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Abstract

This work describes the Edinburgh submis-
sion to the SIGMORPHON 2021 Shared Task
2 on unsupervised morphological paradigm
clustering. Given raw text input, the task
was to assign each token to a cluster with
other tokens from the same paradigm. We
use Adaptor Grammar segmentations com-
bined with frequency-based heuristics to pre-
dict paradigm clusters. Our system achieved
the highest average F1 score across 9 test lan-
guages, placing first out of 15 submissions.

1 Introduction

While the task of supervised morphological inflec-
tion has seen dramatic gains in accuracy over recent
years (e.g. Cotterell et al., 2016, 2017, 2018; Vy-
lomova et al., 2020), unsupervised morphological
analysis remains an open challenge. This is evident
in the results of the 2020 SIGMORPHON Shared
Task 2 on Unsupervised Morphological Paradigm
Completion, in which no submission consistently
outperformed the baseline (Kann et al., 2020; Jin
et al., 2020).

The 2021 Shared Task 2 (Wiemerslage et al.,
2021) focuses on a subproblem from the 2020
task: given raw text input, cluster tokens together
based on membership in the same morphologi-
cal paradigm. For example, given the sentence
“My dog met some other dogs”, a successful sys-
tem would assign “dog” and “dogs” to the same
paradigm because they are two inflected forms of
the same lemma “dog”, while each other word
would occupy its own cluster. Furthermore, a
successful system needs to cluster typologically
diverse, morphologically rich languages such as
Finnish and Navajo, with inflectional paradigms
which are much larger than English paradigms.

2 Adaptor Grammars

Our approach is based upon Adaptor Grammars, a
framework which achieves state-of-the-art results
on the related task of unsupervised morphological
segmentation (Eskander et al., 2020).

2.1 Model

Adaptor Grammars (AGs; Johnson et al., 2007b)
are a class of nonparametric Bayesian probabilistic
models which learn structured representations, or
parses, of natural language input strings. An AG
has two components: a Probabilistic Context-Free
Grammar (PCFG) and one or more adaptors. The
PCFG is a 5-tuple (N,W,R, S,θ) which specifies
a base distribution over parse trees. Parse trees are
generated top-down by expanding non-terminals
N (including the start symbol S ∈ N ) to non-
terminals N (excluding S) and terminals W , using
the set of allowed expansion rules R with expan-
sion probability θr for each rule r ∈ R. PCFGs
have very strong independence assumptions; the
adaptor component relaxes these assumptions by al-
lowing certain nonterminals to adapt to a particular
corpus, meaning they can cache and re-use subtrees
with probabilities conditioned on that corpus.

An AG extends a PCFG by specifying a set of
adapted nonterminals A ⊆ N and a vector of adap-
tors C. For each adapted nonterminal X ∈ A, the
adaptor CX stores all subtrees previously emitted
with the root node X . When a new tree rooted in
X is sampled, the adaptor CX either generates a
new tree from the PCFG base distribution or re-
turns a previously emitted subtree from its cache.
The adaptor distribution is generally based on a
Pitman-Yor Process (PYP; Pitman and Yor, 1997),
under which the probability of Cx returning a par-
ticular subtree σ is roughly proportional to the
number of times X has previously expanded to
σ. This leads to a “rich-get-richer” effect as more
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Word→ Stem Suffix
Word→ Stem
Stem→ Chars
Suffix→ Chars
Chars→ Char
Chars→ Char Chars

(a) Example grammar.
Adapted nonterminals are
underlined.

Word Segmentation
walked walk-ed
jumping jump-ing
walking walk-ing

jump jump

(b) Toy corpus with target seg-
mentations

Word

Suffix

e d

Stem

w a l k

Word

Suffix

i n g

Stem

j u m p

(c) Example target morphological analyses, showing only the
top 2 levels of structure

Figure 1: A possible morphological analysis (1c)
learned by the grammar in (1a) over the corpus shown
in (1b) (from Johnson et al., 2007b)

frequently sampled subtrees gain higher probability
within the conditional adapted distribution. Given
an AG specification, MCMC sampling can be used
to infer values for the PCFG rule probabilities θ
(Johnson et al., 2007a) and PYP hyperparameters
(Johnson and Goldwater, 2009).

