
Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,

August 5, 2021. ©2021 Association for Computational Linguistics

pages 212–221

212

Finite-state Model of Shupamem Reduplication

Magdalena Markowska, Jeffrey Heinz, and Owen Rambow
Stony Brook University

Department of Linguistics &
Institute for Advanced Computational Science

{magdalena.markowska,jeffrey.heinz,owen.rambow}@stonybrook.edu

Abstract

Shupamem, a language of Western Cameroon,
is a tonal language which also exhibits the
morpho-phonological process of full redupli-
cation. This creates two challenges for a finite-
state model of its morpho-syntax and morpho-
phonology: how to manage the full reduplica-
tion, as well as the autosegmental nature of
lexical tone. Dolatian and Heinz (2020) ex-
plain how 2-way finite-state transducers can
model full reduplication without an exponen-
tial increase in states, and finite-state trans-
ducers with multiple tapes have been used
to model autosegmental tiers, including tone
(Wiebe, 1992; Dolatian and Rawski, 2020a;
Rawski and Dolatian, 2020). Here we synthe-
size 2-way finite-state transducers and multi-
tape transducers, resulting in a finite-state for-
malism that subsumes both, to account for
the full reduplicative processes in Shupamem
which also affect tone.

1 Introduction

Reduplication is a very common morphological
process cross-linguistically. Approximately 75%
of world languages exhibit partial or total redupli-
cation (Rubino, 2013). This morphological pro-
cess is particularly interesting from the compu-
tational point of view because it introduces chal-
lenges for 1-way finite-state transducers (FSTs).
Even though partial reduplication can be modelled
with 1-way FSTs (Roark and Sproat, 2007; Chan-
dlee and Heinz, 2012), there is typically an ex-
plosion in the number of states. Total reduplica-
tion, on the other hand, is the only known morpho-
phonological process that cannot be modelled with
1-way FSTs because the number of copied ele-
ments, in principle, has no upper bound. Dolatian
and Heinz (2020) address this challenge with 2-
way FSTs, which can move back and forth on the
input tape, producing a faithful copy of a string.

Deterministic 2-way FSTs can model both partial
and full segmental reduplication in a compact way.

However, many languages that exhibit reduplica-
tive processes also are tonal, which often means
that tones and segments act independently from
one another in their morpho-phonology. For in-
stance, in Shupamem, a tonal language of Western
Cameroon, ndáp ‘house’ → ndâp ndàp ‘houses’
(Markowska, 2020).

tones H HL L
segments ndap ndap ndap

Pioneering work in autosegmental phonology
(Leben, 1973; Williams, 1976; Goldsmith, 1976)
shows tones may act independently from their tone-
bearing units (TBUs). Moreover, tones may ex-
hibit behavior that is not typical for segments (Hy-
man, 2014; Jardine, 2016), which brings yet an-
other strong argument for separating them from
segments in their linguistic representations. Such
autosegmental representations can be mimicked
using finite-state machines, in particular, Multi-
Tape Finite-State Transducers (MT FSTs) (Wiebe,
1992; Dolatian and Rawski, 2020a; Rawski and
Dolatian, 2020). We note that McCarthy (1981)
uses the same autosegmental representations in
the linguistic representation to model templatic
morphology, and this approach has been modeled
for Semitic morphological processing using multi-
tape automata (Kiraz, 2000; Habash and Rambow,
2006).

This paper investigates what finite-state machin-
ery is needed for languages which have both redu-
plication and tones. We first argue that we need
a synthesis of the aforementioned transducers, i.e.
1-way, 2-way and MT FSTs, to model morphol-
ogy in the general case. The necessity for such
a formal device will be supported by the morpho-
phonological processes present in Shupamem nom-
inal and verbal reduplication. We then discuss an

213

alternative, in which we use the MT FST to han-
dle both reduplication and tones. It is important
to emphasize that all of the machines we discuss
are deterministic, which serves as another piece of
evidence that even such complex processes like full
reduplication can be modelled with deterministic
finite-state technology (Chandlee and Heinz, 2012;
Heinz, 2018).

This paper is structured as follows. First, we
will briefly summarize the linguistic phenomena
observed in Shupamem reduplication (Section 2).
We then provide a formal description of the 2-way
(Section 3) and MT FSTs (Section 4). We propose
a synthesis of the 1-way, 2-way and MT FSTs in
Section 5 and further illustrate them using rele-
vant examples from Shupamem in Section 6. In
Section 7 we discuss a possible alternative to the
model which uses only MT FSTs. Finally, in Sec-
tion 8 we show that the proposed model works for
other tonal languages as well, and we conclude our
contributions.

