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Abstract

We introduce a simple and highly general
phonotactic learner which induces a proba-
bilistic finite-state automaton from word-form
data. We describe the learner and show how to
parameterize it to induce unrestricted regular
languages, as well as how to restrict it to cer-
tain subregular classes such as Strictly k-Local
and Strictly k-Piecewise languages. We evalu-
ate the learner on its ability to learn phonotac-
tic constraints in toy examples and in datasets
of Quechua and Navajo. We find that an un-
restricted learner is the most accurate over-
all when modeling attested forms not seen in
training; however, only the learner restricted
to the Strictly Piecewise language class suc-
cessfully captures certain nonlocal phonotactic
constraints. Our learner serves as a baseline
for more sophisticated methods.

1 Introduction

Natural language phonotactics is argued to fall in
the class of regular languages, or even in a smaller
class of subregular languages (Rogers et al., 2013).
This observation has motivated the study of proba-
bilistic finite-state automata (PFAs) that generate
these languages as models of phonotactics. Here
we implement a simple method for the induction of
PFAs for phonotactics from data, which can induce
general regular languages in addition to languages
in certain more restricted subclasses, for example,
Strictly k-Local and Strictly k-Piecewise languages
(Heinz, 2018; Heinz and Rogers, 2010). We evalu-
ate our learner on corpus data from Quechua and
Navajo, with a particular emphasis on the ability to
learn nonlocal constraints.

We make both theoretical and empirical con-
tributions. Theoretically, we present the differen-
tiable linear-algebraic formulation of PFAs which
enables learning of the structure of the automa-
ton by gradient descent. In our framework, it is

possible to induce an unrestricted automaton with
a given number of states, or an automaton with
hard-coded constraints representing various subreg-
ular languages. This work fills a gap in the formal
linguistics literature, where learners have been de-
veloped within certain subregular classes (Shibata
and Heinz, 2019; Heinz, 2010; Heinz and Rogers,
2010; Futrell et al., 2017), whereas our learner
can in principle induce any (sub)regular language.
In addition, we demonstrate how Strictly Local
and Strictly Piecewise constraints can be encoded
within our framework, and show how information-
theoretic regularization can be applied to produce
deterministic automata.

Empirically, our main result is to show that
our approach gives reasonable and linguistically
accurate results. We find that inducing an unre-
stricted PFA produces the best fit to held-out at-
tested forms, while inducing an automaton for a
Strictly 2-Piecewise language yields a model that
successfully captures nonlocal constraints. We also
analyze the nondeterminism of induced automata,
and the extent to which induced automata overfit
to their training data.

2 Model specification

2.1 Probabilistic Finite-state Automata

A probabilistic finite-state automaton (PFA) for
generating sequences consists of a finite set of
states Q, an inventory of symbols Σ, an emission
distribution with probability mass function p(x|q)
which gives the probability of generating a symbol
x ∈ Σ given state q ∈ Q, and a transition dis-
tribution with probability mass function p(q′|q, x)
which gives the probability of transitioning into
new state q′ from state q after emission of symbol
x.

We parameterize a PFA using a family of right-
stochastic matrices. The emission matrix E, of
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shape |Q| × |Σ|, gives the probability of emitting
a symbol x given a state. Each row in the matrix
represents a state, and each column represents an
output symbol. Given a distribution on states rep-
resented as a stochastic vector q, the probability
mass function over symbols is:

p(·|q) = q>E. (1)

Each symbol x ∈ Σ is associated with a right-
stochastic transition matrix Tx of shape |Q|×|Q|,
so that the probability distribution on following
states given that the symbol x was emitted from the
distribution on states q is

p(·|q, x) = q>Tx. (2)

Generation of a particular sequence x ∈ Σ∗

works by starting in a distinguished initial state
q0, generating a symbol x, transitioning into the
next state q′, and so on recursively until reaching a
distinguished final state qf . Given a PFA parame-
terized by matrices E and T, the probability of a
sequence xNt=1 marginalizing over all trajectories
through states can be calculated according to the
Forward algorithm (Baum et al., 1970; Vidal et al.,
2005a, §3) as follows:

p(xNt=1|E,T) = f(xNt=1|δq0),

where δq is a one-hot coordinate vector on state q
and

f(∅|q) = δ>qfq

f(xnt=1|q) = p(x1|q) · f(xnt=2|q>Tx1).

