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Abstract

Grammatical gender may be determined by
semantics, orthography, phonology, or could
even be arbitrary. Identifying patterns in the
factors that govern noun genders can be useful
for language learners, and for understanding
innate linguistic sources of gender bias. Tra-
ditional manual rule-based approaches may be
substituted by more accurate and scalable but
harder-to-interpret computational approaches
for predicting gender from typological infor-
mation. In this work, we propose interpretable
gender classification models for French, which
obtain the best of both worlds. We present
high accuracy neural approaches which are
augmented by a novel global surrogate based
approach for explaining predictions. We intro-
duce auxiliary attributes to provide tunable ex-
planation complexity.

1 Introduction

Grammatical gender is a categorization of nouns
in certain languages which forms a basis for agree-
ment with related words in sentences, and plays
an important role in disambiguation and correct
usage (Ibrahim, 2014). An estimated third of the
current world population are native speakers of gen-
dered languages, and over one-sixth are L2 speak-
ers. Having a gender assigned to nouns can poten-
tially affect how the speakers think about the world
(Samuel et al., 2019). A systematic study of rules
governing these assignments can point to the origin
of and potentially help mitigate gender biases, and
improve gender-based inclusivity (Sexton, 2020).

Grammatical gender (hereon referred to by gen-
der) need not coincide with “natural gender”, which
can make language acquisition more challenging.
For example, Irish cailín (meaning "girl") is as-
signed a masculine gender. Works investigating
the role of gender in acquiring a new language
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(Sabourin et al., 2006; Ellis et al., 2012) have found
that the speakers of a language with grammatical
gender have an advantage when acquiring a new
gendered language. Automated generation of sim-
ple rules for assigning gender can be helpful for L2
learners, especially when L1 is genderless.

Tools for understanding predictions of statistical
models, for example variable importance analysis
of Friedman (2001), have been used even before
the widespread use of black-box neural models.
Recently the interest in such tools, reformulated
as explainability in the neural context (Guidotti
et al., 2018), has surged, with a corresponding de-
velopment of a suite of solutions (Bach et al., 2015;
Sundararajan et al., 2017; Shrikumar et al., 2017;
Lundberg and Lee, 2017). These approaches typi-
cally explain the model prediction by attributing it
to relevant bits in the input encoding. While faith-
ful to the black box model’s “decision making”, the
explanations obtained may not be readily intuited
by human users. Surrogate models, which glob-
ally approximate the model predictions by a more
interpretable model, or obtain prediction-specific
explanations by perturbing the input in domain-
specific ways, have been introduced to remedy this
problem (Ribeiro et al., 2016; Molnar, 2019).

We consider a novel surrogate approach to ex-
plainability, where we map the feature embedding
learned by the black box models to an auxiliary
space of explanations. We contend that the best
way to arrive at a decision (prediction) may not
necessarily be the best way to explain it. While
prior work is largely limited to the input encodings,
by designing a set of auxiliary attributes we can
provide explanations at desired levels of complex-
ity, which could (for example) be made to suit the
language learner’s ability in our motivating setting.
Our techniques overcome issues in prior art in our
setting and are completely language-independent,
with potential for use in broader natural language
processing and other deep learning explanations.
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For illustration, we examine French in detail where
the explanations require both meaning and form.

2 Related Work

We consider the problem of obtaining rules for as-
signing grammatical gender, which has been exten-
sively studied in the linguistic context (Brugmann,
1897; Konishi, 1993; Starreveld and La Heij, 2004;
Nelson, 2005; Nastase and Popescu, 2009; Var-
lokosta, 2011), but these studies are often limited to
identifying semantic or morpho-phonological rules
specific to languages and language families. In
computational linguistics, prediction models have
been discussed in contextual settings (Cucerzan
and Yarowsky, 2003) and the role of semantics has
been discussed (Williams et al., 2019). Williams
et al. (2020) use information-theoretic tools to
quantify the strength of the relationships between
declension class, grammatical gender, distribu-
tional semantics, and orthography for Czech and
German nouns. Classification of gender using data
mining approaches has been studied for Konkani
(Desai, 2017). In this work we look at explainable
prediction using neural models.