2 Shupamem nominal and verbal
reduplication

Shupamem is an understudied Grassfields Bantu
language of Cameroon spoken by approximately
420,000 speakers (Eberhard et al., 2021). It ex-
hibits four contrastive surface tones (Nchare, 2012):
high (H; we use diacritic V́ on a vowel as an or-
thographic representation), low (L; diacritic V̀),
rising (LH; diacritic V̌), and falling (HL; diacritic
V̂). Nouns and verbs in the language reduplicate
to create plurals and introduce semantic contrast,
respectively. Out of 13 nouns classes, only one
exhibits reduplication. Nouns that belong to that
class are monosyllabic and carry either H or L lexi-
cal tones. Shupamem verbs are underlyingly H or
rising (LH). Table 1 summarizes the data adapted
from Markowska (2020).

In both nouns and verbs, the first item of the redu-
plicated phrase is the base, while the reduplicant is
the suffix. We follow the analysis in Markowska
(2020) and summarize it here. The nominal redu-
plicant is toneless underlyingly, while the verbal
reduplicant has an H tone. Furthermore, the rule of
Opposite Tone Insertion explains the tonal alterna-
tion in the base of reduplicated nouns, and Default
L-Insertion accounts for the L tone on the suffix.
Interestingly, more tonal alternations are observed
when the tones present in the reduplicated phrase
interact with other phrasal/grammatical tones. For

Transl. Lemma Red form

Nouns

H HL L
‘crab’ kám kâm kàm

L LH L
‘game’ kàm kǎm kàm

Verbs

H HŤH
‘fry’ ká ká kŤá

LH LHŤH
‘peel’ kǎ kǎ kŤá

Table 1: Nominal and verbal reduplication in Shu-
pamem

the purpose of this paper, we provide only a sum-
mary of those tonal alternations in Table 2.

Red. tones Output
Nouns HL L HL H

LH L LH H
Verbs HŤH HŤH

LHŤH HL LH

Table 2: Tonal alternations: interaction of tones for
reduplicated forms (“Red. tones”) with grammatical H
tones

The underlined tones indicate changes triggered
by the H grammatical/phrasal tone. In the obser-
vance of H tone associated with the right edge of
the subject position in Shupamem, the L tone that is
present on the surface in the suffix of reduplicated
nouns (recall Table 1), now is represented with an
H tone. Now it should be clear that the noun redu-
plicant should, in fact, be toneless in the underlying
representation (UR). While the presence of H tone
directly preceding the reduplicated verb does not
affect H-tone verbs, such as ká ‘fry’, it causes ma-
jor tonal alternations in rising reduplicated verbs.
Let us look at a particular example representing the
final row in Table 2:

p@́ ‘PASTIII’ + kǎ ká ‘peel.CONTR’→ p@́ kâ kǎ

The H tone associated with the tense marker
introduces two tonal changes to the reduplicated
verb: it causes tonal reversal on the morphological
base, and it triggers L-tone insertion to the left edge
of the reduplicant.

The data in both Table 1 and 2 show that 1)
verbs and nouns in Shupamem reduplicate fully
at the segmental level, and 2) tones are affected
by phonological rules that function solely at the
suprasegmental level. Consequently, a finite-state
model of the language must be able to account for

214

q0start q1 q2 q3 q4
(o,λ,+1)

(k,k,+1)

(á,á,+1)

(n,λ,-1)

(k,λ,−1)

(á,λ,−1)

(o,∼,+1)

(k,k,+1)

(á,á,+1)

(n,λ,+1)

Figure 1: 2-way FST for total reduplication of ká ‘fry.IMP→ ká ká ‘fry.IMP as opposed to boiling’

those factors. In the next two sections, we will pro-
vide a brief formal introduction to 2-way FSTs and
MT-FSTs, and explain how they correctly model
full reduplication and autosegmental representa-
tion, respectively.

In this paper, we use an orthographic represen-
tation for Shupamem which uses diacritics to in-
dicate tone. Shupamem does not actually use this
orthography; however, we are interested in model-
ing the entire morpho-phonology of the language,
independently of choices made for the orthography.
Furthermore, many languages do use diacritics to
indicate tone, including the Volta-Niger languages
Yoruba and Igbo, as well as Dschang, a Grassfields
language closely related to Shupamem. (For a dis-
cussion of the orthography of Cameroonian lan-
guages, with a special consideration of tone, see
(Bird, 2001).) Diacritics are also used to write
tone in non-African languages, such as Vietnamese.
Therefore, this paper is also relevant to NLP ap-
plications for morphological analysis and genera-
tion in languages whose orthography marks tones
with diacritics: the automata we propose could be
used to directly model morpho-phonological com-
putational problems for the orthography of such
languages.

3 2-way FSTs

As Roark and Sproat (2007) point out, almost all
morpho-pholnological processes can be modelled
with 1-way FSTs with the exception of full redu-
plication, whose output is not a regular language.
One way to increase the expressivity of 1-way FST
is to allow the read head of the machine to move
back and forth on the input tape. This is exactly
what 2-way FST does (Rabin and Scott, 1959), and
Dolatian and Heinz (2020) explain how these trans-
ducers model full reduplication not only effectively,
but more faithfully to linguistic generalizations.

