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Abstract
This paper describes our system for the
SIGMORPHON 2021 Shared Task on Un-
supervised Morphological Paradigm Cluster-
ing, which asks participants to group in-
flected forms together according their underly-
ing lemma without the aid of annotated train-
ing data. We employ agglomerative cluster-
ing to group word forms together using a met-
ric that combines an orthographic distance and
a semantic distance from word embeddings.
We experiment with two variations of an edit
distance-based model for quantifying ortho-
graphic distance, but, due to time constraints,
our systems do not outperform the baseline.
However, we also show that, with more time,
our results improve strongly.

1 Introduction

Most of the world’s languages express gram-
matical properties, such as tense or case, via
small changes to a word’s surface form. This
process is called morphological inflection, and
the canonical form of a word is known as
its lemma. A search of the WALS database
of linguistic typology shows that 80% of the
database’s languages mark verb tense and 65%
mark grammatical case through morphology
(Dryer and Haspelmath, 2013).

The English lemma do, for instance, has an
inflected form did that expresses past tense.
Though English verbs inflect to express tense,
there are generally only 4 to 5 surface varia-
tions for a given English lemma. In contrast, a
Russian verb can have up to 30 morphological
inflections per lemma, and other languages –
such as Basque – have hundreds of forms per
lemma, cf. Table 1.

Inflected forms are systematically related to
each other: in English, most noun plurals are

Basque Lemma: egin
begi begiate begidate
begie begiete begigu
begigute begik begin
beginate begio begiote
begit begite begitza
... ... ...
zenegizkigukeen zenegizkigukete zenegizkiguketen
zenegizkigun zenegizkigute zenegizkiguten
zenegizkio zenegizkioke zenegizkiokeen
zenegizkiokete zenegizkioketen zenegizkion
zenegizkiote zenegizkioten zenegizkit

Table 1: The paradigm of the Basque verb egin consists
of 674 inflected forms. In contrast, the paradigm of the
English verb do only consists of 5 inflected forms: do,
does, doing, did, and done.

obtained from the lemma by adding -s or -es to
the end of the noun, e.g., list/lists or kiss/kisses.
However, irregular plurals also exist, such as
ox/oxen or mouse/mice. Although irregular
forms are less frequent, they cause challenges
for the automatic generation or analysis of the
surface forms of English plural nouns.

In this work, we address the SIGMOR-
PHON 2021 Shared Task on Unsupervised
Morphological Paradigm Clustering (”Task 2”)
(Wiemerslage et al., 2021). The goal of this
shared task is to group words encountered in
naturally occurring text into morphological
paradigms. Unsupervised paradigm cluster-
ing can be helpful for state-of-the-art natural
language processing (NLP) systems, which
typically require large amounts of training
data. The ability to group words together into
paradigms is a useful first step for training a
system to induce full paradigms from a lim-
ited number of examples, a task known as (su-
pervised) morphological paradigm completion.
Building paradigms can help an NLP system
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to induce representations for rare words or to
generate words that have not been observed in
a given corpus. Lastly, unsupervised systems
have the advantage of not needing annotated
data, which can be costly in terms of time and
money, or, in the case of extinct or endangered
languages, entirely impossible.

Since 2016, the Association for Computa-
tional Linguistics’ Special Interest Group on
Computational Morphology and Phonology
(SIGMORPHON) has created shared tasks to
help spur the development of state-of-the-art
systems to explicitly handle morphological
processes in a language. These tasks have
involved morphological inflection (Cotterell
et al., 2016), lemmatization (McCarthy et al.,
2019), as well as other, related tasks. SIG-
MORPHON has increased the level of diffi-
culty of the shared tasks, largely along two
dimensions. The first dimension is the amount
of data available for models to learn, reflecting
the difficulties of analyzing low-resource lan-
guages. The second dimension is the amount
of structure provided in the input data. Initially,
SIGMORPHON shared tasks provided prede-
fined tables of lemmas, morphological tags,
and inflected forms. For the SIGMORPHON
2021 Shared Task on Unsupervised Morpho-
logical Paradigm Clustering, only raw text is
provided as input.