The noun gender can be predicted better by
considering the word form (Nastase and Popescu,
2009). Rule-based gender assignment in French
has been extensively studied based on both mor-
phonological endings (Lyster, 2006) and semantic
patterns (Nelson, 2005). These studies carefully
form rules that govern the gender, argue merits and
demerits that often involve factors beyond what
rules concisely explain the patterns. Further they
are organized as tedious lists of dozens of rules,
and evaluated only manually on smaller corpora
(less than 8% the size of our dataset). Cucerzan and
Yarowsky (2003) show that it is possible to learn
the gender by using a small set of annotated words,
with their proposed algorithm combining both con-
textual and morphological models. The encoding
of grammatical gender in contextual word embed-
dings has been explored for some languages in
Veeman and Basirat (2020). They find that adding
more context to the contextualized word embed-
dings of a word is detrimental to the gender clas-
sifier’s performance. Moreover these embeddings
often learn gender from contextual agreement, like
associated articles, which are not suitable for ex-
planation (Lyster, 2006). In contrast, here we will
study the role of semantics in gender determination
by learning an encoding of the lexical definition of

the word, along with the role of form.
In modern applications of machine learning, it is

often desirable to augment the model predictions
with faithful (accurately capturing the model) and
interpretable (easily understood by humans) expla-
nations of “why" an algorithm is making a certain
prediction (Samek et al., 2019). This is typically
formulated as an attribution problem, that is one of
identifying properties of the input used in a given
prediction, and has been studied in the context of
deep neural feedforward and recurrent networks
(Fong and Vedaldi, 2019; Arras et al., 2019). The
attributes are usually just input features (encoding)
used in training. By studying how these features,
or perturbations thereof, propagate through a net-
work, one obtains faithful explanations which may
not necessarily be easy to interpret. In this work,
we consider explanations obtained using auxiliary
attributes which are not used in training, but cor-
respond to a simpler and more intuitive space of
interpretations. We learn a mapping of feature em-
bedding (learned by the black-box neural model)
to this space, to approximate faithfulness, at the
profit of better explanations. A similar local sur-
rogate based approach is considered by (Ribeiro
et al., 2016), but it involves domain-specific input
perturbations (e.g. deleting words in text, or pixels
in image inputs) for explanation.

3 Dataset

We extract French words, their definitions and pho-
netic representations from Dbnary (Sérasset, 2015),
a Wiktionary-based multilingual lexical database.
The words are filtered so that only nouns tagged
with a unique gender are retained (for example
voile which has senses with both genders is re-
moved). For words with multiple definitions but
the same gender, we retain the one that appears first
as the semantic feature. We retrieve 124803 words,
which are split 90-10-10 into train, validation and
test sets respectively. The class distribution of the
resulting dataset is not skewed, with 58% mascu-
line and 42% feminine words.

4 Methods

4.1 Models
Baselines. We consider two baselines. The ma-
jority baseline always predicts the masculine gen-
der, while the textbook orthographic baseline is
based on the following simple rules — predict mas-
culine unless the word ends in -tion, -sion, -té,
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-son, or -e, excepting -age, -me or -ège endings.

Semantic models (SEM). The definition of
words is used to generate its semantic represen-
tation. These are tokenized on whitespace, and are
then passed through a trainable embedding layer.
These representations are passed through 2 layer
bidirectional LSTM of size 25 each, with addi-
tive attention. The hidden representation is passed
through fully connected layers, of sizes 1500, 1000
and 1. The last layer output is used to calculate
cross entropy loss. The representations generated
by the penultimate layer (size 1000) is the LSTM
semantic embedding.

XLM-R semantic embedding is also generated
for the defintion using XLM-R (Conneau et al.,
2020). The [CLS] token is fine-tuned to predict
the gender. The sequence of hidden states at the
last layer represents the embedding.

Phonological model (PHON). To represent the
phonology of a word, we use n-grams features,
which are constructed by taking last n charac-
ters of the syllabized phoneme sequence (derived
from Wiktionary IPA transcriptions) where n is in
{1, 2, . . . , k} for an empirically set k. A logistic
classifier is trained using these features to predict
the gender.

