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Abstract

Grapheme-to-phoneme conversion is an im-
portant component in many speech technolo-
gies, but until recently there were no multi-
lingual benchmarks for this task. The second
iteration of the SIGMORPHON shared task
on multilingual grapheme-to-phoneme conver-
sion features many improvements from the
previous year’s task (Gorman et al. 2020), in-
cluding additional languages, a stronger base-
line, three subtasks varying the amount of
available resources, extensive quality assur-
ance procedures, and automated error analy-
ses. Four teams submitted a total of thirteen
systems, at best achieving relative reductions
of word error rate of 11% in the high-resource
subtask and 4% in the low-resource subtask.

1 Introduction
Many speech technologies demand mappings be-
tween written words and their pronunciations.
In open-vocabulary systems—as well as certain
resource-constrained embedded systems—it is in-
sufficient to simply list all possible pronunciations;
these mappings must generalize to rare or unseen
words as well. Therefore, the mapping must be
expressed as a mapping from a sequence of ortho-
graphic characters—graphemes— to a sequence
of sounds—phones or phonemes.1
The earliest work on grapheme-to-phoneme

conversion (G2P), as this task is known, used or-
dered rewrite rules. However, such systems are
often brittle and the linguistic expertise needed
to build, test, and maintain rule-based systems
is often in short supply. Furthermore, rule-
based systems are outperformed by modern neu-

1We note that referring to elements of transcriptions as
phonemes implies an ontological commitment which may or
may not be justified; see Lee et al. 2020 (fn. 4) for discussion.
Therefore, we use the term phone to refer to symbols used to
transcribe pronunciations.

ral sequence-to-sequence models (e.g., Rao et al.
2015, Yao and Zweig 2015, van Esch et al. 2016).
With the possible exception of van Esch

et al. (2016), who evaluate against a proprietary
database of 20 languages and dialects, virtually
all of the prior published research on grapheme-
to-phoneme conversion evaluates only on English,
for which several free and low-cost pronunciation
dictionaries are available. The 2020 SIGMOR-
PHON Shared Task on Multilingual Grapheme-to-
Phoneme Conversion (Gorman et al. 2020) repre-
sented a first attempt to construct a multilingual
benchmark for grapheme-to-phoneme conversion.
The 2020 shared task targeted fifteen languages
and received 23 submissions from nine teams. The
second iteration of this shared task attempts to
further refine this benchmark by introducing addi-
tional languages, a much stronger baseline model,
new quality assurance procedures for the data, and
automated error analysis techniques. Furthermore,
in response to suggestions from participants in the
2020 shared task, the task has been divided into
high-, medium-, and low-resource subtasks.

2 Data

As in the previous year’s shared task, all data
was drawn from WikiPron (Lee et al. 2020), a
massively multilingual pronunciation database ex-
tracted from the online dictionary Wiktionary. De-
pending on the language and script, Wiktionary
pronunciations are either manually entered by hu-
man volunteers working from language-specific
pronunciation guidelines and/or generated from
the graphemic form via language-specific server-
side scripting. WikiPron scrapes these pro-
nunciatons from Wiktionary, optionally applying
case-folding to the graphemic form, removing
any stress and syllable boundaries, and segment-
ing the pronunciation—encoded in the Interna-
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tional Phonetic Alphabet—using the Python li-
brary segments (Moran and Cysouw 2018). In
all, 21 WikiPron languages were selected for the
three subtasks, including seven new languages and
fourteen of the fifteen languages used in the 2020
shared task.2
In several cases, multiple scripts or dialects

are available for a given language. For instance,
WikiPron has both Latin and Cyrillic entries for
Serbo-Croatian, and three different dialects of
Vietnamese. In such case, the largest data set of the
available scripts and/or dialects is chosen. Further-
more, WikiPron distinguishes between “broad”
transcriptions delimited by forward slash (/) and
“narrow” transcriptions delimited by square brack-
ets ([ and ]).3 Once again, the larger of the two
data sets is the one used for this task.

