54 0.603 0.489 0.44 0.505 0.409 1st place
Task 5 0.79 0.781 0.789 0.74 0.739 0.743 1st place
Task 6 0.94 0.944 0.944 0.93 0.932 0.932 -

Table 4: Our submitted system performance on test set, compared with the median performance.

Method Task 1a Task 5 Task 6
BERT-base 70.87 73.03 98.27
BERT-large 77.78 73.60 98.39
Bio-ClinicalBERT 68.97 68.57 97.33
BERTweet 75.76 71.09 98.55
BERTweet-Covid19 79.14 74.60 98.55

Table 5: Baseline on valid set. Task 1a: F1-Score for
the ADE class. Task 5: F1-Score for the "potential
case" class. Task 6: Macro F1-Score for all classes.

sion (e.g., “#SaveTheEarth” becomes “save the
earth”). To this end, we leveraged Ekphrasis (Bazi-
otis et al., 2017) tokenization and masking pipeline.
Finally, we performed emoji codification (e.g. into
:thumbsup:, :red_heart:, etc.) using the
python emoji package.7 The emoji codes are
treated as special tokens, following the configu-
ration of our chosen base models (Nguyen et al.,
2020; Müller et al., 2020).

Below are some data cleaning attempts that did
not improve our final model performance.

1. We handpicked some relevant Twitter handles
to keep unmasked (such as @WHO). We also
tried to pick top-n most frequent handles to stay
unmasked. Both did not yield better results.

2. We crawled the URLs to get their titles. Us-
ing a keyword-based extraction, we determine
whether the title is relevant to COVID-19, and
if so, we append the title to the end of the
tweet. This did not improve the performance
of our models.

3. We tried to fix grammatical and typography
informality (such as the use of contraction)
using Ekphrasis’s toolkit, which is based on

7https://pypi.org/project/emoji/

Norvig’s spell checker algorithm. This does
not provide better results, not even when using
BERT-base or BERT-large.

3.3 Data Augmentation
The provided training data is imbalanced: the num-
ber of positive class data is significantly less (Ta-
ble 2). Therefore, we tried 2 approaches to deal
with this issue, namely data oversampling and
class weighting. In data oversampling, we dupli-
cate the minority class training data. On the other
hand, class weighting simply increases the gradient
weight of the minority class.

Additional training data, including the synthetic
one, has been shown to improve the model perfor-
mance (Wei and Zou, 2019; Ma, 2019). Hence,
we also explored augmentation data by paraphras-
ing the training. We create paraphrases by using
round-trip translation (Mallinson et al., 2017): our
English dataset is translated into another pivot lan-
guage, then translated back into English. We’ve
tried different pivot languages as well as different
translation engines. Based on our manual judge-
ment, using Google Translate and German as the
pivot provides the best paraphrase.

Method Data size F1
BERTweet-Covid19 (Bc19) 6.5k 74.60
Bc19 + Class-weight 6.5k 75.20
Bc19 + Oversampling 10.5k 76.74
Bc19 + Paraphrase Aug. 12.9k 76.45
Bc19 + Class-weight + Paraphrase Aug. 12.9k 76.49
Bc19 + Oversampling + Paraphrase Aug. 21.1k 77.65

Table 6: Task 5 result on data augmentation

https://pypi.org/project/emoji/
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Experimental results on data augmentation and
data balancing can be seen in Table 6. Our re-
sult shows that oversampling is better than class-
weighting for dealing with imbalanced training
data. Orthogonally, data augmentation can also im-
prove performance. The combination of both data
oversampling and data augmentation can increase
performance even higher. However, it should be
noted that the size of the training data has also
increased significantly.

Note that our baseline in this experiment is
BERTweet-Covid19 without data cleaning. On un-
cleaned raw input, we achieved F1-Score of 77.65,
as shown in Table 6. However, applying oversam-
pling + paraphrase augmentation on cleaned data
can further improve the F1-Score to 80.31.

Interestingly, Task 1a does not benefit from
data augmentation or data balancing. Furthermore,
adding extra training data from past years’ training
set does not help as well. Therefore, we only apply
data augmentation for Task 5.

3.4 Hyperparameter Optimization

Nowadays, it is common knowledge that optimiz-
ing hyperparameter can improve the performance
of machine learning algorithms (Kaur et al., 2020;
Yang and Shami, 2020; Fatyanosa and Aritsugi,
2020). Current research on the transformer (Mur-
ray et al., 2019; Zhang and Duh, 2020) also moving
towards hyperparameter optimization (HPO) as the
transformer models are susceptible on the chosen
hyperparameters (Murray et al., 2019).

The purpose of this section is to determine the best
hyperparameter combination of the baseline model
for Task 1a and Task 5. We did not optimize the
model for Task 6 as the results were already good.

HPO is a time-consuming task. Therefore, per-
forming manual HPO would be inefficient, and it is
advisable to utilize automatic optimization. There
are several well-known automatic HPO approaches.
In this paper, we only use bayesian HPO, specifi-
cally, the Tree-structured Parzen Estimator (TPE).

TPE selects the next possible combination of hy-
perparameters by building probabilistic models. To
simplify the search process of the best hyperparame-
ter combination, we employ the Hyperopt (Bergstra
et al., 2013) package. As stated in Section 3.1, we
also explored a stable and better hyperparameter
configuration for Covid-Twitter-BERT.