The important aspect of this formulation is that
the probability of a sequence is a differentiable
function of the matrices E and T that define the
PFA. Because the probability function is differen-
tiable, we can induce a PFA from a set of training
sequences by using gradient descent to search for
matrices that maximize the probability of the train-
ing sequences.

2.2 Learning by gradient descent
We describe a simple and highly general method
for inducing a PFA from data by stochastic gradi-
ent descent. Although more specialized learning
algorithms and heuristics exist for special cases
(see for example Vidal et al., 2005b, §3), ours has
the advantage of generality. Our goal is to see how
effective this simple approach can be in practice.

Given a data distribution X with support over
Σ∗, we wish to learn a PFA by finding parameter
matrices E and T to minimize an objective func-
tion of the form

J(E,T) = 〈− log p(x|E,T)〉x∼X + C(E,T),
(3)

where 〈·〉x∼X indicates an average over val-
ues x drawn from the data distribution X , and
− log p(x|E,T) is the negative log likelihood
(NLL) of a sample x under the model; the average
negative log likelihood is equivalent to the cross en-
tropy of the data distribution X and the model. By
minimizing cross-entropy, we maximize likelihood
and thus fit to the data. The term C(E,T) repre-
sents additional complexity constraints on the E
and T matrices, discussed in Section 2.4. When C
is interpreted as a log prior probability on automata,
then minimizing Eq. 3 is equivalent to fitting the
model by maximum a posteriori.

Given the formulation in Eq. 3, because the ob-
jective function is differentiable, we can search
for the optimal matrices E and T by performing
(stochastic) descent on the gradients of the objec-
tive. That is, for a parameter matrix X, we can
search for a minimum by performing updates of
the form

X′ = X− η∇J(X), (4)

where the scalar η is the learning rate. In stochas-
tic gradient descent, each update is performed using
a random finite sample from the data distribution,
called a minibatch, to approximate the average
over the data distribution in Eq. 3.

However, we cannot apply these updates directly
to the matrices E and T because they must be
right-stochastic, meaning that the entries in each
row must be positive and sum to 1. There is no
guarantee that the output of Eq. 4 would satisfy
these constraints. This issue was addressed by Dai
(2021) by clipping the values of the matrix E to
be between 0 and 1. A more general solution is
that, instead of doing optimization on the E and T
matrices directly, we instead do optimization over
underlying real-valued matrices Ẽ and T̃ such that

Eij =
exp Ẽij∑
k exp Ẽik

, Tij =
exp T̃ij∑
k exp T̃ik

,

in other words we derive the matrices E and T
by applying the softmax function to underlying
matrices Ẽ and T̃, whose entries are called logits.
Gradient descent is then done on the objective as
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a function of the logit matrices Ẽ and T̃. This ap-
proach to parameterizing probability distributions
is standard in machine learning. Applied to induce
a PFA with states Q and symbol inventory Σ, our
formulation yields a total of |Q| × (|Q| × |Σ| − 1)
meaningful trainable parameters.

We note that this procedure is not guaranteed to
find an automaton that globally minimizes the ob-
jective when optimizing T (see Vidal et al., 2005b,
§3). But in practice, stochastic gradient descent in
high-dimensional spaces can avoid local minima,
functioning as a kind of annealing (Bottou, 1991,
§4); using these simple optimization techniques on
non-convex objectives is now standard practice in
machine learning.

2.3 Sequence representation and word
boundaries

In order to model phonotactics, a PFA must be sen-
sitive to the boundaries of words, because there are
often constraints that apply only at word beginnings
or endings (Hayes and Wilson, 2008; Chomsky and
Halle, 1968). In order to account for this, we in-
clude in the symbol inventory Σ a special word
boundary delimiter #, which occurs as the final
symbol of each word, and which only occurs in
that position. Furthermore, we constrain all ma-
trices T to transition deterministically back into
the initial state following the symbol #, effectively
reusing the initial state q0 as the final state qf .

By constructing the automata in this way, we
ensure that their long-run behavior is well-behaved.
If an automaton of this form is allowed to keep gen-
erating past the symbol #, it will generate succes-
sive concatenated independent and identically dis-
tributed samples from its distribution over words,
with boundary symbols # delineating them. This
construction makes it possible to calculate station-
ary distributions over states and complexity mea-
sures related to them.

2.4 Regularization
The objective in Eq. 3 includes a regularization
term C representing complexity constraints. Any
differentiable complexity measure could be used
here. This regularization term can be viewed from
a Bayesian perspective as defining a prior over au-
tomata, and providing an inductive bias. We pro-
pose to use this term to constrain the PFA induction
process to produce deterministic automata.

