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Abstract

To transcribe spoken language to written
medium, most alphabets enable an unambigu-
ous sound-to-letter rule. However, some writ-
ing systems have distanced themselves from
this simple concept and little work exists in
Natural Language Processing (NLP) on mea-
suring such distance. In this study, we use
an Artificial Neural Network (ANN) model
to evaluate the transparency between written
words and their pronunciation, hence its name
Orthographic Transparency Estimation with
an ANN (OTEANN). Based on datasets de-
rived from Wikimedia dictionaries, we trained
and tested this model to score the percent-
age of correct predictions in phoneme-to-
grapheme and grapheme-to-phoneme transla-
tion tasks. The scores obtained on 17 orthogra-
phies were in line with the estimations of other
studies. Interestingly, the model also provided
insight into typical mistakes made by learners
who only consider the phonemic rule in read-
ing and writing.

1 Introduction

An alphabet is a standard set of letters that represent
the basic significant sounds of the spoken language
it is used to write. When a spelling system (also
referred as orthography) systematically uses a one-
to-one correspondence between its sounds and its
letters, the encoding of a sound (also referred as
phoneme) into a letter (also referred as grapheme)
leads to a single possibility; similarly the decoding
of a letter into a sound leads to a single possibility
as well. Such orthography is thus transparent with
regards to phonemes with the advantage of offering
no ambiguity when writing or reading the letters of
a word, as illustrated in Figure 1.

In real life, no existing orthography is fully trans-
parent phonemically. One reason is that a word
spoken alone is sometimes different from a word
spoken in a sentence. An even more consequen-

tial reason is that some orthographies like English1

and French2 have incorporated deeper depth rules
that have moved them away from a transparent or-
thography (Seymour et al., 2003); this has created
ambiguities when trying to write or read phonemi-
cally, as illustrated in Figure 2.

Many studies have discussed the degree of trans-
parency of orthographies (Borleffs et al., 2017).
These studies are mainly motivated by the estima-
tion of the ease of reading and writing when learn-
ing a new language (Defior et al., 2002). Finnish,
Korean, Serbo-Croatian and Turkish orthographies
are often referred as highly transparent (Aro, 2004)
(Wang and Tsai, 2009), (Turvey et al., 1984),
(Öney and Durgunoğlu, 1997), whereas English
and French orthographies are referred as opaque
(van den Bosch et al., 1994). However, little work
exists in NLP about measuring the level of trans-
parency of an orthography. One noticeable excep-
tion is the work of van den Bosch et al. (1994)
who have created grapheme-to-phoneme scores and
tested them on three orthographies (Dutch, English
and French).

This study extends such work with a method
called OTEANN, which models a word-based
phoneme-to-grapheme task and a word-based
grapheme-to-phoneme task using an ANN. For the
sake of simplicity, the former task is called a writ-
ing task while the latter task is called a reading
task. The goal is not to build a perfect spelling
translator or a spell checker. Instead the goal is to
build a translator which can indicate a degree of
phonemic transparency and thus make it possible
to rank orthographies according to this criterion.

Interestingly, recent years have seen tremendous
progress regarding NLP with ANNs (Otter et al.,
2018). Sutskever et al. (2014) proposed an ANN

1https://en.wikipedia.org/wiki/
English_orthography#Spelling_patterns

2https://fr.wiktionary.org/wiki/Annexe:
Prononciation/français

https://en.wikipedia.org/wiki /English_orthography#Spelling_patterns
https://en.wikipedia.org/wiki /English_orthography#Spelling_patterns
https://fr.wiktionary.org/wiki/Annexe:Prononciation/fran�ais
https://fr.wiktionary.org/wiki/Annexe:Prononciation/fran�ais
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/t/ <t> <t> /t/

Figure 1: Example of unambiguous correspondence during writing and reading tasks in Esperanto.