Similarly to a 1-way FST, when a 2-way FST
reads an input, it writes something on the output
tape. If the desired output is a fully reduplicated

string, then the FST faithfully ‘copies’ the input
string while scanning it from left to right. In con-
trast, while scanning the string from right to left,
it outputs nothing (λ), and it then copies the string
again from left to right.

Figure 1 illustrates a deterministic 2-way FST
that reduplicates ká ‘fry.IMP’; readers are referred
to Dolatian and Heinz (2020) for formal defini-
tions. The key difference between deterministic
1-way FSTs and deterministic 2-way FSTs are the
addition of the ‘direction’ parameters {+1, 0,−1}
on the transitions which tell the FST to advance to
the next symbol on the input tape (+1), stay on the
same symbol (0), or return to the previous symbol
(-1). Deterministic 1-way FSTs can be thought of
as deterministic 2-way FSTs where transitions are
all (+1).

The input to this machine is okán. The o and
n symbols mark beginning and end of a string, and
∼ indicates the boundary between the first and the
second copy. None of those symbols are essen-
tial for the model, nevertheless they facilitate the
transitions. For example, when the machine reads
n, it transitions from state q1 to q2 and reverses
the direction of the read head. After outputting
the first copy (state q1) and rewinding (state q2),
the machine changes to state q3 when it scans the
left boundary symbol o and outputs ∼ to indicate
that another copy will be created. In this partic-
ular example, not marking morpheme boundary
would not affect the outcome. However, in Section
5, where we propose the fully-fledged model, it
will be crucial to somehow separate the first from
second copy.

4 Multitape FSTs

Multiple-tape FSTs are machines which operate in
the exact same was as 1-way FST, with one key
difference: they can read the input and/or write the
output on multiple tapes. Such a transducer can
operate in an either synchronous or asynchronous
manner, such that the input will be read on all tapes

215

and an output produced simultaneously, or the ma-
chine will operate on the input tapes one by one.
MT-FST can take a single (‘linear’) string as an
input and output multiple strings on multiple tapes
or it can do the reverse (Rabin and Scott, 1959;
Fischer, 1965).

To illustrate this idea, let us look at Shupamem
noun màpàm ‘coat’. It has been argued that Shu-
pamem nouns with only L surface tones will have
the L tone present in the UR (Markowska, 2019,
2020). Moreover, in order to avoid violating the
Obligatory Contour Principle (OCP) (Leben, 1973),
which prohibits two identical consecutive elements
(tones) in the UR of a morpheme, we will assume
that only one L tone is present in the input. Con-
sequently, the derivation will look as shown in Ta-
ble 3.

Input: T-tape L
Input: S-tape mapam

Output: Single tape màpàm

Table 3: Representation of MT-FST for màpàm ‘coat’

Separating tones from segments in this manner,
i.e. by representing tones on the T(one)-tape and
segments on the S(segmental)-tape, faithfully re-
sembles linguistic understanding of the UR of a
word. The surface form màpàm has only one L
tone present in the UR, which then spreads to all
TBUs, which happen to be vowels in Shupamem,
if no other tone is present.

An example of a multi-tape machine is pre-
sented in Figure 2. For better readability, we
introduce a generalized symbols for vowels (V)
and consonants (C), so that the input alphabet is
Σo = {(C, V), (L,H)} ∪ {o,n}, and the output
alphabet is Γ = {C, V́ , V̀ }. The machine operates
on 2 input tapes and writes the output on a single
tape. Therefore, we could think of such machine
as a linearizer. The two input tapes represent the
Tonal and Segmental tiers and so we label them T
and S, respectively. We illustrate the functioning
of the machine using the example (mapam, L)→
màpàm ‘coat’. While transitioning from state q0 to
q1, the output is an empty string since the left edge
marker is being read on both tapes simultaneously.
In state q1, when a consonant is being read, the
machine outputs the exact same consonant on the
output tape. However, when the machine reaches a
vowel, it outputs a vowel with a tone that is being
read at the same time on the T-tape (in our exam-

ple, (L, V)→ V̀) and transitions to state q2 (if the
symbol on the T-tape is H) or q3 (for L, as in our ex-
ample). In states q2 and q3, consonants are simply
output as in state q1, but for vowels, one of three
conditions may occur: the read head on the Tonal
tape may be H or L, in which case the automaton
transitions (if not already there) to q2 (for H) or q3
(for L), and outputs the appropriate orthographic
symbol. But if on the Tonal tape the read head is
on the right boundary marker n, we are in a case
where there are more vowels in the Segmental tape
than tones in the Tonal tape. This is when the OCP
determines the interpretation: all vowels get the
tone of the last symbol on the Tone tier (which we
remember as states q2 and q3). In our example,
this is an L. Finally, when the Segmental tape also
reaches the right boundary marker n, the machine
transitions to the final state q4. This (‘linearizing’)
MT-FST consists of 4 states and shows how OCP
effects can be handled with asynchronous multi-
tape FSTs. Note that when there are more tones
on the Tonal tier than vowels on the Segmental tier,
they are simply ignored. We refer readers to Dola-
tian and Rawski (2020b) for formal definitions of
these MT transducers.