Most formal work on probabilistic finite-state
automata for phonology has focused on determin-

istic PFAs because of their nice theoretical proper-
ties (Heinz, 2010). A deterministic PFA is dis-
tinguished by having fully deterministic transi-
tion matrices T. This condition can be expressed
information-theoretically. Assuming 0 log 0 = 0,
letting the entropy of a stochastic vector p be:

H[p] = −
∑
i

pi log pi,

a PFA is deterministic when it satisfies the con-
dition H[q>Tx] = 0 for all symbols x and state
distributions q.

We can use this expression to monitor the degree
of nondeterminism of a PFA during optimization,
or to add a determinism constraint to the objective
in Section 2.2. The average nondeterminism N
of a PFA is given by

N(E,T) =
∑
ij

q̂iEijH[δ>qiTj ],

where q̂ is the stationary distribution over states,
representing the long-run average occupancy dis-
tribution over states. The stationary distribution q̂
is calculated by finding the left eigenvector of the
matrix S satisfying

q̂>S = q̂,

where S is a right stochastic matrix giving the prob-
ability that a PFA transitions from state i to state j
marginalizing over symbols emitted:

Sij =
∑
x∈Σ

p(x|qi)p(qj |qi, x).

For the Strictly Local and Strictly Piecewise au-
tomata, N = 0 by construction. For an automaton
parameterized by T = softmax(T̃), it is not pos-
sible to attain N = 0, but nonetheless N can be
made arbitrarily small. There are alternative pa-
rameterizations where N = 0 is achievable, for
example using the sparsemax function instead of
softmax (Martins and Astudillo, 2016; Peters et al.,
2019).

In order to constrain automata to be determinis-
tic, we set the regularization term in Eq. 3 to be

C = αN,

where α is a non-negative scalar determining the
strength of the trade-off of cross entropy and nonde-
terminism in the optimization. With α = 0 there is
no constraint on the nondeterminism of the automa-
ton, and minimizing the objective in Eq. 3 reduces
to maximum likelihood estimation.
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2.5 Implementing restricted automata
We define Strictly Local and Strictly Piecewise au-
tomata as automata that generate the respective lan-
guages. We implement Strictly Local and Strictly
Piecewise automata by hard-coding the transition
matrices T. For these automata, we only do opti-
mization over the emission matrices E.

Strictly Local In a Strictly k-Local (k-SL) lan-
guage, each symbol is conditioned only on imme-
diately preceding k − 1 symbol(s) (Heinz, 2018;
Rogers and Pullum, 2011). We implement a 2-SL
automaton by associating each state q ∈ Q with a
unique element x in the symbol inventory Σ. Upon
emitting symbol x, the automaton deterministically
transitions into the corresponding state, denoted qx.
Thus the transition matrices have the form

Tx =


...q 6=x... qx ...q 6=x...

...
...

...
. . . 0 . . . 1 . . . 0 . . .

...
...

...

.
This construction can be straightforwardly ex-
tended to k-SL, yielding |Σ|k−1 × (|Σ| − 1) train-
able parameters for a k-SL automaton.

Strictly Piecewise A Strictly k-Piecewise k-SP)
language, each symbol depends on the presence of
any preceding k − 1 symbols at arbitrary distance
(Heinz, 2007, 2018; Shibata and Heinz, 2019). For
example, in a 2-SP language, in a string abc, c
would be conditional on the presence of a and the
presence of b, without regard to distance nor the
relative order of a and b.

The implementation of an SP automaton is
slightly more complex than the SL automaton, as
the number of states required in a naïve imple-
mentation is exponential in the symbol inventory
size, resulting in intractably large matrices. We cir-
cumvent this complexity by parameterizing a 2-SP
automaton as a product of simpler automata. We
associate each symbol x ∈ Σ with a sub-automaton
Ax which has two states qx0 and qx1 , with state qx0
indicating that the symbol x has not been seen,
and qx1 indicating that it has been seen. Each sub-
automaton Ax has an emission matrix E(x) of size
2× |Σ| corresponding to the two states qx0 and qx1 ;
the emission matrix for all states qx0 is constrained
to be the uniform distribution over symbols. The
transition matrices T(x) are

T(x)
x =

[
0 1
0 1

]
,T

(x)
y 6=x =

[
1 0
0 1

]
.