2.2 AGs for Morphological Analysis

The probabilistic parses generated by adaptor gram-
mars can be used to segment sequences. In cases
where the grammar specifies word structures, the
segmentations may reflect morphological analy-
ses. For example, an AG trained with the simple
grammar shown in Table 1a may learn to cache
“jump” and “walk” as Stem subtrees, and “ing” and
“ed” as Suffix subtrees, ideally producing the tar-
get segmentations shown in Figure 1c. In prac-
tice, researchers have successfully applied AGs to
the task of unsupervised morphological segmenta-
tion (Sirts and Goldwater, 2013; Eskander et al.,
2016). Eskander et al. (2020) found that a language-
independent AG framework achieved state-of-the-
art results on 12 typologically distinct languages.

3 System description

3.1 Overview

The task of unsupervised paradigm clustering is
closely related to morphological segmentation, but
we are not aware of previous applications of AGs
to the current task. To use AGs for paradigm clus-

tering, we need a method to group words together
based on their AG segmentations. The example
segmentations shown in Figure 1 suggest a very
simple approach to paradigm clustering: assign all
forms with the same stem to the same cluster. For
example, “walked” and “walking” would correctly
cluster together with the shared stem “walk”. Our
system builds upon this intuition.

As a preliminary step, we select grammars to
sample from, looking only at the development lan-
guages. We build simple clusters and heuristically
select grammars which show relatively high per-
formance, as described in Section 3.2. In this case
we select two grammars. Once the grammars have
been selected, we discard the simple clusters in
favor of a more sophisticated strategy.

We implement1 a procedure to generate clusters
for both development and test languages. First,
we sample 3 separate AG parses for each corpus
and each grammar, resulting in 6 segmentations for
each word. We then use frequency-based metrics
over the segmentations to identify the language’s
adfix direction, i.e. whether it is predominantly
prefixing or suffixing, as described in Section 3.3.
Finally, we iterate over the entire vocabulary and
apply frequency-based scores to generate paradigm
clusters, as described in Section 3.4 .

3.2 Grammar selection

An adaptor grammar builds upon an initial PCFG
specification, and many such grammars can be ap-
plied to model word structure. As a first step, we
evaluate various grammar specifications on the de-
velopment languages and select the grammars for
our final model.

To train the adaptor grammar representations,
we use MorphAGram (Eskander et al., 2020), a
framework which extends the adaptor grammar im-
plementation of Johnson et al. (2007b). Eskan-
der et al. (2020) evaluated nine different PCFG
grammar specifications on the task of unsupervised
word segmentation. Each grammar specifies the
range of possible word structures which can be
learned under that model. We evaluated six of their
nine proposed grammars on the development lan-
guages (Maltese, Persian, Portuguese, Russian, and
Swedish). Following their procedure, we extracted
a vocabulary V of word types as AG inputs.2

1https://github.com/kmccurdy/
paradigm-clusters

2Although AGs can also model token frequencies (Gold-
water et al., 2006), which could conceivably improve perfor-

https://github.com/kmccurdy/paradigm-clusters
https://github.com/kmccurdy/paradigm-clusters
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To evaluate grammar performance, we follow
the intuition in Section 3.1 and group by AG-
segmented stems. Grouping by stem can be more
difficult for complex words. For example, an AG
with a more complex grammar might segment the
plural noun “actionables” into “action-able-s”, with
“action” as the stem (see also the example in Fig-
ure 2a); however, the target paradigm for cluster-
ing includes only “actionable” and “actionables”,
not “action” and “actions”. To address this issue
for our clustering task, we make the further sim-
plifying (but linguistically motivated; e.g. Stump,
2005, 56) assumption that inflectional morphology
is generally realized on a word’s periphery, so a
segmentation like “action-able-s” implies the stem
“actionable” (in a suffixing language like English,
where the prefix is included in the stem). As all
of the development languages were predominantly
suffixing (with the partial exception of Maltese,
which includes root-and-pattern morphology), we
simply grouped together words with the same AG-
segmented Prefix + Stem.