We are also interested in the inverse process –
that is, a finite-state machine that in the example
above would take a single input string [màpàm]
and produce two output strings [L] and [mapam].
While multitape FSTs are generally conceived as
relations over n-ary relations over strings, Dolatian
and Rawski (2020b) define their machines deter-
ministically with n input tapes and a single output
tape. We generalize their definition below.

Similarly to spreading processes described
above, separating tones from segments give us a lot
of benefits while accounting for tonal alternations
taking place in nominal and verbal reduplication in
Shupamem. First of all, functions such as Opposite
Tone Insertion (OTI) will apply solely at the tonal
level, while segments can be undergoing other op-
erations at the same time (recall that MT-FSTs can
operate on some or all tapes simultaneously). Sec-
ondly, representing tones separately from segments
make tonal processes local, and therefore all the
alternations can be expresses with less powerful
functions (Chandlee, 2017).

Now that we presented the advantages of MT-
FSTs, and the need for utilizing 2-way FSTs to
model full reduplication, we combine those ma-
chines to account for all morphophonological pro-

216

q0start q1

q2

q3

q4

T:(o,+1)

S:(o,+1)

O:λ

T:(H,+1) T:(H,0)

S:(V,+1) S:(C,+1)

O:V́ O:C

T:(H,+1) T:(H,0)

S:(V,+1) S:(C,+1)

O:V́ O:C

T:(n,0) T:(n,0)

S:(V,+1) S:(C,+1)

O:V́ O:C

T:(L,+1) T:(L,0)

S:(V,+1) S:(C,+1)

O:V̀ O:C

T:(o,+1)

S:(o,+1)

O:λ

T:(L,+1)

S:(V,+1)

O:V̀

T:(H,+1)

S:(V,+1)

O:V́

T:(L,+1) T:(L,0)

S:(V,+1) S:(C,+1)

O:V̀ O:C

T:(n,0) T:(n,0)

S:(V,+1) S:(C,+1)

O:V̀ O:C

T:(o,+1)

S:(o,+1)

O:λ

Figure 2: MT-FST: linearize
C and V are notational meta-symbols for consonants and vowels, resp.; T indicates the tone tape, S, the
segmental tape, and O the output tape.

cesses described in Section 2.

5 Deterministic 2-Way Multi-tape FST

Before we define Deterministic 2-Way Multi-tape
FST (or 2-way MT FST for short) we introduce
some notation. An alphabet Σ is a finite set of
symbols and Σ∗ denotes the set of all strings of
finite length whose elements belong to Σ. We use
λ to denote the empty string. For each n ∈ N, an
n-string is a tuple 〈w1, . . . wn〉 where each wi is
a string belonging to Σ∗i (1 ≤ i ≤ n). These n
alphabets may contain distinct symbols or not. We
write #»w to indicate a n-string and

#»

λ to indicate the
n-string where each wi = λ. We also write

#»

Σ to
denote a tuple of n alphabets:

#»

Σ = Σ1 × · · ·Σn.
Elements of

#»

Σ are denoted #»σ .
If #»w and #»v belong to

#»

Σ∗ then the pointwise con-
catenation of #»w and #»v is denoted #»w #»v and equals
〈w1, . . . wn〉〈v1, . . . vn〉 = 〈w1v1, . . . wnvn〉. We
are interested in functions that map n-strings to
m-strings with n,m ∈ N. In what follows we gen-

erally use the index i to range from 1 to n and the
index j to range from 1 to m.

We define Deterministic 2-Way n,m Multitape
FST (2-way (n,m) MT FST for short) for n,m ∈
N by synthesizing the definitions of Dolatian and
Heinz (2020) and Dolatian and Rawski (2020b);
n,m refer to the number of input tapes and output
tapes, respectively. A Deterministic 2-Way n,m
Multitape FST is a six-tuple (Q,

#»

Σ,
#»

Γ , q0, F, δ),
where

• #»

Σ = 〈Σ1 . . .Σn〉 is a tuple of n input alpha-
bets that include the boundary symbols, i.e.,
{o,n} ⊂ Σi, 1 ≤ i ≤ n,

• #»

Γ is a tuple of m output alphabets Γj (1 ≤
j ≤ m),

• δ : Q × #»

Σ → Q × #»

Γ∗ × #»

D is the transition
function. D is an alphabet of directions equal
to {−1, 0,+1} and

#»

D is an n-tuple.
#»

Γ∗ is a
m-tuple of strings written to each output tape.