/t/

<t>
<t>+<e>
<t>+<t>

...
<t>+<h>

<t>+<e>+<s>
<t>+<e>+<n>+<t>

<t>
/t/
/s/

/s/+/y/

Figure 2: Example of ambiguous correspondence during writing and reading tasks in French. The /t/ phoneme
can correspond to multiple graphemes, depending on the nature of the word and also depending on the nature of
neighboring words in the sentence or even in a previous sentence. Similarly, the <t> grapheme can correspond to
multiple phonemes.

called a Sequence-to-sequence (seq2seq) model
that has proven to be very successful on language
translation tasks. More recently, ANNs based on
as attention (Bahdanau et al., 2014), (Vaswani
et al., 2017) and transformers like Bidirectional En-
coder Representations from Transformers (BERT),
(Devlin et al., 2018) and Generative Pre-Training
(GPT) (Radford, 2018) have again enhanced and
outperformed seq2seqs. Considering writing a
word and reading a word as two translations tasks
allows re-using the transformers for our work. To
this purpose, we used a minimalist GPT imple-
mentation (Karpathy, 2020) called minGPT. No-
tice that since we don’t aim at building a perfect
spelling translator, we do not have to translate a
sequence of words into another sequence of words;
our model only requires translating a spoken word
into a spelled word (writing task) and a spelled
word into a spoken word (reading task). In other
words, our ANN operates at the character level
within a sequence of characters of single words.
The pronunciation and spelling of the word are
both encoded as a sequence of UTF-8 characters;
a pronounced word is encoded with the characters
belonging to the set of phonemes of the target lan-
guage, whereas a spelled word is encoded with the
characters belonging to the alphabet of the target
orthography. We directly re-used minGPT code
with no modification. The only differences were
the training data and the code for extracting the
prediction at inference time.

We used OTEANN to test seventeen orthogra-
phies in order to evaluate their degree of phone-
mic transparency. Sixteen of them are the official

orthographies of their respective language (Ara-
bic, Breton, Chinese, Dutch, English, Esperanto,
Finnish, French, German, Italian, Korean, Por-
tuguese, Russian, Serbo-Croatian, Spanish, and
Turkish) while the seventeenth is a phonemic or-
thography proposed for French.

A unique multi-orthography ANN model in-
stance was trained to learn the writing and reading
tasks on all languages at the same time. In other
words, we used a single dataset containing samples
of all studied orthographies. The multi-orthography
ANN model was then tested for each orthography
and each task with new samples, which allowed
calculating an average percentage of correct trans-
lations. A score of 0% of correct translations repre-
sented a fully opaque orthography (no correlation
between the input and the target), whereas a score
close to 100% represented a fully transparent or-
thography (full correlation between the input and
the target).

Our study first confirms that orthographies like
Arabic, Finnish, Korean, Serbo-Croatian and Turk-
ish are highly transparent whereas other ones
like Chinese, French and English are highly
opaque. For example, when solely based on
a phoneme-grapheme correspondence, we esti-
mated the chances of correctly writing a French
word at 28%; similarly, when solely based on a
grapheme-phoneme correspondence, we estimated
the chances of correctly pronouncing an English
word at 31%. For Dutch, English and French read-
ing tasks, our obtained ranking is in line with the
one of van den Bosch et al. (1994). One unexpected
finding is that OTEANN also allows discovering
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Orthography Task Input Output
en write dZ6b job
en read job dZ6b

Table 1: Features of the multi-orthography dataset

certain mistakes performed by a new learner during
writing and reading.

Remarkably, our method should apply to any
orthography, provided a dataset is available.

2 Methodology

In order to evaluate a level of transparency of some
orthographies two main steps were necessary: ob-
taining datasets and carrying out the training and
testing experiments with the ANN.

2.1 Datasets

As displayed in Table 1, we needed a multi-
orthography dataset with four features per sam-
ple: the orthography, the task (write or read), the
input word (pronunciation or spelled word) and
the output word (spelled word or pronunciation).
A spelled word was represented by a sequence
of graphemes whereas a pronunciation was repre-
sented by a sequence of phonemes. The characters
representing phonemes are also called International
Phonetic Alphabet (IPA) characters. Having a sin-
gle dataset with multiple orthographies and tasks
allows a single multi-orthography ANN model to
learn to read and write all orthographies; otherwise,
it would require one ANN model per orthography-
task pair.