We propose a system that combines ortho-
graphic and semantic similarity measures to
cluster surface forms found in raw text. We
experiment with a character-level language
model for weighing substring differences be-
tween words. Due to time constraints we are
only able to cluster over a subset of each lan-
guages’ vocabulary. Despite of this, our sys-
tem’s performance is comparable to the base-
line.

2 Related Work

Unsupervised morphology has attracted a great
deal of interest historically, including a large
body of work focused on segmentation (Xu
et al., 2018; Creutz and Lagus, 2007; Poon
et al., 2009; Narasimhan et al., 2015). Re-
cently, the task of unsupervised morphologi-

cal paradigm completion has been proposed
(Kann et al., 2020; Jin et al., 2020; Erdmann
et al., 2020), wherein the goal is to induce full
paradigms from raw text corpora.

In this year’s SIGMORPHON shared task,
we are asked to only address part of the unsu-
pervised paradigm completion task: paradigm
clustering. Intuitively, the task of segmentation
is related to paradigm clustering, but the out-
puts are different. Goldsmith (2001) produces
morphological signatures, which are similar
to approximate paradigms, based on an algo-
rithm that uses minimum description length.
However, this type of algorithm relies heavily
on purely orthographic features of the vocab-
ulary. Schone and Jurafsky (2001) hypothe-
size that approximating semantic information
can help differentiate between hypothesized
morphemes, revealing those that are produc-
tive. They propose an algorithm that combines
orthography, semantics, and syntactic distri-
butions to induce morphological relationships.
They used semantic relatedness, quantified by
latent semantic analysis, combined with the
frequencies of affixes and syntactic context
(Schone and Jurafsky, 2000).

More recently, Soricut and Och (2015) have
used SkipGram word embeddings (Mikolov
et al., 2013) to find meaningful morphemes
based on analogies: regularities exhibited by
embedding spaces allow for inferences of cer-
tain types (e.g., king is to man what queen is
to woman). Hypothesizing that these regulari-
ties also hold for morphological relations, they
represent morphemes by vector differences be-
tween semantically similar forms, e.g., the vec-
tor for the suffix −→s may be represented by the
difference between

−−→
cats and

−→
cat.

Drawing upon these intuitions, we follow
Rosa and Zabokrtský (2019), which combines
semantic distance using fastText embeddings
(Bojanowski et al., 2017) with an orthographic
distance between word pairs. Words are then
clustered into paradigms using agglomerative
clustering.
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3 Task Description

Given a raw text corpus, the task is to
sort words into clusters that correspond to
paradigms. More formally, for the vocabulary
Σ of all types attested in the corpus and the
set of morphological paradigms Π for which
at least one word is in Σ, the goal is to out-
put clusters corresponding to πk

⋂
Σ for all

πk ∈ Π.

Data As the raw text data for this task, JHU
Bible corpora (McCarthy et al., 2020b) are pro-
vided by the organizers. This is the only data
that systems can use. The organizers further
provide development and test sets consisting of
gold clusters for a subset of words in the Bible
corpora. Each cluster is a list of words repre-
senting πk

⋂
Σ for πk ∈ Πdev or πk ∈ Πtest,

respectively, and Πdev,Πtest ( Π.
The partial morphological paradigms in

Πdev and Πtest are taken from the UniMorph
database (McCarthy et al., 2020a). Develop-
ment sets are only available for the develop-
ment languages, while test sets are only pro-
vided for the test languages. All test sets are
hidden from the participants until the conclu-
sion of the shared task.

Languages The development languages fea-
tured in the shared task are Maltese, Per-
sian, Portuguese, Russian, and Swedish. The
test languages are Basque, Bulgarian, English,
Finnish, German, Kannada, Navajo, Spanish,
and Turkish.