217

Figure 3: Synthesis of 2-way FST and MT-FST

We understand δ(q, #»σ) = (r, #»v ,
#»

d) as follows. It
means that if the transducer is in state q and the
n read heads on the input tapes are on symbols
〈σ1, . . . σn〉 = #»σ , then several actions ensue. The
transducer changes to state r and pointwise concate-
nates #»v to the m output tapes. The n read heads
then move according to the instructions

#»

d ∈ #»

D.
For each read head on input tape i, it moves back
one symbol iff di = −1, stays where it is iff di = 0,
and advances one symbol iff di = +1. (If the read
head on an input tape “falls off” the beginning or
end of the string, the computation halts.)

The function recognized by a 2-way (n,m) MT
FST is defined as follows. A configuration of a
n,m-MT-FST T is a 4-tuple 〈 #»

Σ∗, q,
#»

Σ∗,
#»

Γ∗〉. The
meaning of the configuration (#»w, q, #»x , u) is that
the input to T is #»w #»x and the machine is currently
in state q with the n read heads on the first symbol
of each xi (or has fallen off the right edge of the
i-th input tape if xi = λ) and that #»u is currently
written on the m output tapes.

If the current configuration is (#»w, q, #»x , #»u) and
δ(q, #»σ) = (r, #»v ,

#»

d) then the next configuration is
(#»w ′, r, #»x ′, #»u #»v), where for each i, 1 ≤ i ≤ n:

• #»w ′ = 〈w′1 . . . w′n〉 and #»x ′ = 〈x′1 . . . x′n〉 (1 ≤
i ≤ n);

• w′i = wi and x′i = xi iff di = 0;

• w′i = wiσ and x′i = x′′i iff di = +1 and there
exists σ ∈ Σi, x

′′
i ∈ Σ∗i such that xi = σx′′i ;

• w′i = w′′i and x′i = σxi iff di = −1 and there
exists σ ∈ Σi, w

′′
i ∈ Σ∗i such that wi = σw′′i .

We write (#»w, q, #»x , #»u) → (#»w ′, r, #»x ′, #»u #»v). Ob-
serve that since δ is a function, there is at most one
next configuration (i.e., the system is deterministic).
Note there are some circumstances where there is
no next configuration. For instance if di = +1 and
xi = λ then there is no place for the read head to
advance. In such cases, the computation halts.

The transitive closure of→ is denoted with→+.
Thus, if c→+ c′ then there exists a finite sequence
of configurations c1, c2 . . . cn with n > 1 such that
c = c1 → c2 → . . .→ cn = c′.

At last we define the function that a 2-way (n,m)
MT FST T computes. The input strings are aug-
mented with word boundaries on each tape. Let
»own = 〈ow1n, . . .o wnn〉. For each n-string
#»w ∈ #»

Σ∗, fT (#»w) = #»u ∈ #»

Γ∗ provided there
exists qf ∈ F such that (

#»

λ, q0,
»own, #»

λ) →+

(
»own, qf ,

#»

λ, #»u).
If fT (#»w) = #»u then #»u is unique because the

sequence of configurations is determined determin-
istically. If the computation of a 2-way MT-FST T
halts on some input #»w (perhaps because a subse-
quent configuration does not exist), then we say T
is undefined on #»w.

The 2-way FSTs studied by Dolatian and Heinz
(2020) are 2-way 1,1 MT FST. The n-MT-FSTs
studied by Dolatian and Rawski (2020b) are 2-way
n,1 MT FST where none of the transitions con-
tain the −1 direction. In this way, the definition
presented here properly subsumes both.

Figure 4 shows an example of a 1,2 MT FST that
“splits” a phonetic (or orthographic) transcription of
a Shupamem word into a linguistic representation

218

with a tonal and segmental tier by outputting two
output strings, one for each tier.

q0start q1 q2
I:(o,+1)

T:λ

S:λ

I:(C,+1) I:(á,+1) I:(à,+1)

T:λ T:H T:L

S:C S:a S:a

I:(â,+1)

T:HL

S:a

I:(ǎ,+1)

T:LH

oS:a

I:(n,+1)

T:λ

S:λ

Figure 4: MT-FST: split
ndáp→ (ndap, H) ‘house’, C and V are notational
meta-symbols for consonants and vowels, resp.; T
indicates the output tone tape, S – the segmental

output tape, and I – the input.