3 Quality assurance

During the previous year’s shared task we be-
came aware of several consistency issues with the
shared task data. This lead us to develop quality
assurance procedures for WikiPron and the “up-
stream” Wiktionary data. For a few languages,
we worked with Wiktionary editors who automat-
ically enforced upstream consistency via “bots”,
i.e., scripts which automatically edit Wiktionary
entries. We also improvedWikiPron’s routines for
extracting pronunciation data fromWiktionary. In
some cases (e.g., Vietnamese), this required the
creation of language-specific extraction routines.
In early versions of WikiPron, users had limited

means to separate out entries for languages written
in multiple scripts. We therefore added an auto-
mated script detection system which ensures that
entries for the many languages written with multi-
ple scripts—including shared task languages Mal-
tese, Japanese, and Serbo-Croatian—are sorted ac-
cording to script.
We noticed that the WikiPron data includes

many hyper-foreign pronunciations with non-
native phones. For example, the English data in-
cludes a broad pronunciation of Bach (the sur-
name of a family of composers) as /bɑːx/ with
a velar fricative /x/, a segment which is com-
mon in German but absent in modern English.
Furthermore, unexpected phones may represent

2The fifteenth language, Lithuanian, was omitted due to
unresolved quality assurance issues.

3Sorting by script, dialect, and broad vs. narrow transcrip-
tion is performed automatically during data ingestion.

simple human error. Therefore, we wished to
exclude pronunciations which include any non-
native segments. This was accomplished by creat-
ing phonelists which enumerate native phones for
a given language. Separate phonelists may be pro-
vided for broad and narrow transcriptions of the
same language. During data ingestion, if a pro-
nunciation contains any segment not present on the
phonelist, the entry was discarded. Phonelist filtra-
tion was used for all languages in the medium- and
low-resource subtasks, described below.

4 Task definition
In this task, participants were provided with a col-
lection of words and their pronunciations, and then
scored on their ability to predict the pronunciation
of a set of unseen words.

4.1 Subtasks
In the previous year’s shared task, each language’s
data consisted of 4,500 examples, sampled from
WikiPron, split randomly into 80% training exam-
ples, 10% development examples, and 10% test
examples. As part of their system development,
two teams in the 2020 shared task (Hauer et al.
2020, Yu et al. 2020) down-sampled these data to
simulate a lower-resource setting, and one partici-
pant expressed concern whether the methods used
in the shared task would generalize effectively
to high-resource scenarios like the large English
data sets traditionally used to evaluate grapheme-
to-phoneme systems. This motivated a division of
the data into three subtasks, varying the amount of
data provided, as described below.4

High-resource subtask The first subtask con-
sists of a roughly 41,000-word sample of Main-
stream American English (eng_us). Participating
teams were permitted to use any and all external
resources to develop their systems except for Wik-
tionary or WikiPron. It was anticipated partici-
pants would exploit other freely available Amer-
ican English pronunciation dictionaries.

Medium-resource subtask The second subtask
represents a medium-resource task. For each of
the ten target languages, a sample of 10,000 words
was used. Teams participating in this subtask were

4Languages were sorted into medium- vs. low-resource
subtasks according to data availability. For example, Ice-
landic was placed in the low-resource shared task simply be-
cause it has less than 10,000 pronunciations available.
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permitted to use UniMorph paradigms (Kirov et al.
2018) to lemmatize or to look up morphological
features, but were not permitted to use any other
external resources. The languages for this subtask
are listed and exemplified in Table 1.

Low-resource subtask The third subtask is de-
signed to simulate a low-resource setting and con-
sists of 1,000 words from ten languages. Teams
were were not permitted to use any external re-
sources for this subtask. The languages for this
subtask are shown in Table 2.

4.2 Data preparation
The procedures for sampling and splitting the data
are similar to those used in the previous year’s
shared task; see Gorman et al. 2020, §3. For
each of the three subtasks, the data for each lan-
guage are first randomly downsampled according
to their frequencies in the Wortschatz (Goldhahn
et al. 2012) norms. Words containing less than
twoUnicode characters or less than two phone seg-
ments are excluded, as are words with multiple
pronunciations. The resulting data are randomly
split into 80% training data, 10% development
data, and 10% test data. As in the previous year’s
shared task, these splits are constrained so that in-
flectional variants of any given lemma—according
to the UniMorph (Kirov et al. 2018) paradigms—
can occur in at most one of the three shards. Train-
ing and development data was made available at
the start of the task. The test words were also
made available at the start of the task; test pro-
nunciations were withheld until the end of the task.
Some additional processing is required for certain
languages, as described below.