We selected two grammars with the following de-
sirable attributes: 1) they reliably showed good per-
formance on the development set, relative to other
grammars; and 2) they specified very similar struc-
tures, making it easier to combine their outputs in
later steps. Both grammars model words as a tripar-
tite Prefix-Stem-Suffix sequence. Both grammars
also use a SubMorph level of representation, which
has been shown to aid word segmentation (Sirts
and Goldwater, 2013), although we only consider
segments from the level directly above SubMorphs
in clustering. The full grammar specifications are
included in Appendix A.

• Simple+SM: Each word comprises one op-
tional prefix, one stem, and one optional suf-
fix. Each of these levels can comprise one or
more SubMorphs.

• PrStSu+SM Each word comprises zero or
more prefixes, one stem, and zero or more suf-
fixes. Each of these levels can comprise one
or more SubMorphs. Eskander et al. (2020)
found that this grammar showed the highest
performance in unsupervised segmentation
across the languages they evaluated.

Sampling from an adaptor grammar is a non-
deterministic process, so the same set of initial

mance on this task, we did not explore this option.
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Figure 2: Two example parses of the word “appor-
tioned” from our two distinct grammar specifications,
learned on the English test data.

parameters applied to the same data can predict dif-
ferent segmentation outputs. Given this variability,
we run the AG sampler three times for each of our
two selected grammars, yielding 6 parses of the
lexicon for each language. The number of gram-
mar runs was heuristically selected and not tuned
in any way, so adding more runs for each grammar
might improve performance (for example, Sirts and
Goldwater, 2013, use 5 samples per grammar). We
then combine the resulting segmentations using the
following procedure.

3.3 Adfix direction

The first step is to determine the adfix direction
for each language, i.e. whether the language uses
predominantly prefixing or suffixing inflection. We
heuristically select the adfix direction using the
following automatic procedure.

First, we count the frequency of each peripheral
segment across all 6 parses of the lexicon. A pe-
ripheral segment is a substring at the start or end
of a word, which has been parsed as a segment
above the SubMorph level in some AG sample. For
instance, in the parse shown in Figure 2a, “app-”
would be the initial peripheral segment, and “-ed”
would be the final peripheral segment. By contrast,
for the parse shown in Figure 2b,“ap-” would be
the initial peripheral segment, and “-ioned” would
be the final peripheral segment.

Next, we rank the segmented adfixes by their
frequency, and select the top N for consideration,
where N is some heuristically chosen quantity. In
light of the generally Zipfian properties of linguistic
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distributions, we chose to scale N logarithmically
with the vocabulary size, so N = log(|V |).

Finally, we select the majority label (i.e. “prefix”
or “suffix”) of the N most frequent segments as the
adfix direction. This simple approach has obvious
limitations — to name just one, it neglects the re-
ality of nonconcatenative morphology, such as the
root-and-pattern inflection of many Maltese verbs.
Nonetheless, it appears to capture some key distinc-
tions: this method correctly identified Navajo as a
prefixing language, and all other development and
test languages as predominantly suffixing.

3.4 Creating paradigm clusters

Once we have inferred the adfix direction for a lan-
guage, we use a greedy iterative procedure over
words to identify and score potential clusters. Our
scoring metric is frequency-based, motivated by
the observation that inflectional morphology (such
as the “-s” in “actionables”) tends to be more fre-
quent across word types relative to derivational
morphology (such as the “-able” in “actionables”).
Yarowsky and Wicentowski (2000) have demon-
strated the value of frequency metrics in aligning
inflected forms from the same lemma.

We start with no assigned clusters and iterate
through the vocabulary in alphabetical order.3 For
each word w which has not yet been assigned to
a cluster, we identify the most likely cluster using
the following procedure.