4 System Descriptions

We submit two systems based on Rosa and
Zabokrtský (2019). The first, referred to be-
low as JW-based clustering, follows their work
very closely. The second, LM-based cluster-
ing, contains the same main components, but
approximates orthographic distances with the
help of a language model.

4.1 JW-based Clustering

We describe the system of Rosa and
Zabokrtský (2019) in more detail here. This
system clusters over words whose distance is

computed as a combination of orthographic
and semantic distances.

Orthographic Distance The orthographic
distance of two words is computed as their
Jaro-Winkler (JW) edit distance (Winkler,
1990). JW distance differs from the more com-
mon Levenshtein distance (Levenshtein, 1966)
in that JW distance gives more importance to
the beginnings of strings than to their ends,
which is where characters belonging to the
stem are likely to be in suffixing languages.

The JW distance is averaged with the JW
distance of a simplified variant of the string.
The simplified variant is a string that has been
lower cased, transliterated to ASCII, and had
the non-initial vowels deleted. This is done to
soften the impact of characters that are likely to
correspond with affixes. Crucially, we believe
that this biases the system towards languages
that express inflection via suffixation.

Semantic Distance We represent words in
the corpus by fastText embeddings, similar to
Erdmann and Habash (2018), who cluster fast-
Text embeddings for the same task in various
Arabic dialects. We expect fastText embed-
dings to provide better representations than,
e.g., Word2Vec (Mikolov et al., 2013), due to
the limited size of the Bible corpora. Unfortu-
nately, using fastText may also inadvertently
result in higher similarity between words be-
longing to different lemmas that contain over-
lapping subwords corresponding to affixes.

Overall Distance We compute a pairwise
distance matrix for all words in the corpus.
The distance between two words w1 and w2 is
computed as:

d(w1, w2) = 1− δ(w1, w2) ·
cos(ŵ1, ŵ2) + 1

2
,

(1)
where ŵ1 and ŵ2 are the embeddings ofw1 and
w2, cos is the cosine distance, and δ is the JW
edit distance. The cosine distance is mapped
to [0, 1] to avoid negative distances.

Finally, agglomerative clustering is per-
formed by first assigning each word form to a
unique cluster. At each step, the two clusters
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with the lowest average distance are merged
together. The merging continues while the dis-
tance between clusters stays below a threshold.
We tune this hyperparameter on the develop-
ment set, and our final threshold is 0.3.

4.2 LM-based Clustering
The JW-based clustering described above re-
lies on heuristics to obtain a good measure of
orthographic similarity. These heuristics help
to quantify orthographic similarity between
two words by relying more on the shared char-
acters in the stem than in the affix: The plu-
ral past participles gravados and louvados in
Portuguese have longer substrings in common
than the substrings by which they differ. This
is due to the affix -ados, which indicates that
the two words express the same inflectional in-
formation, even though their lemmas are differ-
ent. Similarly, the Portuguese verbs abafa and
abafávamos differ in many characters, though
they belong to the same paradigm, as can be
observed by the shared stem abaf.

However, not all languages express inflec-
tion exclusively via suffixation, nor via con-
catenation. We thus experiment with remov-
ing the edit distance heuristics and, instead,
utilizing probabilities from a character-level
language model (LM) to distinguish between
stems and affixes. In doing so, we hope to
achieve better results for templatic languages,
such as Maltese. We hypothesize that the LM
will have a higher confidence for characters
that are part of an affix than for those that are
part of the stem. We then draw upon this hy-
pothesis and weigh edit operations between
two strings based on these confidences.