In order to build such dataset, we first gener-
ated one sub-dataset per orthography (e.g. one ’en’
sub-dataset for English), each containing the pro-
nunciation and the spelled word (e.g. ’dZ6b’ and
’job’).

2.1.1 Baseline Orthographies
We first created baselines representing a fully trans-
parent orthography and a fully opaque orthography.

Regarding a fully transparent orthography, we
created a new artificial orthography called Entirely
Transparent (’ent’) orthography. We generated its
samples by using the IPA pronunciation of real
Esperanto words both as the pronunciation and as
the spelled word, which resulted in a sub-dataset
containing an ’ent’ bijective orthography.

Regarding a fully opaque orthography, we also
created a new artificial orthography called Entirely

Opaque (’eno’) orthography. We generated its sam-
ples by taking the IPA pronunciation of real Es-
peranto words mapping each of theirs phonemes to
a random grapheme from a list of 25 graphemes,
which resulted in a sub-dataset containing an ’eno’
orthography with no correlation between the pro-
nunciation and the spelled word.

2.1.2 Studied Orthographies
A sub-dataset was created for each of the following
orthographies: Arabic (’ar’), Breton (’br’), Ger-
man (’de’), English (’en’), Esperanto (’eo’), Span-
ish (’es’), Finnish (’fi’), French (’fr’), Italian (’it’),
Korean (’ko’), Dutch (’nl’), Portuguese (’pt’), Rus-
sian (’ru’), Serbo-Croatian (’sh’), Turkish (’tr’) and
Chinese (’zh’).

We incorporated the words from the correspond-
ing Wiktionary3 dump4, with the exception of the
following ones:

• Words containing space characters;

• Words containing more than 25 characters;

• Words containing capital letters (except for
German words);

• Words containing non-standard characters
with regard to the orthography’s alphabet.

Two orthographies required additional process-
ing:

• For German, proper nouns were discarded and
the capital letter of common nouns was trans-
formed into lower case;

• For Korean, the syllabic blocks words were
converted in a series of two or three letters
(one vowel and one or two consonants) per-
taining to the Korean alphabet with ko_pron5

Python library.

Regarding pronunciation, we directly extracted
the IPA pronunciation when available in the associ-
ated Wiktionary dump, which was the case for ’br’,
’de’, ’en’, ’es’, ’fr’, ’it’, ’nl’, ’pt’ and ’sh’. The Es-
peranto (’eo’) pronunciation came from the French
Wiktionary. For the others (’ar’, ’ko’, ’ru’, ’fi’,
’tr’), we had to derive it from the spelled word with
additional software. For Russian, the Russian Wik-
tionary dump did not contain the IPA. We thus used

3https://wiktionary.org
4https://dumps.wikimedia.org/
5https://pypi.org/project/ko-pron

https://wiktionary.org
https://dumps.wikimedia.org/
https://pypi.org/project/ko-pron
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wikt2pron ru_pron module6 to obtain a pronuncia-
tion similar to the one displayed in the Russian Wik-
tionary web pages. For Chinese, we only selected
Mandarin words in simplified Chinese and limited
to one or two symbols (a.k.a. Hanzis); we then
obtained their pronunciation from the CEDICT7

dataset.
Extracting the phonemic pronunciation from

Wiktionary may raise concerns given than IPA sym-
bols can be used both for phonetic and phonemic
notations and that there is no unified consistency
between the different dictionaries. When process-
ing the IPA strings, we nonetheless took care of
preserving the highest surface pronunciation as
possible: most pitches were removed since they
represent no useful hint during the writing task (i.e.
no consequence on the spelled word) and especially
since they are generally impossible to predict when
translating the spelled word into a pronunciation
during the reading task. Nevertheless the /:/ pitch
was noticed as indispensable for some orthogra-
phies, for instance for predicting double vowels
in the spelling of Finnish words or the alif letter
in Arabic. Regarding the /"/ pitch, it can slightly
influence Spanish translation scores: it can lead to
a better writing score as it can be a hint for predict-
ing accented letters, but it can also lead to a lower
reading score.