Find possible stems Identify each possible stem
s from all of the segmentations for w, where the
“stem” comprises the entire substring up to a pe-
ripheral adfix. For example, based on the two
parses shown in Figure 2, “apportion” and “ap-
port” would constitute possible stems for the word
“apportioned”. The word w in its entirety is also
considered as a possible stem.

Find possible cluster members For each stem
s, identify other words in the corpus which might
share that stem, forming a potential cluster cs. A
word potentially shares a stem if it shares the same
substring from the non-adfixing-direction — so a
stem is a shared prefix substring in a suffixing lan-
guage like English, and vice-versa for a prefixing
language like Navajo. For each word wi that is
identified this way, the rest of the string outside
of the possible stem s is a possible adfix ai. In

3The method is relatively insensitive to order, except re-
versed alphabetical order, which is worse for most languages.

the example from Figure 2, if “apportions” were
also in the corpus, it would be added to the cluster
for the stem “apportion”, with “-s” as the adfix ai.
Similarly, it would also be considered in the cluster
for the stem “apport”, with adfix “-ions”.

Score cluster members For each word wi in cs,
calculate a score xi:.

xi =
√
Aw

i log(Ai) (1)

where Ai is the normalized overall frequency of
the ith adfix ai (suffix or prefix) per 10,000 types
in the corpus of 6 segmentations, and Aw

i is the
proportion of segmentations of the ith word wi

which contain the adfix ai. For example, if “ap-
portioned” were in consideration for a hypothetical
cluster based on the stem “apportion”, Ai would be
the normalized corpus frequency of “-ed”, and Aw

i

would be .5 (assuming only the two segmentations
shown in Figure 2). For a cluster with the stem
“apport”, Ai would be the normalized frequency of
“-ioned”, and Aw

i would still be .5.
Intuitively, when evaluating a single word, Eq. 1

assumes that adfixes which appear frequently in the
segmented corpus overall are more likely to be in-
flectional, so words with more frequent adfixes are
more likely paradigm members (the log(Ai) term).
For instance, the high frequency of the “-s” suffix
in English will increase the score of any word with
an “-s” suffix in its segmentation (e.g. “apportion-
s”). Eq. 1 also assumes that, for all segmentations
of this particular word wi, adfixes which appear
in a higher proportion of segmentations are more
reliable (the

√
Aw

i term), so the more times some
AG samples the “apportion-s” segmentation, the
higher the score for “apportions” membership in
the “apportion”-stem paradigm. The square root
transform was selected based on development set
performance, and has not been tuned extensively.

Filter and score clusters For each possible stem
cluster cs, filter out words whose score xi is below
the score threshold hyperparameter t, to create a
new cluster c′s. Calculate the cluster score xs by
taking the average of xi for only those words in c′s,
i.e. only words with score xi ≥ t. The value for t
is selected via grid search on the development set.
We found that setting t = 2 maximized F1 across
the development languages as a whole.

Select cluster Select the potential cluster c′s with
the highest score, and assignw to that cluster, along
with each word wi in c′s.
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Language Precision Recall F1

Maltese .30 .30 .30
Persian .54 .52 .53
Portuguese .92 .91 .91
Russian .83 .82 .82
Swedish .85 .81 .83

Mean .69 .67 .68

Table 1: Performance on development languages

Language Precision Recall F1

Basque .33 .32 .32
Bulgarian .83 .80 .82
English .91 .90 .90
Finnish .61 .60 .60
German .79 .79 .79
Kannada .82 .59 .69
Navajo .43 .42 .42
Spanish .85 .82 .84
Turkish .74 .73 .73

Mean .70 .66 .68

Table 2: Performance on test languages

4 Results and Discussion

Performance was evaluated using the script pro-
vided by the shared task organizers. Table 1 shows
the results for the development languages, and Ta-
ble 2 shows the results for the test languages. While
the average F1 score ends up being quite similar
for both development and test languages, it’s clear
within both groups that there are large differences
in performance across different languages.