6 Proposed model

As presented in Figure 3, our proposed model, i.e.
2-way 2,2 MT FST, consists of 1-way and 2-way
deterministic transducers, which together operate
on two tapes. Both input and output are represented
on two separate tapes: Tonal and Segmental Tape.
Such representation is desired as it correctly mim-
ics linguistic representations of tonal languages,
where segments and tones act independently from
each other. On the T-tape, a 1-way FST takes the
H tone associated with the lexical representation of
ndáp ‘house’ and outputs HL∼ by implementing
the Opposite Tone Insertion function. On the S-
tape, a 2-way FST takes ndap as an input, and out-
puts a faithful copy of that string (ndap ndap). The
∼ symbol significantly indicates the morpheme
boundary and facilitates further output lineariza-
tion. A detailed derivation of ndáp 7→ ndâp ndap
is shown in Table 4.

Figure 3 also represents two additional ‘trans-
formations’: splitting and linearizing. First, the
phonetic transcription of a string (ndáp) is split
into tones and segments with a 1,2 MT FST. The
output (H, ndap) serves as an input to the 2-way 2,2
MT FST. After the two processes discussed above
apply, together acting on both tapes, the output is
then linearized with an 2,1 MT FST. The composi-
tion of those three machines, i.e. 1,2 MT, 2-way 2,2
MT FST, and 2,1 MT FSTs is particularly useful
in applications where a phonetic or orthographic
representations needs to be processed.

As was discussed in Section 2, the tone on the
second copy is dependent on whether there was an
H tone preceding the reduplicated phrase. If there
was one, the tone on the reduplicant will be H.
Otherwise, the L-Default Insertion rule will insert
L tone onto the toneless TBU of the second copy.
Because those tonal changes are not part of the
reduplicative process per se, we do not represent
them either in our model in Figure 3, or in the
derivation in Table 4. Those alternations could be
accounted for with 1-way FST by simply inserting
H or L tone to the output of the composed machine
represented in Figure 3.

Modelling verbal reduplication and the tonal pro-
cesses revolving around it (see Table 2) works in
the exact same way as described above for nominal
reduplication. The only difference are the functions
applied to the T-tape.

7 An Alternative to 2-Way Automata

2-way n,m MT FST generalize regular functions
(Filiot and Reynier, 2016) to functions from n-
strings to m-strings. It is worth asking however,
what each of these mechanisms brings, especially
in light of fundamental operations such as func-
tional composition.

Figure 5: An alternative model for Shupamem redupli-
cation

For instance, it is clear that 2-way 1, 1 MT FSTs
can handle full reduplication in contrast to 1-way
1, 1 MT FSTs which cannot. However, full redupli-
cation can also be obtained via the composition of
a 1-way 1,2 MT FST with a 1-way 2, 1 MT FST.
To illustrate, the former takes a single string as an
input, e.g. ndap, and ‘splits’ it into two identical
copies represented on two separate output tapes.
Then the 2-string output by this machines becomes
the input to the next 1-way 2,1 MT FST. Since
this machine is asynchronous, it can linearize the

219

State Segment-tape Tone-tape S-output T-output
q0 ondapn oHn λ λ

q1 ondapn S:o:+1 oHn T:o:+1 n HL
q1 ondapn S:n:+1 oHn T:H:+1 nd HL∼
q1 ondapn S:d:+1 oHn T:n:0 nda HL∼
q1 ondapn S:a:+1 oHn T:n:0 ndap HL∼
q1 ondapn S:p:+1 oHn T:n:0 ndap∼ HL∼
q2 ondapn S:n:-1 oHn T:n:0 ndap∼ HL∼
q2 ondapn S:p:-1 oHn T:n:0 ndap∼ HL∼
q2 ondapn S:a:-1 oHn T:n:0 ndap∼ HL∼
q2 ondapn S:d:-1 oHn T:n:0 ndap∼ HL∼
q2 ondapn S:n:-1 oHn T:n:0 ndap∼ HL∼
q3 ondapn S:o:+1 oHn T:n:0 ndap∼n HL∼
q3 ondapn S:n:+1 oHn T:n:0 ndap∼nd HL∼
q3 ondapn S:d:+1 oHn T:n:0 ndap∼nda HL∼
q3 ondapn S:a:+1 oHn T:n:0 ndap∼ndap HL∼
q3 ondapn S:p:+1 oHn T:n:0 ndap∼ndap HL∼

Table 4: Derivation of ndáp 7→ ndâp ndap ‘houses’
This derivation happens in the two automata in the center of Figure 3. The FST for the Segmental tier is

the one shown in Figure 1, and the states in the table above refer to this FST.

2-string (e.g. (ndap, ndap)) to a 1-string (ndap
ndap) by reading along one of these input tapes
(and writing it) and reading the other one (and writ-
ing it) only when the read head on the first input
tape reaches the end. Consequently, an alternative
way to model full reduplication is to write the ex-
act same output on two separate tapes, and then
linearize it. Therefore, instead of implementing
Shupamem tonal reduplication with 2-way 2,2 MT
FST, we could use the composition of two 1-way
MT-FST: 1,3 MT-FST and 3,1 MT-FST as shown
in Figure 5. (We need three tapes, two Segmental
tapes to allow reduplication as just explained, and
one Tonal tape as discussed before.)