Another interesting orthography was a proposal
of an alternative orthography for French called
French Ortofasil (’fro’)8, which seeks to be phone-
mically transparent. Although not fully bijective
(e.g. both /o/ and /O/ map to <o> letter), it indeed
seems highly transparent. We therefore used it to
generate a sub-dataset for the ’fro’ orthography.

It is debatable whether Chinese should be in-
cluded in this study given the term alphabet is usu-
ally reserved for largely phonographic systems that
have a small number of elements. We decided to
include it because our ANN model allowed for
alphabets with thousands of graphemes.

Table 2 summarizes the sub-datasets obtained.

2.1.3 Training and test datasets

11, 000 samples were randomly selected in each
of the 17 sub-datasets. Each sample from a

6https://wikt2pron.readthedocs.io/en/
latest/_modules/IPA/ru_pron.html

7https://github.com/msavva/
transphoner/blob/master/data/

8https://fonétik.fr/v0/faq-en.html#
mapping-table

sub-dataset produced two samples in the multi-
orthography dataset: one sample for write task
and one sample for the read task, as illustrated
in Table 1. This multi-orthography dataset was sub-
sequently divided into a training dataset (10, 000 *
17 * 2 samples) and a test dataset (1, 000 * 17 * 2
samples).

2.1.4 ANN architecture
We used minGTP (Karpathy, 2020) which runs on
PyTorch9. Regarding the hyper-parameters, we
configured a block size of 63 characters, 4 layers,
4 heads and 336 embedding tokens, which resulted
in an ANN of 9, 589, 536 trainable parameters and
an episode training time of 2 hours and 10 minutes
on a 4 GPU node. No effort was spent to shrink or
prune the ANN, so its size could still be optimized.
The data and code are available on Github 10.

2.1.5 Performance metric
We used a simple score in order to assess the per-
formance of the ANN prediction during the test-
ing step. When all the predicted characters were
equal to those of the true target, a prediction was
considered successful, hence allowing to score the
percentage of successful predictions performed for
each orthography-task pair.

2.1.6 Training and testing
We specified an episode as:

• Generating the training and test datasets.
At the end of this step, each character present
in these datasets was provisioned in the inven-
tory of the ANN instance.

• Training the ANN model. The full training
dataset was processed to be used as text blocks
containing the concatenation of the four fea-
tures (orthography, task, input and output)
separated by a comma. Therefore, a single in-
stance of the model was used to learn to write
and read all 17 orthographies in one training.

• Testing the ANN model for each
orthography-task pair. For each
orthography-task pair, 1, 000 new sam-
ples were tested. Each sample was fed into
the model with the concatenation of the three
first features (orthography, task and input)
separated by a comma. The model had to

9https://pytorch.org/
10https://github.com/marxav/oteann4

https://wikt2pron.readthedocs.io/en/latest/_modules/IPA/ru_pron.html
https://wikt2pron.readthedocs.io/en/latest/_modules/IPA/ru_pron.html
https://github.com/msavva/transphoner/blob/master/data/ 
https://github.com/msavva/transphoner/blob/master/data/ 
https://fon�tik.fr/v0/faq-en.html#mapping-table
https://fon�tik.fr/v0/faq-en.html#mapping-table
https://pytorch.org/
https://github.com/marxav/oteann4
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Orthography Samples Phonemes Graphemes Nb. of Phonemes Nb of Graphemes
ar 12,057 32 47 8.0 ± 2.0 8.9 ± 2.3
br 17,343 45 29 6.6 ± 1.9 7.5 ± 2.2
de 529,740 41 30 10.2 ± 3.1 11.5 ± 3.4
en 42,206 42 29 7.3 ± 2.7 7.6 ± 2.6
eo 26,845 25 28 8.8 ± 2.6 8.6 ± 2.5
es 40,824 34 33 8.1 ± 2.7 8.7 ± 2.6
fi 105,352 28 27 10.4 ± 3.5 10.4 ± 3.5
fr 1,214,248 35 41 9.0 ± 2.7 11.2 ± 2.9
fro 1,214,262 35 32 9.0 ± 2.7 8.6 ± 2.6
it 26,798 34 32 9.1 ± 2.8 9.1 ± 2.6
ko 64,669 41 67 10.6 ± 4.0 8.3 ± 3.0
nl 13,340 45 28 7.8 ± 3.1 8.6 ± 3.4
pt 12,190 37 38 7.7 ± 2.3 7.9 ± 2.3
ru 304,514 30 33 10.5 ± 3.1 10.7 ± 3.1
sh 98,575 27 27 9.1 ± 2.8 8.9 ± 2.7
tr 117,841 36 31 10.3 ± 3.7 10.1 ± 3.6
zh 27,688 32 4813 9.9 ± 2.2 1.8 ± 0.3