4.1 Error analysis and ways to improve

Noncontiguous stems The clustering method de-
scribed in Section 3.4 makes an unjustifiably strong
assumption that stems are contiguous substrings,
which effectively eliminates its ability to represent
nonconcatenative morphology. This limitation con-
tributes to the low score on Maltese, a Semitic lan-
guage which includes root-and-pattern morphology
for certain verbs. The model further assumes that
the left or right edge of a word — the side opposite
from the adfix direction — is contiguous with the
stem. This leads to errors on German, as most verbs
have a circumfixing past participle form “ge- + -t”
or “ge- + -en”. For example, the model correctly
assigns “ändern”, “änderten”, and “ändert” to the

same cluster, but incorrectly assigns “geändert” to
a separate cluster. We estimate that roughly 30%
of the model’s incorrect German predictions stem
from this issue. This limitation also contributed to
our model’s poor performance on Basque, which,
like Maltese, uses both prefixing and suffixing in-
flection to express polypersonal agreement.4

One obvious way to improve this issue would
be to use an extension of the AG framework which
can represent nonconcatenative morphology. Botha
and Blunsom (2013) present such an extension,
replacing the PCFG with a Probabilistic Simple
Range Concatenating Grammar. They report suc-
cessful results for unsupervised segmentation on
Hebrew and Arabic. On the other hand, it’s unclear
whether such a nonconcatenative-focused approach
could also adequately represent concatenative mor-
phology. Fullwood and O’Donnell (2013) explore
a similar framework, using Pitman-Yor processes
to sample separate lexica of roots, templates, and
“residue” segments; they find that their model works
well for Arabic, but much less well for English. In
addition, Eskander et al. (2020) report state-of-the-
art morphological segmentation for Arabic using
the PrStSu+SM grammar which we also use here.
Their findings suggest that, rather than changing
the AG framework, we might attempt a more intel-
ligent clustering method based on noncontiguous
segmented subsequences rather than contiguous
substrings.

Irregular morphology The strong assumption
of contiguous substrings as stems also hinders ac-
curate clustering of irregular forms of any kind,
from predictable stem alternations (such as um-
laut in German and Swedish, or theme vowels in
Portuguese and Spanish) to more challenging sup-
pletive forms such as English “go”-“went”. The
latter likely requires additional input from seman-
tic representations, but semiregular alternations in
forms could also be handled in principle by a more
intelligent clustering process. On this point, we
note that some small but significant fraction of AG
parses of Portuguese verbs grouped verbal theme
vowels and inflections together (e.g. parsing “apre-
sentada” as “apresent-ada” rather than “apresenta-
da”, “apresentarem” as “apresent-arem” rather than
“apresenta-rem”, and so on), and these parses were
crucial to our model’s relatively high performance
on Portuguese.

4We thank an anonymous reviewer for bringing this to our
attention.
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Derivation vs. inflection Another issue is that
the parses sampled by AGs do not distinguish be-
tween inflectional and derivational morphology.
This is apparent in Figure 2, where both grammars
parse “apportioned” with “-ioned” as the suffix. We
seek to address this issue with frequency-based met-
rics in our clustering method, but frequent deriva-
tional adfixes often score high enough to be as-
signed a wrong paradigm cluster. For example,
in English our model correctly clusters “allow”,
“allows”, and “allowed” together, but it also incor-
rectly assigns “allowance” to the same cluster.

A straightforward way to handle this within our
existing approach would be to allow language-
specific variation of the score threshold t. As we
had no method for unsupervised estimation of t
for unfamiliar languages, we did not pursue this;
however, a researcher who had minimal familiarity
with the language in question might be able to se-
lect a more sensible value for t based on inspecting
the clusters. Beyond that, the distinction between
inflectional and derivational morphology is an in-
triguing and contested issue within linguistics (e.g.
Stump, 2005), and the question of how to model it
computationally requires much more attention.