English The Wiktionary American English pro-
nunciations exhibit a large number of inconsisten-
cies. These pronunciations were validated by au-
tomatically comparing them with entries in the
CALLHOME American English Lexicon (Kings-
bury et al. 1997), which provides broad ARPAbet
transcriptions of Mainstream American English.
Furthermore, a script was used to standardize use
of vowel length and enforce consistent use of tie
bars with affricates (e.g., /tʃ/→ /t͡ ʃ/). However, we
note that Gautam et al. (2021:§2.1) report several
residual quality issues with this data.

Bulgarian Bulgarian Wiktionary transcriptions
make inconsistent use of tie bars on affricates; for

example, ц is transcribed as both /ts, t͡ s/. Further-
more, the broad transcriptions sometimes contain
allophones of the consonants /t, d, l/ (Ternes and
Vladimirova-Buhtz 1990); e.g., л is transcribed as
both /l, ɫ/. A script was used to enforce a consistent
broad transcription.

Maltese In the Latin-script Maltese data, Wik-
tionary has multiple transcriptions of digraph
għ, which in the contemporary language indi-
cates lengthening of an adjacent vowel, except
word-finally where it is read as [ħ] (Hoberman
2007:278f.). Rather than excluding multiple pro-
nunciations, a script was used to eliminate pronun-
ciations which contain archaic readings of this di-
graph, e.g., as pharyngealization or as [ɣ].

Welsh WikiPron’s transcriptions of the South-
ern dialect of Welsh include the effects of vari-
able processes of monophthongization and dele-
tion (Hannahs 2013:18–25). Once again, rather
than excluding multiple pronunciations, a script
was used to select the “longer” pronunciation—
naturally, the pronunciation without variable
monophthongization or deletion—ofWelsh words
with multiple pronunciations.

5 Evaluation
The primary metric for this task was word error
rate (WER), the percentage of words for which the
hypothesized transcription sequence is not iden-
tical to the gold reference transcription. As the
medium- and low-resource subtasks involve multi-
ple languages, macro-averagedWERwas used for
system ranking. Participants were provided with
two evaluation scripts: one which computes WER
for a single language, and one which also com-
putes macro-averaged WER across two or more
languages. The 2020 shared task also reported an-
other metric, phone error rate (PER), but this was
found to be highly correlated with WER and there-
fore has been omitted here.

6 Baseline
The 2020 shared task included three baselines: a
WFST-based pair n-gram model, a bidirectional
LSTM encoder-decoder network, and a trans-
former. All models were tuned to minimize per-
language development-set WER using a limited-
budget grid search. Best results overall were ob-
tained by the bidirectional LSTM. Despite the
extensive GPU resources required to execute a
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Armenian (Eastern) arm_e համադրություն h ɑ m ɑ d ә ɾ u tʰ j u n
Bulgarian bul обоснованият o̝ b o̝ s n o v a n i j ә t̪
Dutch dut konijn k oː n ɛ i̯ n
French fre joindre ʒ w ɛ̃ d ʁ̃
Georgian geo მოუქნელად m ɔ u kʰ n ɛ l ɑ d
Serbo-Croatian (Latin) hbs_latn opadati o p ǎː d a t i
Hungarian hun lobog l o b o ɡ
Japanese (Hiragana) jpn_hira ぜんたいしゅぎ d͡z ẽ̞ n t a̠ i ɕ ɨᵝ ɡʲ i
Korean kor 쇠가마우지 sʰ w e̞ ɡ a̠ m a̠ u d͡ʑ i
Vietnamese (Hanoi) vie_hanoi ngừng bắn ŋ ɨ ŋ ˨˩ ʔ ɓ a n ˧˦

Table 1: The ten languages in the medium-resource subtask with language codes and example training data pairs.