Orthographic model (ORTH). To encode the
orthography of a word, we use two models. As with
phonology, we consider n-grams features, which
are constructed here by taking last n characters of
the word spelling where n is in {1, 2, . . . , k} for an
empirically set k. A logistic classifier to predict the
gender is trained using these features.

To generate dense representations for these fea-
tures, the words are tokenized at character level.
The tokens are passed through a 32 unit LSTM and
then 2 fully connected layers of sizes 30 and 1. The
output from the last layer is used to calculate cross
entropy loss by comparing with the true gender
labels. Once trained, the representation of penulti-
mate layer (of size 30) is used as the orthographic
embedding.

Combined models. A logistic classifier is
trained on the concatenated orthographic and se-
mantic features embeddings to discriminate be-
tween genders. This is done for both types of
semantic embeddings, from LSTM and XLM-R
models. We also add phonemic n-gram sequences
(n is a hyperparameter set to a jointly optimal value

here) as an additional model. All models and their
test and validation accuracies are summarized in
Table 1.

4.2 Explainability

For each word, we calculate a set of easy-to-
interpret auxiliary features, with semantic or or-
thographic connotations. Orthographic features are
the top 1000 n-grams in a logistic regression fit.
For semantic features, we calculate the scores of
the meanings of the words by using word vectors
implemented in SEANCE (Crossley et al., 2017).
The assignment of words to psychologically mean-
ingful space can lead to increased interpretability.
SEANCE package reports many lexical categories
for words based on pre-existing sentiment and cog-
nition dictionaries and has been shown by Crossley
et al. (2017) to outperform LIWC (Tausczik and
Pennebaker, 2010). As SEANCE is only available
for the English language, we use translation1 of the
French definitions to English.

Global explanations. The global explanations
are evaluated for i) masculine and feminine class
predictions and for ii) classes generated by clus-
tering the best performing combined model em-
beddings (Table 1). The embeddings are clustered
using BIRCH (Zhang et al., 1996) into 10 clusters.
The number of clusters are chosen to minimize the
overall misclassification rate (calculated by assign-
ing the majority predicted class to a cluster). De-
cision tree classifiers are fit using the interpretable
features2 of about 25k samples (including those for
which an explanation is to be generated) to predict
the black box model’s gender prediction and the
cluster of a word.

Local explanations. We extend the LIME ap-
proach of (Ribeiro et al., 2016) to our setting. A
local decision tree classifier is trained on the k near-
est neighbors of a given test point, to approximate
the black box model on the neighborhood.

The size of the decision tree is a hyperparameter
which may be reduced to improve interpretability
(i.e. smaller, more easily understood explanations)
at the cost of model faithfulness (Figure 3).

1azure.microsoft.com/en-us/services/cognitive-
services/translator/. The authors manually verified the
accuracy of translations, the word error rate was less than 2%
on a sample of 250 words.

2Not to be confused with ‘interpretable’ and ‘uninter-
pretable’ features from formal linguistics (Svenonius, 2006).
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5 Results and discussion

The best orthographic model achieves an accu-
racy of 92.5%, whereas the semantic model alone
achieves only 77.23%. Combining the features
from the two models leads to a gain in the accuracy
of the classifier, to 94.01%. We can conclude that
for French, the gender can be predicted robustly
by the word orthography, but adding semantic in-
formation can further improve prediction. Adding
phonology to the mix does not seem to help much.
This may be attributed to the fact that phonological
forms contain less information than the orthograph-
ical forms in French, e.g. lit /li/ (bed, m.) and
lie /li/ (dregs, f.). Not only are the written forms
phonetic here (i.e. pronunciation is typically un-
ambiguous given spelling) but they often contain
additional (e.g. etymological) information which
may be missing in the spoken forms. A more de-
tailed error analysis and comparison of model pairs
is presented in Appendix A.