eno 26,845 25 25 8.8 ± 2.6 8.8 ± 2.6
ent 26,845 25 25 8.8 ± 2.6 8.8 ± 2.6

Table 2: Summary of the sub-datasets. For each sub-dataset, a line indicates the number of samples available, the
number of different phoneme UTF-8 characters, the number of different grapheme UTF-8 characters, the mean
number of phonemes in words, and the mean number of graphemes in words.

predict a value equal to the output feature,
which was the target to be found.

We performed 11 episodes to measure the mean
and standard deviation of each orthography-task
pair and thus assess the consistency of our results.

Future work may use more test samples to gain
a statistical insight on the different types of errors
depending on the orthography at hand.

3 Results

First, regarding the results of the two baseline
orthographies, the ’eno’ opaque orthography ob-
tained a score of 0% in both writing and reading,
which was in line with the expectations given that
there was no correlation between its phonemes
and its graphemes; on the other hand, the ’ent’
transparent orthography scored above 99.6% on
the writing and reading tasks, which indicated a
high level of correlation between its phonemes and
its graphemes. We thus considered our ANN model
satisfactory for our objective of comparing the per-
formance of different orthographies.

Figure 3 and Table 3 present our main results.
They are significantly different between writing
and reading since these tasks are generally not sym-
metrical. Two features are likely to influence the

symmetry, and therefore the efficiency of each task.
As recalled by Figure 2, the most important fea-
ture would undoubtedly be the number of possible
phoneme-to-grapheme and grapheme-to-phoneme
ambiguities per tested orthography. Unfortunately
we did not possess such data. Another impact-
ing feature may be the number of possible values
(graphemes or phonemes) for a given target char-
acter. The higher the number of values, the harder
the prediction should be for the ANN. Future work
should investigate the relative importance of these
features on the OTEANN performances.

Comparing OTEANN’s reading results with
those of van den Bosch et al. (1994), OTEANN
first seems to naturally assimilate the grapheme
complexity (e.g. for French, it successfully learnt
that "cadeau" should be pronounced /kado/). Re-
garding grapheme-to-phoneme complexity (G-P
complexity), they ranked English (G-P complex-
ity=90%) more complex than Dutch (G-P com-
plexity=25%) which, in turn, was more complex
than French (G-P complexity=15%). OTEANN re-
sults preserved the same ranking with transparency
scores of 31%, 57% and 79s% for English, Dutch
and French. Admittedly, OTEANN’s scores were
different in terms of scale but OTEANN had to deal
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Orthography Write Read
ent 99.6 ± 0.3 99.8 ± 0.1
eno 0.0 ± 0.0 0.0 ± 0.0
ar 84.3 ± 0.8 99.4 ± 0.3
br 80.6 ± 0.6 77.2 ± 1.6
de 69.1 ± 1.0 78.0 ± 1.5
en 36.1 ± 1.5 31.1 ± 1.3
eo 99.3 ± 0.2 99.7 ± 0.1
es 66.9 ± 2.0 85.3 ± 1.3
fi 97.7 ± 0.3 92.3 ± 0.8
fr 28.0 ± 1.4 79.6 ± 1.7
fro 99.0 ± 0.3 89.7 ± 1.1
it 94.5 ± 0.8 71.6 ± 0.9
ko 81.9 ± 1.0 97.5 ± 0.5
nl 72.9 ± 1.7 55.7 ± 2.2
pt 75.8 ± 1.0 82.4 ± 0.9
ru 41.3 ± 1.6 97.2 ± 0.5
sh 99.2 ± 0.3 99.3 ± 0.3
tr 95.4 ± 0.7 95.9 ± 0.6
zh 19.9 ± 1.4 78.7 ± 0.9

Table 3: Phonemic transparency scores.
(OTEANN trained with 10, 000 samples)

with more orthographies as well as with the writing
task.