Adyghe ady кӏэшӏыхьан t͡ ʃʼ a ʃʼ ә ħ aː n
Greek gre λέγεται l e ʝ e t e
Icelandic ice maður m aː ð ʏ r
Italian ita marito m a r i t o
Khmer khm ្របហារ p r ɑ h aː
Latvian lav mīksts m îː k s t s
Maltese (Latin) mlt_latn minna m ɪ n n a
Romanian rum ierburi j e r b u rʲ
Slovenian slv oprostite ɔ p r ɔ s t íː t ɛ
Welsh (Southwest) wel_sw gorff ɡ ɔ r f

Table 2: The ten languages in the low-resource subtask with language codes and example training data pairs.

per-language grid search, the best baseline was
handily outperformed by nearly all submissions.
This led us to seek a simpler, stronger, and
less computationally-demanding baseline for this
year’s shared task.
The baseline for the 2021 shared task is a neu-

ral transducer system using an imitation learn-
ing paradigm (Makarov and Clematide 2018). A
variant of this system (Makarov and Clematide
2020) was the second-best system in the 2020
shared task.5 Alignments are computed using
ten iterations of expectation maximization, and
the imitation learning policy is trained for up to
sixty epochs (with a patience of twelve) using the
Adadelta optimizer. A beam of size of four is
used for prediction. Final predictions are produced
by a majority-vote ten-component ensemble. In-
ternal processing is performed using the decom-
posedUnicode normalization form (NFD), but pre-

5The baseline was implemented using the DyNet neural
network toolkit (Neubig et al. 2017). In contrast to the previ-
ous year’s baseline, the imitation learning system does not re-
quire a GPU for efficient training; it runs effectively on CPU
and can exploit multiple CPU cores if present. Training, en-
sembling, and evaluation for all three subtasks took roughly
72 hours of wall-clock time on a commodity desktop PC.

dictions are converted back to the composed form
(NFC). An implementation of the baselinewas pro-
vided during the task and participating teams were
encouraged to adapt it for their submissions.

7 Submissions

Below we provide brief descriptions of sub-
missions to the shared task; more detailed
descriptions—as well as various exploratory anal-
yses and post-submission experiments—can be
found in the system papers later in this volume.

AZ Hammond (2021) produced a single submis-
sion to the low-resource subtask. The model is in-
spired by the previous year’s bidirectional LSTM
baseline but also employs several data augmenta-
tion strategies. First, much of the development
data is used for training rather than for validation.
Secondly, new training examples are generated us-
ing substrings of other training examples. Finally,
the AZ model is trained simultaneously on all lan-
guages, a method used in some of the previous
year’s shared task submissions (e.g., Peters and
Martins 2020, Vesik et al. 2020).
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CLUZH Clematide and Makarov (2021) pro-
duced four submissions to the medium-resource
subtask and three to the low-resource subtask. All
seven submissions are variations on the imitation
learning baseline model (section 6). They ex-
periment with processing individual IPA Unicode
characters instead of entire IPA “segments” (e.g.,
CLUZH-1, CLUZH-5, and CLUZH-6), and larger
ensembles (e.g., CLUZH-3). They also experi-
ment with input dropout, mogrifier LSTMs, and
adaptive batch sizes, among other features.

Dialpad Gautam et al. (2021) produced three
systems to the high-resource subtask. The
Dialpad-1 submission is a large ensemble of seven
different sequence models. Dialpad-2 is a smaller
ensemble of three models. Dialpad-3 is a single
transformer model implemented as part of CMU
Sphinx. Gautam et al. also experiment with sub-
word modeling techniques.

UBC Lo and Nicolai (2021) submitted two sys-
tems for the low-resource subtask, both variations
on the baseline model. The UBC-1 submission hy-
pothesizes that, as previously reported by van Esch
et al. (2016), inserting explicit syllable boundaries
into the phone sequences enhances grapheme-to-
phoneme performance. They generate syllable
boundaries using an automated onset maximiza-
tion heuristic. The UBC-2 submission takes a dif-
ferent approach: it assigns additional language-
specific penalties for mis-predicted vowels and di-
acritic characters such as the length mark /ː/.

8 Results
Multiple submissions to the high- and low-
resource subtasks outperformed the baseline; how-
ever, no submission to the medium-resource sub-
task exceeded the baseline. The best results for
each language are shown in Table 3.