Model Test Val

Majority baseline 57.76 57.98
“Textbook” ORTH rules 83.69 84.10
LSTM (SEM) 76.30 77.13
XLM-R-base (SEM) 77.29 78.71
[N-grams(PHON)]logistic 81.67 81.24
[N-grams(ORTH)]logistic 86.30 86.28
[N-grams(ORTH+pos)]logistic 92.50 92.12
[LSTM(ORTH)]logistic 92.21 92.22
[LSTM(ORTH)+N-grams(PHON)]logistic 92.69 92.40
[LSTM(ORTH)+XLM-R(SEM)]logistic 93.84 93.82
[LSTM(ORTH)+LSTM(SEM)]logistic 94.01 94.00
[LSTM(ORTH)+N-grams(PHON)+LSTM(SEM)]logistic 94.09 93.73

Table 1: Accuracy results of various models on test and
validation sets.

We define a ‘good explanation’ to be one with
high model fidelity (measured by F1) and if it in-
volves fewer rules (more easily interpretable). This
can be quantified in the case of decision trees as the
length of path from root to leaf node, when making
a prediction. A class with higher average decision
tree path length for its sample is less interpretable.

We observe the trade-off between achieving in-
terpretability and model accuracy for masculine
and feminine classes (Figure 1) and for clusters
generated via embeddings (Figure 2). The clusters
are generated so that within a gender class, a dis-
tinction could be made for nouns that could have
different rules, so that easier explanations per class
could be generated. Both Figures 1 and 2 show
that increasing size of the tree, always increases F1
score, but that comes at the cost of interpretability
due to higher number of decision rules. Some ex-
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Figure 1: Class-specific/overall explainability (inter-
pretability vs. fidelity) trade-off.

ample features that distinguish the different clusters
are noted in Appendix B.

We see in Figure 1 that the explainability is
higher for feminine nouns than masculine. This
is consistent with the fact that there are many rules
to indicate the feminine gender (such as words end-
ing in -ine, -elle, -esse), whereas masculine gender
is a default category leading to more complex, and
harder to explain rules.
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Figure 2: Cluster-specific explainability trade-off.

For the clusters, the misclassification rate for
validation and testing set are 4.07% and 4.11% re-
spectively, indicating that clusters mostly have one
kind of gender. Figure 2 shows that some clus-
ters (such as #2, #6, #7) are more explainable than
the others (such as #1, #4), as latter show a poor
F1 performance and low interpretability. Cluster
#1 is majority feminine and #4 is majority mascu-
line, indicating existence of exceptions in either
gender. Identifying these clusters in the feature
embedding can help in figuring out cases where the
grammatical gender is assigned for formal reasons,
in exception to semantic or morphonological rules.
Moreover, these may be useful in designing a sys-
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tem with human-in-the-loop curation, for example
by identifying relevant new auxiliary attributes.
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Figure 3: Explainability trade-off for local explana-
tions for various neighborhood sizes.

The local explanations seem to outperform
global ones, and the performance improves as we
reduce the size of the local neighborhood consid-
ered. However, we note that this comes at some
cost to consistency of explanations. For example,
two local explanations for test points distant in the
feature embedding may contain some contradictory
rules. This is usually not an issue in typical appli-
cations of LIME which simply highlight part of
the input as an explanation to provide some model
justification. However, inconsistent rules can be of
consequence in some applications considered here,
for instance language learning where these contra-
dictions are undesirable. Also, while per example
explanations are larger on average for the global
approach, we have the same rule for entire clusters,
giving fewer rules overall.

6 Conclusion

Orthography predicts the grammatical gender in
French with high accuracy, and adding semantic
features can improve this prediction. The black-
box embedding can be explained by simpler deci-
sion tree models over a given auxiliary explanation
space, both locally and globally. Global explana-
tions lead to fewer rules across examples but are
more complex on individual instances. Explainable
gender prediction can be useful to language learn-
ers and gender bias researchers. A cross-linguistic
extension of our study is deferred to future work.
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Appendix

A Error analysis

We examine in detail the errors of all our models.
Some salient observations are noted below. The
errors of our baselines indicate their insufficiency
but are easier to understand in isolation. For our
models, it is perhaps best to look at interesting pairs
of models and compare their errors.