Then the probability of the t’th symbol in a se-
quence xt given a context of previous symbols
xt−1
i=1 is the geometric mixture of the probability

of xt under each sub-automaton, also called the
co-emission probability

p(xt|xt−1
i=1) ∝

|Σ|∏
y=1

pAy(xt|xt−1
i=1).

Because each sub-automaton Ay is deterministic,
its state after seeing the context xt−1

i=1 is known,
and the conditional probability pAy(xt|xt−1

i=1) can
be computed using Eq. 1. For calculating the prob-
ability of a sequence, we assume an initial state of
having seen the boundary symbol #; that is, the
sub-automaton A# starts in state q#

1 .
Using this parameterization, we can do opti-

mization over the collection of emission matri-
ces {E(x)}x∈Σ. This construction yields |Σ| ×
(|Σ| − 1) trainable parameters for the 2-SP automa-
ton, the same number of parameters as the 2-SL
automaton.

SP + SL It is also possible to create and train
an automaton with the ability to condition on both
2-SL and 2-SP factors by taking the product of 2-
SL and 2-SP automata, as proposed by Heinz and
Rogers (2013). We refer to the language gener-
ated by such an automaton as 2-SL + 2-SP. We
experiment with such product machines below.

2.6 Related work
PFA induction from data is a well-studied task
which has been the subject of multiple competi-
tions over the years (see Verwer et al., 2012, for a
review). The most common approaches are vari-
ants of Baum-Welch and heuristic state-merging
algorithms (see for example de la Higuera, 2010).
Gibbs samplers and spectral methods have also
been proposed (Gao and Johnson, 2008; Bailly,
2011; Shibata and Yoshinaka, 2012). Induction of
restricted PDFAs, especially for SL and SP lan-
guages, is explored in Heinz and Rogers (2013,
2010)

Our work differs from previous approaches in its
simplicity. Inspired by Shibata and Heinz (2019),
we optimize the training objective directly via gra-
dient descent, without approximations or heuristics
other than the use of minibatches. The same algo-
rithm is applied to learn both transition and emis-
sion structure, for learning of both general PFAs
and restricted PDFAs. One of our contributions
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is to show that this very simple approach gives
reasonable results for learning phonotactics.

3 Inducing toy languages

First, we test the ability of the model to recover
automata for simple examples of subregular lan-
guages. We do so for the two subregular classes
2-SL and 2-SP described in Section 2.5. For each
of these language classes, we implement a ref-
erence PFA which generates strings from a sim-
ple example language in that class, then generate
10, 000 sample sequences from the reference PFA.
We then use these samples as training data, and
study whether our learners can recover the relevant
constraints from the data.

3.1 Evaluation

We evaluate the ability to induce appropriate au-
tomata in two ways. First, since we are studying
very simple languages and automata, it is possible
to directly inspect the E and T matrices and check
that they implement the correct automaton by ob-
serving the transition and emission probabilities.

Second, we study the probabilities assigned
to carefully selected strings which exemplify the
constraints that define the languages. For each
language, we define an illegal test string which
violates the constraints of the language, and a
minimally-different legal test string. Given an
automaton, we can measure the legal–illegal dif-
ference: the log probability of the legal test string
minus the log probability of the illegal test string.
A larger legal–illegal difference indicates that the
model is assigning a higher probability to the legal
form compared to the illegal one and therefore is
successfully learning the constraints represented by
the testing data.

3.2 Languages

All languages are defined over the symbol inven-
tory {a, b, c} plus the boundary symbol #.

As an exemplar of 2-SL languages, we use the
language characterized by the forbidden factor *ab.
A deterministic PFA for the language is given in
Figure 1 (top). The language contains all strings
that do not have an a followed immediately by a b.
Our legal test string for this language is bacccb#
and the illegal test string is babccc#.

As an exemplar of 2-SP languages, we use
the language characterized by a forbidden factor
*a. . . b. This language contains all strings that do

not have an a followed by a b at any distance. The
reference automaton is given in Figure 1 (bottom).
The legal test string is baccca# and the illegal test
string is bacccb#.

3.3 Training parameters

The logit matrices Ẽ and T̃ are initialized with
random draws from a standard Normal distribution
(Derrida, 1981). We perform stochastic gradient de-
scent using the Adam algorithm, which adaptively
sets the learning rate (Kingma and Ba, 2015). We
perform 10, 000 update steps with starting learning
rate η = 0.001 and minibatch size 5.