8.1 Subtasks
High-resource subtask The Dialpad team sub-
mitted three systems for the high-resource subtask,
all of which outperformed the baseline. Results for
this subtask are shown in Table 4. The best sub-
mission overall, Dialpad-1, a seven-component
ensemble, achieved an impressive 4.5% absolute
(11% relative) reduction inWER over the baseline.

Medium-resource subtask The CLUZH team
submitted four systems for the medium-resource
subtask. All of of these systems are variants of the

baseline model. The results are shown in Table 5;
note that the individual language results are ex-
pressed as three-digit percentages since there are
1,000 test examples each. While several of the
CLUZH systems outperform the baseline on in-
dividual languages, including Armenian, French,
Hungarian, Japanese, Korean, and Vietnamese,
the baseline achieves the best macro-accuracy.

Low-resource subtask Three teams—AZ,
CLUZH, and UBC—submitted a total of six
systems to the low-resource subtask. Results for
this subtask are shown in Table 6; note that the re-
sults are expressed as two-digit percentages since
there are 100 test examples for each language.
Three submissions outperformed the baseline.
The best-performing submission was UBC-2, an
adaptation of the baseline which assigns higher
penalties for mis-predicted vowels and diacritic
characters. It achieved a 1.0% absolute (4%
relative) reduction in WER over the baseline.

8.2 Error analysis
Error analysis can help identify strengths and
weaknesses of existing models, suggesting future
improvements and guiding the construction of
ensemble models. Prior experience using gold
crowd-sourced data extracted from Wiktionary
suggests that a non-trivial portion of errors made
by top systems are due to errors in the gold data
itself. For example, Gorman et al. (2019) report
that a substantial portion of the prediction errors
made by the top two systems in the 2017 CoNLL–
SIGMORPHON Shared Task on Morphological
Reinflection (Cotterell et al. 2017) are due to tar-
get errors, i.e., errors in the gold data. Therefore
we conducted an automatic error analysis for four
target languages. It was hoped that this analysis
would also help identify (and quantify) target er-
rors in the test data.
Two forms of error analysis were employed

here. First, after Makarov and Clematide (2020),
the most frequent error types in each language are
shown in Table 7. From this table it is clear that
many errors can be attributed either to the ambigu-
ity of a language’s writing system. For example, in
both Serbo-Croatian and Slovenian the most com-
mon errors involve the confusion or omission of
suprasegmental information such as pitch accent
and vowel length, neither of which are represented
in the orthography. Likewise, in French and Ital-
ian the most frequent errors confuse vowel sounds
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Baseline WER Best submission(s) WER
eng_us 41.91 Dialpad-1 37.43
arm_e 7.0 CLUZH-7 6.4
bul 18.3 CLUZH-6 18.8
dut 14.7 CLUZH-7 14.7
fre 8.5 CLUZH-4, CLUZH-5, CLUHZ-6 7.5
geo 0.0 CLUZH-4, CLUHZ-5, CLUZH-6, CLUZH-7 0.0
hbs_latn 32.1 CLUZH-7 35.3
hun 1.8 CLUZH-6, CLUZH-7 1.0
jpn_hira 5.2 CLUZH-7 5.0
kor 16.3 CLUZH-4 16.2
vie_hanoi 2.5 CLUZH-5, CLUZH-7 2.0
ady 22 CLUZH-2, CLUZH-3, UBC-2 22
gre 21 CLUZH-1, CLUZH-3 20
ice 12 CLUZH-1, CLUZH-3 10
ita 19 UBC-1 20
khm 34 UBC-2 28
lav 55 CLUZH-2, CLUZH-3, UBC-2 49
mlt_latn 19 CLUZH-1 12
rum 10 UBC-2 10
slv 49 UBC-2 47
wel_sw 10 CLUZH-1 10

Table 3: Baseline WER, and the best submission(s) and their WER, for each language.