4.2 Things that didn’t work

We attempted a number of unsupervised ap-
proaches beyond AG segmentations, with the goal
of incorporating them during the clustering pro-
cess; however, we could not consistently improve
performance with any of them. It seems likely to
us that these methods could still be used to improve
AG-segmentation-based clusters, but we could not
find immediately obvious ways to do this.

FastText As the AG framework only models
word structure based on form, we hoped to use the
distributional representations learned by FastText
(Bojanowski et al., 2017) to incorporate semantic
and syntactic information into our model’s clus-
ters. We tried several different approaches without
success. 1) We trained a skipgram model with a
context window of 5 words, a setting often used
for semantic applications, in hopes that words from
the same paradigm might have similar semantic
representations. Agglomerative clustering on these
representations alone yielded much worse clusters
than the AG method, and we could not find a way
to combine them successfully with the AG clusters.
2) Erdmann et al. (2020) trained a skipgram model
with a context window of 1 word and a minimum

subword length of 2 characters, and used it to clus-
ter words from the same cell rather than the same
paradigm (e.g. clustering together English verbs
in the third person singular such as “walks” and
“jumps”). We attempted to follow this procedure,
but it proved too difficult, as paradigm cell informa-
tion was not explicitly included in the development
data for this shared task. 3) We used the method
described by Bojanowski et al. (2017) to identify
important subwords within a word, in hopes of
combining them with AG segmentations. However,
the identified subwords did not consistently align
with stem-adfix segementations as we had hoped,
and did not seem to provide any additional benefit.

Brown clustering Part of speech tags could pro-
vide latent structure as a higher-order grouping for
paradigm clusters — for example, verbs would be
expected to have paradigms more similar to other
verbs than to nouns. Brown clusters (Brown et al.,
1992) have been used for unsupervised induction
of word classes approximating part of speech tags.
We used a spectral clustering algorithm (Stratos
et al., 2014) to learn Brown clusters, but they did
not reliably correspond to part of speech categories
on our development language data.

5 Conclusion

The Adaptor Grammar framework has previously
been applied to unsupervised morphological seg-
mentation. In this paper, we demonstrate that AG
segmentations can be used for the related task of
unsupervised paradigm clustering with successful
results, as shown by our system’s performance in
the 2021 SIGMORPHON Shared Task.

We note that there is still considerable room for
improvement in our clustering procedure. Two key
directions for future development are more sophis-
ticated treatment of nonconcatenative morphology,
and incorporation of additional sources of informa-
tion beyond the word form alone.
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A PCFGs

Our system uses the following two grammar specifi-
cations, developed by Eskander et al. (2016, 2020).
Nonterminals are adapted by default. Non-adapted
nonterminals are preceded by 1, indicating an ex-
pansion probability of 1, i.e. the PCFG always ex-
pands this rule and never caches it.

A.1 Simple+SM
1 Word --> Prefix Stem Suffix

Prefix --> ˆˆˆ SubMorphs
Prefix --> ˆˆˆ

Stem --> SubMorphs

Suffix --> SubMorphs $$$
Suffix --> $$$

1 SubMorphs --> SubMorph SubMorphs
1 SubMorphs --> SubMorph
SubMorph --> Chars
1 Chars --> Char
1 Chars --> Char Chars

A.2 PrStSu+SM

1 Word --> Prefix Stem Suffix

Prefix --> ˆˆˆ
Prefix --> ˆˆˆ PrefMorphs
1 PrefMorphs --> PrefMorph PrefMorphs
1 PrefMorphs --> PrefMorph
PrefMorph --> SubMorphs

Stem --> SubMorphs

Suffix --> $$$
Suffix --> SuffMorphs $$$
1 SuffMorphs --> SuffMorph SuffMorphs
1 SuffMorphs --> SuffMorph
SuffMorph --> SubMorphs

1 SubMorphs --> SubMorph SubMorphs
1 SubMorphs --> SubMorph
SubMorph --> Chars
1 Chars --> Char
1 Chars --> Char Chars
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