Figure 3 also allows categorizing the studied
orthographies with respect to their degree of trans-
parency:

• Esperanto: With scores above 99.3%, Es-
peranto orthography is nearly as transparent
as the ’ent’ baseline. The most common er-
ror occurred on a doubled letter in the input,
which was incorrectly translated to a single
letter.

• Arabic, Finnish, Korean, Serbo-Croatian
and Turkish: Their scores above 80% both
in writing and reading confirmed that their or-
thography is highly transparent as indicated
in (Aro, 2004), (Wang and Tsai, 2009) and
(Öney and Durgunoğlu, 1997). The Arabic
score is high on in the read direction, which
is likely due to the use of diacritics in the
dataset; without them, the score would un-
doubtedly be lower. Regarding Korean, its
orthography became a little less transparent
during the twentieth century; its high scores
suggest that further work should check the
dataset and evaluate new scores.

Figure 3: Scatterplot of the mean scores.
(OTEANN trained with 10, 000 samples)

• Breton, German, Italian, Portuguese and
Spanish: With all their scores above 65%
their orthography was also measured as fairly
transparent. For Spanish, the detailed results
showed that the most common failure during
writing occurs with accents: the ANN had
great difficulty predicting whether a vowel
should contain an accent or not. For Italian,
typical errors observed in the results were the
prediction of /E/ instead of a /e/ and /O/ in-
stead of a /o/, which were harder to discrim-
inate. Future work may revise the scoring
formula to reduce the cost of some of these
errors in the performance calculation.

• Dutch: The Dutch reading score (56%) is
low but might be slightly enhanced given a
possible lack of consistency regarding the
phonemes used in the Dutch sub-dataset.

• Russian: The Russian writing score (41%)
may seem low. However, Russian has strong
stress-related vowel reduction, which makes
it hard to know how to write a word without
knowing the morphemes involved. Neverthe-
less, future work should either study their sub-
dataset more in depth or use a different data
source like wikipron11 to possibly improve its
scores.

• Chinese: The results indicated a low writing
score (20%), which is not surprising given

11https://pypi.org/project/wikipron/

https://pypi.org/project/wikipron/
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than some phonemes can have multiple corre-
sponding graphemes and that there are thou-
sands of graphemes (Hanzis) to be learnt.
However, it turns out that its reading score
is much higher (79%).

• French: With a low writing score (28%), the
results showed that the chances of correctly
writing a French word on the sole basis of its
pronunciation were rare, as anticipated given
the high number of phoneme-to-grapheme
possibilities. Without being able to access a
broader context than the word itself, the ANN
was not able to reliably predict how to write
a French word. With a much higher reading
score (80%), the ANN obtained good read-
ing results. As a comparison, for the same
language, the alternative ’fro’ orthography ob-
tained excellent writing score (99%) and read-
ing score (90%). Recall that the difference
between its two scores is due to the fact that
the ’fro’ orthography is not bijective. For in-
stance, in the reading direction, the <o> letter
can be translated into /o/ or /O/).

• English: With a low writing score (36%)
and a low reading score (31%), the results
showed that English orthography is also
highly opaque, which is consistent with most
studies. As a reminder, a phonemic reading of
an English word often does not work because
of its high number of grapheme-to-phoneme
possibilities. For instance the grapheme <u>
can either correspond to /2/ (as in "hug"), to
/ju:/ (as in "huge"), to /3:r/ (as in "cur") or
/jU@:/ as in "cure". As for Russian, additional
work should be dedicated to check the English
sub-dataset and possibly enhance it if neces-
sary, which could improve ’en’ scores by a
few percent.