This example shows that additional tapes can
be understood as serving a similar role to regis-
ters in register automata (Alur and Černý, 2011;
Alur et al., 2014). Alur and his colleagues have
shown that deterministic 1-way transducers with
registers are equivalent in expressivity to 2-way
deterministic transducers (without registers).

8 Beyond Shupamem

The proposed model is not limited to modeling
full reduplication in Shupamem. It can be used for
other tonal languages exhibiting this morphological
process. We provide examples of the applicability
of this model for the three following languages:
Adhola, Kikerewe, and Shona. And we predict that

other languages could also be accounted for.

All three languages undergo full reduplication
at the segmental level. What differs is the tonal
pattern governing this process. In Adhola (Ka-
plan, 2006), the second copy is always represented
with a fixed tonal pattern H.HL, where ‘.’ indi-
cates syllable boundary, irregardless of the lexi-
cal tone on the non-reduplicated form. In the fol-
lowing examples, unaccented vowels indicate low
tone. For instance, tiju ‘work’ 7→ tija t́ijâ ‘work
too much’, tSemó ‘eat’ 7→ tSemá tSŤémâ ‘eat too
much’. In Kikerewe (Odden, 1996), if the first
(two) syllable(s) of the verb are marked with an
H tone, the H tone would also be present in the
first two syllables of the reduplicated phrase. On
the other hand, if the last two syllables of the non-
reduplicated verb are marked with an H tone, the
H tone will be present on the last two syllables of
the reduplicated phrase. For instance, bíba ‘plant’
7→ bíba biba ‘plant carelessly, here and there’, bib-
ílé ‘planted (yesterday)’ 7→ bibile bibílé ‘planted
(yesterday) carelessly, here and there’. Finally, in
KiHehe (Odden and Odden, 1985), if an H tone ap-
pears in the first syllable of the verb, the H tone will
also be present in the first syllable of the second
copy, for example dóongoleesa ‘roll’ 7→ dongolesa
dóongoleesa ‘roll a bit’.

The above discussed examples can be modelled
in a similar to Shupamem way, such that, first,

220

the input will be output on two tapes: Tonal and
Segmental, then some (morpho-)phonological pro-
cesses will apply on both level. The final step is
the ‘linearization’, which will be independent of
the case. For example, in Kikerewe, if the first tone
that is read on the Tonal tape is H, and a vowel
is read on the Segmental tape, the output will be
a vowel with an acute accent. If the second tone
is L, as in bíba, this L tone will be ‘attached’ to
every remaining vowel in the reduplicated phrase.
While Kikerewe provides an example where there
are more TBUs than tones, Adhola presents the
reverse situation, where there are more tones than
TBU (contour tones). Consequently, it is crucial to
mark syllable boundaries, such that only when ‘.’
or the right edge marker (o) is read, the FST will
output the ‘linearized’ element.

9 Conclusion

In this paper we proposed a deterministic finite-
state model of total reduplication in Shupamem.
As it is typical for Bantu languages, Shupamem is
a tonal language in which phonological processes
operating on a segmental level differ from those on
suprasegmental (tonal) level. Consequently, Shu-
pamem introduces two challenges for 1-way FSTs:
language copying and autosegmental representa-
tion. We addressed those challenges by proposing
a synthesis of a deterministic 2-way FST, which
correctly models total reduplication, and a MT FST,
which enables autosegmental representation. Such
a machine operates on two tapes (Tonal and Seg-
mental), which faithfully replicate the linguistic
analysis of Shupamem reduplication discussed in
Markowska (2020). Finally, the outputs of the 2-
way 2,2 MT FST is linearized with a separate 2,1
MT FST outputting the desired surface representa-
tion of a reduplicated word. The proposed model
is based on previously studied finite-state models
for reduplication (Dolatian and Heinz, 2020) and
tonal processes (Dolatian and Rawski, 2020b,a).

There are some areas of future research that we
plan to pursue. First, we have suggested that we
can handle reduplication using the composition
of 1-way deterministic MT FSTs, dispensing with
the need for 2-way automata altogether. Further
formal comparison of these two approaches is war-
ranted. More generally, we plan to investigate the
closure properties of classes of 2-way MT FSTs. A
third line of research is to collect more examples
of full reduplication in tonal languages and to in-

clude them in the RedTyp database (Dolatian and
Heinz, 2019) so a broader empirical typology can
be studied with respect to the formal properties of
these machines.

References
Rajeev Alur, Adam Freilich, and Mukund

Raghothaman. 2014. Regular combinators for
string transformations. In Proceedings of the
Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14,
pages 9:1–9:10, New York, NY, USA. ACM.