LM-weighted Edit Distance Similar to
the intuition behind Silfverberg and Hulden
(2018), we train a character-level LM on the
entire vocabulary for each Bible corpus. Un-
like their work, we do not have inflectional
tags for each word. Despite this, we hypothe-
size that the highly regular and frequent nature
of inflectional affixes will lead to higher likeli-
hoods for characters that occur in affixes than
for those in stems. We train a two-layer LSTM
(Hochreiter and Schmidhuber, 1997) with an

embedding size of 128 and a hidden layer size
of 128. We train the model until the training
loss stops decreasing, for up to 100 epochs,
using Adam (Kingma and Ba, 2014) with a
learning rate of 0.001 and a batch size of 16.

When calculating the edit distance between
two words, the insertion, deletion, or substitu-
tion costs are computed as a function of the
LM probabilities. We expect this to give more
weights to differences in the stem than to those
in other parts of the word. Each character is
then associated with a cost given by

cost(wi) = 1− p(wi)∑
j∈|w|

p(wj)
, (2)

where p(wi) is the probability of the ith char-
acter in word w as given by the LM. We then
compute the cost of an insertion or deletion
as the cost of the character being inserted or
deleted. The cost of a substitution is the aver-
age of the costs of the two involved characters.
The sum over these operations is the weighted
edit distance between two words, ε(w1, w2).
Finally, we compute pairwise distances using
Equation 1, replacing δ(w1, w2) with

ε(w1, w2)

max(|w1|, |w2|)
.

Forward vs. Backward LM We hypoth-
esize that the direction in which the LM is
trained affects the probabilities for affixes. In-
tuitively, an LM is likely to assign higher confi-
dence to characters at the beginning of a word
than at the end. Thus, an LM trained on data in
the forward direction (LM-F) should be more
likely to assign higher probabilities to charac-
ters at the beginning of a word, such as pre-
fixes, while a model trained on reversed words
(LM-B) should assign higher probabilities to
suffixes. In practice, LM-B outperforms LM-F
on all development languages, cf. Table 2. Be-
cause of that, we employ LM-B to weigh edit
operations for all test languages.1

1This might be caused by none of the development lan-
guages being prefixing. However, in order to make a more
informed choice, a method to automatically distinguish be-
tween prefixing and suffixing languages from raw text alone
would be necessary.
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Lang Baseline LMC-B LMC-F JWC
prec. rec. F1 prec. rec. f1 prec. rec. F1 prec. rec. F1

Maltese 0.250 0.348 0.291 0.465 0.229 0.307 0.411 0.202 0.272 0.489 0.241 0.323
Persian 0.265 0.348 0.300 0.321 0.307 0.314 0.494 0.197 0.282 0.579 0.231 0.330
Portuguese 0.218 0.794 0.341 0.771 0.248 0.376 0.494 0.159 0.241 0.742 0.239 0.362
Russian 0.234 0.807 0.363 0.802 0.282 0.417 0.726 0.255 0.378 0.792 0.278 0.412
Swedish 0.303 0.776 0.436 0.818 0.378 0.517 0.695 0.321 0.439 0.838 0.388 0.530
Average 0.254 0.615 0.346 0.635 0.289 0.386 0.482 0.186 0.268 0.688 0.275 0.391

Table 2: Precision, recall, and F1 for all development languages. LMC-R is the LM-clustering system for language
models trained from left-to-right (reverse). LMC-F are trained from left-to-right, and JWC is the JW-clustering
system. The highest F1 for each language is in bold.

Lang Baseline LMC JWC
prec. rec. F1 prec. rec. F1 prec. rec. F1

English 0.388 0.767 0.515 0.565 0.245 0.3420 0.663 0.288 0.402
Navajo 0.230 0.598 0.333 0.686 0.112 0.1928 0.657 0.108 0.185
Spanish 0.266 0.722 0.388 0.664 0.183 0.2869 0.699 0.193 0.302
Finnish 0.179 0.767 0.290 0.694 0.227 0.342 0.674 0.220 0.332
Bulgarian 0.265 0.730 0.390 0.745 0.312 0.440 0.717 0.300 0.423
Basque 0.186 0.254 0.215 0.471 0.254 0.330 0.353 0.191 0.247
Kannada 0.172 0.385 0.238 0.570 0.169 0.261 0.625 0.185 0.286
German 0.254 0.776 0.382 0.7626 0.310 0.441 0.787 0.319 0.454
Turkish 0.156 0.658 0.252 0.6574 0.212 0.320 0.641 0.206 0.312
Average 0.233 0.629 0.334 0.646 0.225 0.328 0.646 0.223 0.327

Table 3: Precision, recall, and F1 for all test languages. LMC is the LM-clustering system, JWC is the JW-
clustering system. The highest F1 for each language is in bold.