3.4 Results

Unrestricted PFA induction succeeds in recover-
ing the reference automata for both toy languages.
Learners restricted to the appropriate classes, as
well as the automaton combining SL and SP factors,
also succeed in inducing the appropriate automata,
while learners restricted to the ‘wrong’ class fail.

Figure 1 shows the legal–illegal differences for
test strings over the course of training. We can
see that, when the learner is unrestricted or when
the learner is in the appropriate class, it eventu-
ally picks up on the relevant constraint, with the
legal–illegal difference increasing apparently with-
out bound over training. Unrestricted learners take
longer to reach this point, but they reach it reliably.
On the other hand, looking at the legal–illegal dif-
ferences for learners in the wrong class, we see
that they asymptote to a small number and stop
improving.

These results demonstrate that our simple
method for PFA induction does succeed in induc-
ing certain simple structures relevant for modeling
phonotactics in a small, controlled setting. Next,
we turn to induction of phonotactics from corpus
data.

4 Corpus experiments

We evaluate our learner by training it on dictionary
forms from Quechua and Navajo and then studying
its ability to predict attested forms that were held
out in training in addition to artificially constructed
nonce forms which probe the ability of the model
to represent nonlocal constraints.

4.1 Training parameters

All training parameters are as in Section 3.3, except
that we train for 100, 000 steps, and control the
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Target language: *a...b (2−SP) 
 Legal test string: baccca# 
 Illegal test string: bacccb#

Target language: *ab (2−SL) 
 Legal test string: bacccb# 
 Illegal test string: babccc#
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Figure 1: Difference in log probabilities for legal and illegal forms over the course of PFA induction for toy
languages. A large positive value indicates that the relevant constraint has been learned.
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Figure 2: Reference automata for the 2-SL language
characterized by the constraint *ab (top) and the 2-SP
language characterized by the constraint *a. . . b (bot-
tom). Arcs are annotated with symbols emitted and
their corresponding emission probabilities.

succession of minibatches to be the same across
models within the same language.

4.2 Dataset

The proposed learner is applied to the datasets of
Navajo and Quechua (Gouskova and Gallagher,
2020), in which nonlocal phonotactics are attested.

In Navajo, the co-occurrence of alveolar and

palatal strident is illegal. The learning data of
Navajo includes 6, 279 Navajo phonological words;
we divide this data into a training set of 5, 023
forms and a held-out set of 1, 256 forms. The
nonce testing data of Navajo consists of 5, 000 gen-
erated nonce words, which were labelled as illegal
(N = 3, 271) and legal (N = 1, 729) based on
whether the nonlocal phonotactics are satisfied.

In Quechua, any stop cannot be followed by an
ejective or aspirated stop at any distance. The learn-
ing data of Quechua includes 10, 804 phonolog-
ical words, which we separate into 8, 643 train-
ing forms and 2, 160 held-out forms. The testing
data of Quechua (Gouskova and Gallagher, 2020)
consists of 24, 352 nonce forms which were man-
ually classified as legal (N = 18, 502) and ille-
gal (N = 5, 810, including stop-aspirate and stop-
ejective pairs).

4.3 Dependent Variables

For the linguistic performance of the classifier, we
study two main dependent variables. First, the
average held-out negative log likelihood (NLL)
indicates the ability of the model to assign high
probabilities to unseen but attested forms—low
NLL indicates higher probabilities. Second, us-
ing our nonce forms dataset, we measure the ex-
tent to which the model can differentiate the legal
forms from the illegal forms using the difference
in log likelihood for the legal forms minus the il-
legal forms. This is the same as the legal–illegal
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Navajo Quechua
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Figure 3: Accuracy and complexity metrics for unrestricted PFA induction. ‘Overfitting’ is the difference between
held-out NLL and training set NLL. N is nondeterminism and alpha is the regularization parameter α (see Sec-
tion 2.4). Runs with |Q| = 128, 256, 512 and α = 1 on Navajo data terminated early due to numerical underflow
in the calculation of the stationary distribution.
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Figure 4: Performance of a 2-SP automaton, a 2-SL automaton, a 2-SP + 2-SL product automaton, and an un-
restricted PFA with 1, 024 states and α = 0. ‘Heldout NLL’ is the average NLL of a form in the set of attested
forms never seen during training. ‘Legal–illegal difference’ is the difference in log likelihood between ‘legal’ and
‘illegal’ forms in the nonce test set.
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difference described in Section 3.1, but now as an
average over many legal–illegal nonce pairs instead
of a difference for one pair.