Rajeev Alur and Pavol Černý. 2011. Streaming trans-
ducers for algorithmic verification of single-pass list-
processing programs. In Proceedings of the 38th An-
nual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’11, page
599–610, New York, NY, USA. Association for
Computing Machinery.

Steven Bird. 2001. Orthography and identity in
Cameroon. Written Language & Literacy, 4(2):131–
162.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, pages 1–43.

Jane Chandlee and Jeffrey Heinz. 2012. Bounded copy-
ing is subsequential: Implications for metathesis and
reduplication. In Proceedings of the Twelfth Meet-
ing of the Special Interest Group on Computational
Morphology and Phonology, pages 42–51, Montréal,
Canada. Association for Computational Linguistics.

Hossep Dolatian and Jeffrey Heinz. 2019. Redtyp: A
database of reduplication with computational mod-
els. In Proceedings of the Society for Computation
in Linguistics, volume 2. Article 3.

Hossep Dolatian and Jeffrey Heinz. 2020. Comput-
ing and classifying reduplication with 2-way finite-
state transducers. Journal of Language Modelling,
8(1):179–250.

Hossep Dolatian and Jonathan Rawski. 2020a. Com-
putational locality in nonlinear morphophonology.
Ms., Stony Brook University.

Hossep Dolatian and Jonathan Rawski. 2020b. Multi
input strictly local functions for templatic morphol-
ogy. In In Proceedings of the Society for Computa-
tion in Linguistics, volume 3.

David M. Eberhard, Gary F. Simmons, and Charles D.
Fenning. 2021. Enthologue: Languages of the
World. 24th edition. Dallas, Texas: SIL Interna-
tional.

https://doi.org/10.1145/2603088.2603151
https://doi.org/10.1145/2603088.2603151
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://www.aclweb.org/anthology/W12-2306
https://www.aclweb.org/anthology/W12-2306
https://www.aclweb.org/anthology/W12-2306

221

Emmanuel Filiot and Pierre-Alain Reynier. 2016.
Transducers, logic and algebra for functions of finite
words. ACM SIGLOG News, 3(3):4–19.

Patric C. Fischer. 1965. Multi-tape and infinite-state
automata-a survey. Communications of the ACM,
pages 799–805.

John Goldsmith. 1976. Autosegmental Phonology.
Ph.D. thesis, Massachusetts Institute of Technology.

Nizar Habash and Owen Rambow. 2006. Magead: A
morphological analyzer for Arabic and its dialects.
In Proceedings of the 21st International Confer-
ence on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Lin-
guistics (Coling-ACL’06), Sydney, Australia.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frans Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126–195. De
Gruyter Mouton.

Larry Hyman. 2014. How autosegmental is phonol-
ogy? The Linguistic Review, 31(2):363–400.

Adam Jardine. 2016. Computationally, tone is differ-
ent. Phonology, 33:247–283.

Aaron F. Kaplan. 2006. Tonal and morphological iden-
tity in reduplication. In Proceedings of the An-
nual Meeting of the Berkeley Linguistics Society, vol-
ume 31.

George Anton Kiraz. 2000. Multi-tiered nonlinear mor-
phology using multi-tape finite automata: A case
study on Syriac and Arabic. Computational Linguis-
tics, 26(1):77–105.

William R. Leben. 1973. Suprasegmental Phonology.
Ph.D. thesis, Massachusetts Institute of Technology.

Magdalena Markowska. 2019. Tones in Shuapmem
possessives. Ms., Graduate Center, City University
of New York.

Magdalena Markowska. 2020. Tones in Shupamem
reduplication. CUNY Academic Works.

John McCarthy. 1981. A prosodic theory of noncon-
catenative morphology. Linguistic Inquiry, 12:373–
418.

Abdoulaye L. Nchare. 2012. The Grammar of Shu-
pamem. Ph.D. thesis, New York University.

David Odden. 1996. Patterns of reduplication in kik-
erewe. OSU WPL, 48:111–148.

David Odden and Mary Odden. 1985. Ordered redupli-
cation in KiHehe. Linguistic Inquiry, 16:497–503.

Michael O Rabin and Dana Scott. 1959. Finite au-
tomata and their decision problems. IBM journal
of research and development, 3:114–125.

Jonathan Rawski and Hossep Dolatian. 2020. Multi-
input strict local functions for tonal phonology. Pro-
ceedings of the Society for Computation in Linguis-
tics, 3(1):245–260.

Brian Roark and Richard Sproat. 2007. Computational
Approaches to Morphology and Syntax. Oxford Uni-
versity Press, Oxford.

Carl Rubino. 2013. Reduplication. Max Planck Insti-
tute for Evolutionary Anthropology, Leipzig.

Bruce Wiebe. 1992. Modelling autosegmental phonol-
ogy with multi-tape finite state transducers.

Edwin S. Williams. 1976. Underlying tone in Margi
and Igbo. Linguistic Inquiry, 7:463–484.