Baseline Dialpad-1 Dialpad-2 Dialpad-3
eng_us 41.94 37.43 41.72 41.58

Table 4: Results for the high-resource (US English) subtask.

represented by the same graphemes.
Many errors may also be attributable to prob-

lems with the target data. For example, the two
most frequent errors for English are predicting [ɪ]
instead of [ә], and predicting [ɑ] instead of [ɔ].
Impressionistically, the former is due in part to
inconsistent transcription of the -ed and -es suf-
fixes, whereas the latter may reflect inconsistent
transcription of the low back merger.
The second error analysis technique used here

is an adaptation of a quality assurance technique
proposed by Jansche (2014). For each language
targeted by the error analysis, a finite-state cov-
ering grammar is constructed by manually listing
all pairs of permissible grapheme-phonemappings
for that language. Let C be the set of all such g, p
pairs. Then, the covering grammar γ is the ra-
tional relation given by the closure over C, thus
γ = C∗. Covering grammars were constructed for

three medium-resource languages and four of the
low-resource languages. A fragment of the Bul-
garian covering grammar, showing readings of the
characters б, ф, and ю, is presented in Table 8.6
Let G be the graphemic form of a word and let

P and P̂ be the corresponding gold and hypothe-
sis pronunciations for that word. For error analysis
we are naturally interested in cases where P ̸= P̂ ,
i.e., those cases where the gold and hypothesis
pronunciations do not match, since these are ex-
actly the cases which contribute to word error rate.
Then, P = πo (G ◦ γ) is a finite-state lattice repre-
senting the set of all “possible” pronunciations of
G admitted by the covering grammar.
When P ̸= P̂ but P ∈ P—that is, when

6Error analysis software was implemented using the
Pynini finite-state toolkit (Gorman 2016). See Gorman and
Sproat 2021, ch. 3, for definitions of the various finite-state
operations used here.
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Baseline CLUZH-4 CLUZH-5 CLUZH-6 CLUZH-7
arm_e 7.0 7.1 6.6 6.6 6.4
bul 18.3 20.1 19.2 18.8 19.7
dut 14.7 15.0 14.9 15.6 14.7
fre 8.5 7.5 7.5 7.5 7.6
geo 0.0 0.0 0.0 0.0 0.0
hbs_latn 32.1 38.4 35.6 37.0 35.3
hun 1.8 1.5 1.2 1.0 1.0
jpn_hira 5.2 5.9 5.3 5.5 5.0
kor 16.3 16.2 16.9 17.2 16.3
vie_hanoi 2.5 2.3 2.0 2.1 2.0
Macro-average 10.6 11.4 10.9 11.1 10.8

Table 5: Results for the medium-resource subtask.

Baseline AZ CLUZH-1 CLUZH-2 CLUZH-3 UBC-1 UBC-2
ady 22 30 24 22 22 25 22
gre 21 23 20 22 20 22 22
ice 12 22 10 12 10 13 11
ita 19 25 23 24 21 20 22
khm 34 42 32 33 32 31 28
lav 55 53 53 49 49 58 49
mlt_latn 19 19 12 16 14 19 18
rum 10 13 13 13 12 14 10
slv 49 90 50 59 55 56 47
wel_sw 10 40 10 13 12 13 12
Macro-average 25.1 35.7 24.7 26.3 24.7 27.1 24.1

Table 6: Results for the low-resource subtask.

the gold pronunciation is one of the possible
pronunciations—we refer to such errors as model
deficiencies, since this condition suggests that the
system in question has failed to guess one of sev-
eral possible pronunciations of the current word.
In many cases this reflects genuine ambiguities in
the orthography itself. For example, in Italian, e
is used to write both the phonemes /e, ɛ/ and o is
similarly read as /o, ɔ/ (Rogers and d’Arcangeli
2004). There are few if any orthographic clues
to which mid-vowel phoneme is intended, and
all submissions incorrectly predicted that the o in
nome ‘name’ is read as [ɔ] rather than [o]. Simi-
lar issues arise in Icelandic and French. The pre-
ceding examples both represent global ambigui-
ties, but model deficiencies may also occur when
the system has failed to disambiguate a local am-
biguity. One example of this can be found in
French: the verbal third-person plural suffix -ent