5 Results and Discussion

The official scores obtained by our systems as
well as the baseline are shown in Table 3.

Both of our systems perform minimally
worse than the baseline if we consider F1 av-
eraged over languages (0.334 vs. 0.328 and
0.327). However, we believe this to be largely
due to our submissions only generating clus-
ters for a subset of the full vocabularies: due to
time constraints, we only consider words that
appear at least 5 times in the corpus. No other
words are included in the predicted clusters.
The large gap between precision and recall re-
flects this constraint: our submissions have
a high average precision (0.646 for both sys-
tems), indicating that the limited set of words
we consider are being clustered more accu-
rately than the F1 scores would suggest. The
low recall scores (0.225 and 0.223) are likely
at least partially caused by the missing words
in our predictions.2

Conversely, the baseline system has a high
recall (0.629) and a low precision (0.233). This

2We confirm this hypothesis with additional experiments
after the shared task’s completion. Those results can be found
in the appendix.

is likely due to it simply clustering words with
shared substrings, such that a given word is
likely to appear in many predicted clusters.

Interestingly, both of our submissions have
the same average precision on the test set, de-
spite varying across languages. Notably, the
LM-based clustering system strongly outper-
forms the JW-based system on Basque with
respect to precision. However, the JW-based
system outperforms the LM-based one by a
large margin on English. One hypothesis for
the difference in results is that agglutinating in-
flection in Basque causes very long affixes,
which our LM-based system should down-
weigh in its measurement of orthographic simi-
larity. Basque is also not a strictly suffixing lan-
guage, which we expect the JW-based model to
be biased towards. On the other hand, English
has relatively little inflectional morphology,
and is strictly suffixing (in terms of inflection).
The assumptions behind the JW-based system
are more ideal for a language like English. The
JW system performs best on Maltese, which
suggests that the heuristics of that system are
sufficient for a templatic language, compared
to the LM-based system.
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6 Conclusion

We present two systems for the SIGMOR-
PHON 2021 Shared Task on Unsupervised
Morphological Paradigm Clustering. Both of
our systems perform slighly worse than the of-
ficial baseline. However, we also show that this
is due to our official submissions only making
predictions for a subset of the corpus’ vocab-
ulary, due to time constraints and that at least
one of our systems improves strongly if the
time constraints are removed.
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7 Appendix

Here we present new results which include
the entire data set for selected languages. We
see an improvement in F1 for each language.
This due to the increased recall scores from
the paradigms being more complete. Precision
scores decrease across the board. This may
be due to the languages being sensitive to the
threshold value.

Lang Subset Full
prec. rec. F1 prec. rec. F1

Basque 0.471 0.254 0.330 0.443 0.429 0.435
Bulgarian 0.745 0.312 0.440 0.638 0.631 0.634
English 0.565 0.245 0.342 0.430 0.425 0.428
German 0.763 0.310 0.441 0.703 0.699 0.701
Maltese 0.465 0.229 0.307 0.402 0.400 0.401
Navajo 0.686 0.112 0.193 0.449 0.430 0.435
Spanish 0.664 0.183 0.287 0.579 0.560 0.569
Swedish 0.818 0.378 0.517 0.783 0.737 0.759
Average 0.659 0.252 0.357 0.553 0.539 0.545

Table 4: Post-shared task results using the full data set
for selected languages. These results use LM-B with a
threshold value of 0.3.