4.4 Results

Unrestricted PFA induction Figure 3 shows re-
sults from induction of unrestricted PFAs with var-
ious numbers of states. We find that show the av-
erage NLL of forms in the heldout data, as well as
‘overfitting’, defined as the average held-out NLL
minus the average training set NLL. This number
shows the extent to which the model assigns higher
probabilities to forms in the training set as opposed
to the held-out set, an index of overfitting. We find
that automata with more states fit the data better,
but are also more prone to overfitting to the training
set.

In Figure 3 (bottom two rows) we also show the
measured nondeterminism N of the induced au-
tomata throughout training, for different values of
the regularization parameter α (see Section 2.4).
We find that, even without an explicit constraint
for determinism, the induced PFAs tend towards
determinism over time, with N reaching around
1.5 bits by the final training step. Explicit regu-
larization (with α = 1) makes this process faster,
with N reaching around 0.5 bits. Regularization
for determinism has only a minimal effect on the
NLL values.

Linguistic performance and restricted models
Figure 4 shows held-out NLL and the legal–illegal
difference for both languages, comparing the SL
automaton, the SP automaton, the product SP +
SL automaton, and a PFA with 1, 024 states and
α = 0.

In terms of the ability to predict attested held-
out forms, the best model is consistently the unre-
stricted PFA, with the SP automaton performing
the worst. However, in terms of predicting the ill-
formedness of artificial forms violating nonlocal
phonotactic constraints, the best model is either
the SP automaton or the SP + SL product automa-
ton. Both of these automata successfully induce
the nonlocal constraint.

On the other hand, the unrestricted PFA learner
shows no evidence at all of having learned the dif-
ference between legal and illegal forms in the arti-
ficial data, despite having the capacity to do so in
theory, and despite succeeding in inducing a 2-SP
language in Section 3.

4.5 Discussion

We find that an unrestricted PFA learner performs
most accurately when predicting real held-out
forms, while an SP learner is most effective in learn-
ing certain nonlocal constraints. In fact, in terms
of its ability to model the nonlocal constraints, the
PFA learner ends up comparable to an SL learner,
which cannot learn the constraints at all. Mean-
while, the SP learner, which is unable to model
local constraints, fares much worse than even the
SL learner on predicting held-out forms. The prod-
uct SP + SL learner combines the strengths of both
restricted learners, but still does not assign as high
probability to the real held-out forms as the unre-
stricted PFA learner.

This pattern of performance suggests that the
PFA learner is using most of its states to model
local constraints beyond those captured in a 2-SL
language. These constraints are important for pre-
dicting real held-out forms. The SP automaton
is unable to achieve strong performance on held-
out forms without the ability to model these local
constraints. On the other hand, the unrestricted
PFA tends to overfit to its training data, perhaps
explaining its failure to detect nonlocal constraints
which are picked up by the appropriate restricted
automata.

5 Conclusion

We introduced a framework for phonotactic learn-
ing based on simple induction of probabilistic finite-
state automata by stochastic gradient descent. We
showed how this framework can be used to learn
unrestricted PFAs, in addition to PFAs restricted
to certain formal language classes such as Strictly
Local and Strictly Piecewise, via constraints on
the transition matrices that define the automata.
Furthermore, we showed that the framework is suc-
cessful in learning some phonotactic phenomena,
with unrestricted automata performing best in a
wide-coverage evaluation on attested but held-out
forms, and Strictly Piecewise automata perform-
ing best in a targeted evaluation using nonce forms
focusing on nonlocal constraints.

Our results leave open the question of whether
the unrestricted learner or one of the restricted
learners is ‘best’ for learning phonotactics, since
they perform differently on different metrics. A key
question for future work is whether there might be
some model that could do well in inducing both
local and nonlocal constraints simultaneously, and
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performing well on both the held-out evaluation
and the nonce form evaluation. Such a model could
come in the form of another restricted language
class such as Tier-Based Strictly Local languages
(Heinz et al., 2011; Jardine and Heinz, 2016; Mc-
Mullin, 2016; Jardine and McMullin, 2017), or
perhaps in the form of a regularization term in the
training objective which enforces an inductive bias
that favors certain nonlocal interactions.

The code for this project is available
at http://github.com/hutengdai/
PFA-learner.
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