is silent whereas the non-suffixal word-final ent
is normally read as [ɑ̃]. Morphological informa-
tion was not provided to the covering grammar,
but it could easily be exploited by grapheme-to-
phoneme models.
Another condition of interest is when P ̸= P̂

but P /∈ P. We refer to such errors as coverage de-
ficiencies, since they arise when the gold pronun-
ciation is not one permitted by the covering gram-
mar. While coverage deficiencies may result from
actual deficiencies in the covering grammar itself,
they more often arise when a word does not fol-
low the normal orthographic principles of its lan-
guage. For instance, Italian has borrowed the En-
glish loanword weekend [wikɛnd] ‘id.’ but has not
yet adapted it to Italian orthographic principles. Fi-
nally, coverage deficiencies may indicate target er-
rors, inconsistencies in the gold data itself. For ex-
ample, in the Italian data, the tie bars used to indi-
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eng_us ɪ ә 113 ɑ ɔ 112 _ ʊ• 96 _ ɪ• 85 ɪ i 76
arm_e _ ә• 16 ә• _ 10 tʰ d 6 d tʰ 6 j• _ 3
bul ɛ• d͡ 32 a ә 31 ә ɤ 30 _ ◌̝ 27 ә a 25
dut ә eː 10 _ ː 10 ә ɛ 9 eː ә 8 z s 8
fre a ɑ 6 _ •s 5 ɔ o 5 e ɛ•ʁ 3 _ •t 3
geo
hbs_latn _ ː 85 ː _ 76 _ ◌̌ 55 ◌̌ ◌̂ 53 ◌̌ _ 52
hun _ ː 6 h ɦ 3 ʃ s 2 ː _ 2
jpn_hira _ ◌̥ 20 _ ◌̊ 11 _ d͡ 4 ː •ɯ̟ᵝ 3 h ɰᵝ 3
kor _ ː 73 ː _ 28 ʌ̹ ɘː 23 ʰ ◌͈ 9 ɘː ʌ̹ 6
vie_hanoi _ w• 3 _ ˧ 3 _ w•ŋ͡m• 2 ◌͡ɕ •ɹ 2 _ ʔ• 2
ady ʼ _ 3 ː _ 3 ʃ ʂ 3 ə• _ 2 a ә 2
gre ɾ r 8 r ɾ 3 i ʝ 3 m• _ 2 ɣ ɡ 2
ice ː _ 2 ◌̥ _ 2 _ ː 2
ita o ɔ 6 e ɛ 5 j i 3 ◌͡ • 2 ɔ o 2
khm aː i•ә 3 _ ʰ 3 _ •ɑː 2 ĕ ɔ 2 ɑ a 2
lav ◌̄ ◌̂ 11 _ ◌̂ 10 ◌̀ _ 9 ◌̄ _ 7 _ ◌̀ 4
mlt_latn _ ː 5 _ ɪ• 2 ɐ a 2 b p 2 a ɐ 2
rum ◌͡ • 2
slv ◌́ ◌̀ 7 ◌̀ː _ 6 ◌́ː _ 6 _ ◌́ː 5 ɛ éː 4
wel_sw ɪ iː 3 ɪ i̯ 2 _ ɛ• 2

Table 7: The five most frequent error types, represented by the hypothesis string, gold string, and count, for each
language; • indicates whitespace and _ the empty string.

…
б b
б bj
б p
…
ф f
ф fj
…
ю ju
ю u
…

Table 8: Fragment of a covering grammar for Bul-
garian; the left column contains graphemes and corre-
sponding phones are given in the right column.

cate affricates are not always present, andmany ap-
parent errors are the result of gold pronunciations
which omit a tie bar.
WER and model deficiency rate (MDR) is

shown for select systems and three languages
from the medium-resource subtask in Table 9, and
Table 10 shows similar statistics for four low-
resource languages. Note that by construction, one

can obtain the coverage deficiency rate simply by
subtractingMDR fromWER. By comparingWER
and MDR one can see the overwhelming majority
of errors in these seven languages are model defi-
ciencies, most naturally arising from genuine am-
biguities in orthography rather than target errors
(i.e., data inconsistencies).
To facilitate ensemble construction and further

error analysis, we release all submissions’ test set
predictions to the research community.7

9 Discussion

We once again see an enormous difference in lan-
guage difficulty. One of the languages with the
highest amount of data, English, also has one of
the highest WERs. In contrast, the baseline and all
four submissions to the medium-resource subtask
achieve perfect performance on Georgian. This
is a substantial change from the previous year’s
shared task: with a sample roughly half the size of
this year’s task, the best system (Yu et al. 2020) ob-
tained aWER of 24.89 on Georgian (Gorman et al.