ORTH+SEM vs. ORTH: Adding phonology did
not seem to help much in predicting gender beyond
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Cluster Majority gender Error Top-10 features

#1 Masculine 0.05 Role_GI, sme, ien, n, sion, ade, che, nce, ue, ière
#2 Feminine 0.08 ien, sion, n, ade, r, che, ière, nce, Role_GI, ue
#3 Masculine 0.00 rice, sme, n, ien, age, Ptlw_Lasswell, tte, lle, té, ite
#4 Masculine 0.00 Polit_2_GI, negative_adjectives_component, age, ois, ne, se, ie, tion, ée, ite
#5 Masculine 0.00 sme, ien, n, Social_GI, sion, ade, che, ue, té, ite
#6 Masculine 0.03 l, sme, ien, n, sion, ade, che, ue, ite, té
#7 Feminine 0.01 ière, Quan_GI, Fear_GALC, Role_GI, ure, n, Rctot_Lasswell, polarity_nouns_component, ée, r
#8 Feminine 0.00 sme, ade, sion, ien, n, ière, che , nce, r, tte
#9 Masculine 0.00 ade, sion, che, nce, ue, ure, ée, ité, té, ite
#10 Feminine 0.00 ologie, n, r, Fear_GALC, Anticipation_EmoLex, ière, che, Role_GI, nce, ue

Table 2: Top-10 features from decision tree with at most 500 leaf nodes for the clusters defined in Section 4.2.

orthography itself. Even though phonology alone
(PHON) is more accurate than the best semantics
(SEM) model in predicting gender (81% vs. 77%),
semantics provide more useful additions over what
orthography already encodes. For example, poix
(meaning “pitch” or “tar”), polio (“polio”) and
ardeur (“ardor”) are recognized as feminine with
help from semantics (ORTH+SEM) but are clas-
sified incorrectly by the ORTH model. Similarly
the meaning helps identify that brais (“crushed bar-
ley”), polyane (“plastic film”) and jurisconsulte
(“law expert”) should be classified as masculine.

ORTH vs. PHON: Some examples which are
correctly classified by the ORTH model but mis-
classified by the PHON model include meringue
(“meringue”, f.), boulaie (“birch grove”, f.), coccyx
(“coccyx”, m.) and explicit (“end of a chapter or
book”, m.).

ORTH+SEM: Finally we look at errors of our
best model (we consider ORTH+SEM as better
than ORTH+SEM+PHON as it gets the same accu-
racy with fewer features). The list seems to include
relatively rarer words, where it often seems hard
to explain the gender assignment. Some examples
are — myrsite (“Old medical wine”, m.), fomite
(“inanimate disease vector”, m.) cholestrophane
(“a chemical derived from caffeine”, f.), interpola-
teur (“interpolator”, f.).

B Auxiliary features for global
explanations

For the 10 clusters described for global explainabil-
ity in section 4.2, we show the top-10 important
features in Table 2. These features are generated by
training a decision tree classifier that could have at
most 500 leaf nodes. The importance of a feature
in each cluster was defined by the number of times
it appeared on the decision path of the samples.
The features are a mix of orthographic features

(generated from word endings) and semantic fea-
tures (generated from SEANCE) 3. We emphasize
that the features noted here are determined as the
most common features for examples in the cluster,
and are therefore more likely to appear in expla-
nations of examples from that cluster — the exact
explanation for an example is determined by the
appropriate decision tree path.

The Table 2 also shows the error rates per clus-
ters, which are fraction of misclassified labels per
cluster with respect of predictions from the com-
bined black-box model.

3Feature descriptions may be found at the follow-
ing link: https://drive.google.com/file/d/
1SUfSYNyuaWT2i4tQkiyr2rxVeqnh3cQe/view

https://drive.google.com/file/d/1SUfSYNyuaWT2i4tQkiyr2rxVeqnh3cQe/view
https://drive.google.com/file/d/1SUfSYNyuaWT2i4tQkiyr2rxVeqnh3cQe/view