Table 7 shows all the optimized hyperparameters
and their ranges and values. The range for BS was

selected following the capabilities of our GPU. We
tried two optimizers: AdamW (Loshchilov and Hut-
ter, 2017) and AdaBelief (Zhuang et al., 2020). The
ranges for LR, EPS, and WD were selected based
on recommendation from (Zhuang et al., 2020).

Hyper-
parameter

Definition Range/Value

BS Batch size Min: 8, Max: 32
LR Learning rate Min: 1e-6, Max: 1e-4
OP Optimizer [‘AdamW’, ‘AdaBelief’]
EPS Epsilon Min: 1e-16, Max: 1e-8
WD Weight Decay Min: 0, Max: 1e-2

Table 7: Hyperparameter Range

We set the same random seed to 1 for our baseline.
In HPO experiments, we tried to open the possibility
of a better model by randomizing the seeds. This
assumption is based on several studies suggesting
that random seeds influence machine learning algo-
rithms (Madhyastha and Jain, 2019; Risch and Kres-
tel, 2020). It is important to note that the random
seeds were not tuned; instead, they were generated
randomly in each iteration of the TPE.

As predicted, HPO indeed increase the F1-Score
for Task 1a and Task 5 when training the base-
line model. After HPO, the results for Task 1a
increased by 1.65% and Task 5 increased by 2.35%
as shown in Table 3.

The HPO implementations for the two tasks
were executed in the same search space and the
same total number of iterations (100 iterations).
The visual comparison of the results is illustrated
in Figure 1. It shows that the optimal solution for
Task 1a is obtained after 87 iterations. Meanwhile,
Task 5 only needs 14 iterations. Although the faster
discovery of the best combination is preferable
in terms of execution time, this scenario can also
mean that the algorithm is stuck in local optima.

In terms of execution time, an average of 21 min
and 41 min were needed to finish an iteration for
Task 1a and Task 5, respectively. Note that the exe-
cution time may vary depending on the model and
the GPU. The HPO was implemented on NVIDIA
Tesla V100 GPU.

Owing to the validation data optimization, it is
predictable that HPO bias towards the validation
set. Consequently, the model shown strong over-
fitting, specifically for Task 1a, where the results
obtained are very far from the baseline results. The
next step to combat the overfitting is to employ
ensemble methods.
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Task
Hyperparameter

Model Best F1-Score
BS LR OP EPS WD

Task 1a 11 1.55E-05 AdamW 2.08E-09 0.002085 vinai/bertweet-covid19-base-cased 84.30
Task 5 19 5.21E-05 AdaBelief 5.10E-09 0.000421 digitalepidemiologylab/covid-twitter-bert 82.20

Table 8: HPO results

(a) Task 1a (b) Task 5

Figure 1: Visual comparison of HPO

3.5 Model Ensemble

Motivated by some past successful results (Chen
et al., 2019; Casola and Lavelli, 2020), we ensem-
bled some trained models on Task 1a and Task 5,
which are picked from the best performing HPO
models. In the implementation of the ensemble
technique, to predict the label of an instance, we
summed all of the chosen models’ probability score
and took the highest score as the label.

Typically, a model ensemble considers all of the
chosen models. However, our experiments showed
that this configuration does not produce the best
results for Task 1a (Table 9). We then proceeded
to perform an exhaustive search for every possible
combinations (that is, the power set) of the chosen
models.

Method Task 1a Task 5
Best HPO result 84.30 (1 model) 82.20 (1 model)
All Ensemble 82.71 (15 models) 83.40 (10 models)
Best Ensemble 87.81 (5 models) 86.28 (5 models)
Top-5 Ensemble 83.58 (5 models) 82.03 (5 models)

Table 9: Result of the model ensemble. All Ensem-
ble ensembles all handpicked models. Best Ensemble
ensemble the subset model of all handpicked models.
Top-5 Ensemble is the top five best model ensemble
result. The "n models" represents number of models
used to produce the result.

As shown in Table 9, we found the best ensemble
involves a subset of five models for both Task 1a
and Task 5. There is also a significant gap between
the performance of the best subset ensemble with
the full model ensemble for both tasks. Regard-
ing Task 1a’s “All Ensemble” worse performance,

we hypothesize that there might be some “noisy”
models among the chosen ones. While our exhaus-
tive search may alleviate this problem, it takes a
lot of time that also increases exponentially with
respect to the number of chosen models. We leave
optimizing this process as future work.

Interestingly, simply choosing the best-
performing models does not produce the best
ensembled model. As shown in Table 9, model
ensemble of the top-5 best F1 (“Top-5 Ensemble”)
performs worse than the “Best Ensemble”. In fact,
top-5 ensemble performed worse than a single
non-ensembled model from the best HPO result.

4 Conclusion

We describe our team submission for Social Media
Mining for Health Applications shared task 2021.
Our system achieved the best performance for clas-
sifying Adverse Effect mentions and self-reporting
potential cases of COVID-19 in English tweets.

Our system is based on BERT model. We ob-
serve improvement over the off-the-shelf BERT-
base from using domain-specific BERT, rigorous
data cleaning, data augmentation, hyperparameter
optimization, and model ensembling. Among those
techniques, we find that domain-specific BERT,
data cleaning, and model ensembling improve the
performance on all tasks, whereas data augmen-
tation and hyperparameter optimization are more
situational.

Overall, we obtain 17% and 13% improvement
on Task 1a and Task 5 respectively (Table 3). On
Task 6, we only obtain 0.6% improvement. This is
because we did not perform data augmentation and
hyperparameter optimization on this dataset, and
because the base model already returns a high score
of 98.27. We argue that these training pipelines can
be used to improve the performance of general text
classification tasks.
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