7https://drive.google.com/drive/folders/
1Fer7UfHBnt5k-WFHsVXQO8ac3BvREAyC

https://drive.google.com/drive/folders/1Fer7UfHBnt5k-WFHsVXQO8ac3BvREAyC
https://drive.google.com/drive/folders/1Fer7UfHBnt5k-WFHsVXQO8ac3BvREAyC
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Baseline CLUZH-5
WER MDR WER MDR

bul 18.3 17.6 19.2 19.0
fre 8.5 7.5 7.5 6.8
jpn_hira 5.2 4.4 5.3 4.5

Table 9: WER and model deficiency rate (MDR) for three languages from the medium-resource subtask.

Baseline AZ CLUZH-1 UBC-2
WER MDR WER MDR WER MDR WER MDR

ady 22 22 30 23 24 21 22 22
gre 21 18 23 19 20 17 22 21
ice 12 9 22 17 10 7 11 5
ita 19 15 25 19 23 16 22 19

Table 10: WER and model deficiency rate (MDR) for four languages from the low-resource subtask.

2020:47). This enormous improvement likely re-
flects quality assurance work on this language,8
but we did not anticipate reaching ceiling perfor-
mance. Insofar as the above quality assurance and
error analysis techniques prove effective and gen-
eralizable, we may soon be able to ask what makes
a language hard to pronounce (cf. Gorman et al.
2020:45f.).
As mentioned above, the data here are a mixture

of broad and narrow transcriptions. At first glance,
this might explain some of the variation in lan-
guage difficulty; for example, it is easy to imagine
that the additional details in narrow transcriptions
make them more difficult to predict. However, for
many languages, only one of the two levels of tran-
scription is available at scale, and other languages,
divergence between broad and narrow transcrip-
tions is impressionistically quite minor. However,
this impression ought to be quantified.
While we responded to community demand for

lower- and higher-resource subtasks, only one
team submitted to the high- and medium-resource
subtasks, respectively. It was surprising that none
of the medium-resource submissions were able to
consistently outperform the baseline model across
the ten target languages. Clearly, this year’s base-
line is much stronger than the previous year’s.
Participants in the high- and medium-resource

subtasks were permitted to make use of lemmas
and morphological tags from UniMorph as addi-
tional features. However, no team made use of

8https://github.com/CUNY-CL/wikipron/
issues/138

resources. Some prior work (e.g., Demberg et al.
2007) has found morphological tags highly useful,
and error analysis (§8.2) suggests this information
would make an impact in French.
There is a large performance gap between the

medium-resource and low-resource subtasks. For
instance, the baseline achieves a WER of 10.6 in
the medium-resource scenario and a WER of 25.1
in the low-resource scenario. It seems that cur-
rent models are unable to reach peak performance
with the 800 training examples provided in the low-
resource subtask. Further work is needed to de-
velop more efficient models and data augmenta-
tion strategies for low-resource scenarios. In our
opinion, this scenario is the most important one
for speech technology, since speech resources—
including pronunciation data—are scarce for the
vast majority of the world’s written languages.

10 Conclusions

The second iteration of the shared task on multi-
lingual grapheme-to-phoneme conversion features
many improvements on the previous year’s task,
most of all data quality. Four teams submitted
thirteen systems, achieving substantial reductions
in both absolute and relative error over the base-
line in two of three subtasks. We hope the code
and data, released under permissive licenses,9 will
be used to benchmark grapheme-to-phoneme con-
version and sequence-to-sequence modeling tech-
niques more generally.

9https://github.com/sigmorphon/2021-task1/

https://github.com/CUNY-CL/wikipron/issues/138
https://github.com/CUNY-CL/wikipron/issues/138
https://github.com/sigmorphon/2021-task1/
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