Observing the detailed result of each prediction
also made it possible to study the phonemic corre-
spondences learned or not learned by the OTEANN
model.

• For task-orthographies with a high trans-
parency score, the model successfully pre-
dicted most pronunciations or spellings even
when the correspondences involved more
than one letter. For instance, OTEANN pre-
dicted that the Italian word "cerchia" should
be pronounced /Ùerkja/, hence showing that

the model had successfully learned that <c>,
when followed by <e>, should be pronounced
as /Ù/ and also that <c>, when followed by
<h>, should be pronounced as /k/.

• For task-orthographies with a low trans-
parency score, the model generally failed
on letters involved in ambiguous correspon-
dences (recall Figure 2). For instance, it in-
correctly predicted that the pronunciation of
the English word "level" was "liv9l" instead
of "lEv9l", which might be a bad generaliza-
tion from words like "lever" learned at train-
ing time. OTEANN also incorrectly predicted
that the spelling of the French word /ale/ was
"allez" when the expected target was "aller"
(another French homophone); this type of er-
ror is inevitable since the OTEANN model in-
tentionally use single word input samples and
therefore cannot rely on neighboring words
as additional context to discriminate between
homophones with different spelling.

• Surprisingly, the model also predicted
spellings that do not exist but who could have
existed, in the same vein as ThisWordDoes-
NotExist.com12. For instance, OTEANN pre-
dicted that the spelling of the French word
/swaKe/" was "soirer", which does not exist
but looks like a French infinitive verb that
would mean "to celebrate at a party".

In addition, the results in Table 3 also showed
that the ANN has less than a 30% chance of cor-
rectly writing a word in French or Chinese after
training on 10000 samples while Figure 9 shows
that the same ANN has more than a 85% chance of
correctly writing a word in Finnish, Italian, Serbo-
Croatian or Turkish after training only on 1000
samples. Such a discrepancy highlights the enor-
mous additional cost in terms of time and energy
for learning a non-transparent orthography.

4 Discussion and Conclusion

Among the tested orthographies, some shared the
grapheme inventory. Given that they are all trained
together, there might be an impact on performance.
Although some of our preliminary experiments
with a single ANN instance per orthography did not
seem to lead to significant differences, it could be
interesting to formally compare both approaches.

12https://www.thisworddoesnotexist.com

https://www.thisworddoesnotexist.com
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The accuracy metric we used is all or nothing.
Additional work could also study alternative ac-
curacy metrics and compare their results on the
different orthographies.

Although Wiktionary data may be inconsistent
in quality and therefore positively or negatively im-
pact the measured metric, the results obtained for
Dutch, English and French orthographies reason-
ably extended those of van den Bosch et al. (1994)
while the other results reflected the perception of
several other studies. Consequently, our OTEANN
model showed that an ANN can convincingly esti-
mate a level of phonemic transparency for multiple
orthographies both for the phoneme-to-grapheme
and grapheme-to-phoneme directions.

This method should be easily applicable to
other orthographies beyond those tested in this
study. However, since the superfluous IPA sym-
bols slightly influence the score results, future work
should closely examine and discuss the phonemes
to use depending on the orthography to be tested.

As OTEANN also points out some possible
grapheme or phoneme errors when writing or read-
ing phonemically, it could also be used to detect
possible errors in the dictionaries of transparent
orthographies; it could also be used to evaluate
proposals for improving opaque orthographies.

Finally, it would be beneficial to investigate if
our ANN and its artificial neural units somehow
imitate the way a beginner learns to write and read
a language. If so, it might suggest that a transparent
orthography would be easier and faster to learn than
an opaque orthography.
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Figure 4: Scores with 1, 000 training samples.

Figure 5: Scores with 2, 000 training samples.

Figure 6: Scores with 3, 000 training samples.

Figure 7: Scores with 5, 000 training samples.

Figure 8: Scores with 10, 000 training samples.

Figure 9: Scores according to the number of training
samples


