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Abstract
Reducing communication breakdown is criti-
cal to success in interactive NLP applications,
such as dialogue systems. To this end, we pro-
pose a confusion-mitigation framework for the
detection and remediation of communication
breakdown. In this work, as a first step towards
implementing this framework, we focus on de-
tecting phonemic sources of confusion. As a
proof-of-concept, we evaluate two neural ar-
chitectures in predicting the probability that a
listener will misunderstand phonemes in an ut-
terance. We show that both neural models out-
perform a weighted n-gram baseline, showing
early promise for the broader framework.

1 Introduction

Ensuring that interactive NLP applications, such
as dialogue systems, communicate clearly and ef-
fectively is critical to their long-term success and
viability, especially in high-stakes domains, such as
healthcare. Successful systems should thus seek to
reduce communication breakdown. One aspect of
successful communication is the degree to which
each party understands the other. For example,
properly diagnosing a patient may necessitate ask-
ing logically complex questions, but these ques-
tions should be phrased as clearly as possible to
promote understanding and mitigate confusion.

To reduce confusion-related communication
breakdown, we propose that generative NLP sys-
tems integrate a novel confusion-mitigation frame-
work into their natural language generation (NLG)
processes. In brief, this framework ensures that
such systems avoid transmitting utterances with
high predicted probabilities of confusion. In the
simplest and most decoupled formulation, an exist-
ing NLG component simply produces alternatives
to any rejected utterances without additional guid-
ing information. In more advanced and coupled
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Figure 1: A simplified variant of our proposed
confusion-mitigation framework, which enables gener-
ative NLP systems to detect and remediate confusion-
related communication breakdown. The confusion pre-
diction component predicts the confusion probability
of candidate utterances, which are rejected if this prob-
ability is above a decision threshold, φ.

formulations, the NLG and confusion prediction
components can be closely integrated to better de-
termine precisely how to avoid confusion. This
process can also be conditioned on models of the
current listener or task to achieve personalized or
context-dependent results. Figure 1 shows the sim-
plest variant of the framework.

As a first step towards implementing this frame-
work, we work towards developing its central con-
fusion prediction component, which predicts the
confusion probability of an utterance. In this work,
we specifically target phonemic confusion, that is,
the misidentification of heard phonemes by a lis-
tener. We consider two potential neural architec-
tures for this purpose: a fixed-context, feed-forward
network and a residual, bidirectional LSTM net-
work. We train these models using a novel proxy
data set derived from audiobook recordings, and
compare their performance to that of a weighted
n-gram baseline.
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2 Background and Related Work

Prior work focused on identifying confusion in nat-
ural language, rather than proactively altering it
to help reduce communication breakdown, as our
framework proposes. For example, Batliner et al.
(2003) showed that certain features of recorded
speech (e.g., repetition, hyperarticulation, strong
emphasis) can be used to identify communica-
tion breakdown. The authors relied primarily on
prosodic properties of recorded phrases, rather than
the underlying phonemes, words, or semantics, for
identifying communication breakdown. On the
other hand, conversational repair is a turn-level
process in which conversational partners first iden-
tify and then remediate communication breakdown
as part of a trouble-source repair (TSR) sequence
(Sacks et al., 1974). Using this approach, Orange
et al. (1996) identified differences in TSR patterns
amongst people with no, early-stage, and middle-
stage Alzheimer’s, highlighting the usefulness of
communication breakdown detection. However,
such work does not directly address the issue of
proactive confusion mitigation and remediation,
which the more advanced formulation of our frame-
work aims to address through listener and task con-
ditioning. Our focus is on the simpler formulation
in this preliminary work.

Rothwell (2010) identified four types of noise
that may cause confusion: physical noise (e.g., a
loud highway), physiological noise (e.g., hearing
impairment), psychological noise (e.g., attentive-
ness of listener), and semantic noise (e.g., word
choice). We postulate that mitigating confusion
resulting from each type of noise may be possi-
ble, at least to some extent, given sufficient context
to make an informed compensatory decision. For
example, given a particularly physically noisy envi-
ronment, speaking loudly would seem appropriate.
Unfortunately, such contextual information is often
lacking from existing data sets. In particular, the
physiological and psychological states of listeners
is rarely recorded. Even when such information is
recorded (e.g., in Alzheimer’s speech studies Or-
ange et al., 1996), the information is very coarse
(e.g, broad Alzheimer’s categories such as none,
early-stage, and middle-stage).

We leave these non-trivial data gathering chal-
lenges as future work, instead focusing on phone-
mic confusion, which is significantly easier to op-
erationalize. In practice, confusion at the phoneme-
level may arise from any category of Rothwell

noise. It may also arise from the natural similarities
between phonemes (discussed next). While many
of these will not be represented in the text-based
phonemic transcriptions data set used in this pre-
liminary work, our approach can be extended to
include them.

Researchers in speech processing have studied
the prediction of phonemic confusion but, to our
knowledge, this work has not been adapted to ut-
terance generation. Instead, tasks such as prevent-
ing of sound-alike medication errors (i.e., naming
medications so that two medications do not sound
identical) are common (Lambert, 1997). Zgank
and Kacic (2012) showed that the potential confus-
ability of a word can be estimated by calculating
the Levenshtein distance (Levenshtein, 1966) of its
phonemic transcription to that of all others in the
vocabulary. We take inspiration from Zgank and
Kacic (2012) and employ a phoneme-level Leven-
shtein distance approach in this work.

In the basic definition of the Levenshtein dis-
tance, all errors are equally weighted. In practice,
however, words that share many similar or identical
phonemes are more likely to be confused for one
another. Given this, Sabourin and Fabiani (2000)
developed a weighted phoneme-level Levenshtein
distance, where weights are determined by a human
expert or a learned model, such as a hidden Markov
model. Unfortunately, while these weights are
meant to represent phonemic similarity, selecting
an appropriate distance metric in phoneme space is
non-trivial. The classical results of Miller (1954)
and Miller and Nicely (1955) group phonemes ex-
perimentally based on the noise level at which they
become indiscernible. The authors identify voic-
ing, nasality, affrication, duration, and place of
articulation as sub-phoneme features that predict a
phoneme’s sensitivity to distortion, and therefore
measure its proximity to others. Unfortunately,
later work showed that these controlled conditions
do not map cleanly to the real world (Batliner et al.,
2003). In addition, Wickelgren (1965) found al-
ternative phonemic distance features that could be
adapted into a distance metric.

While this prior research sought to directly de-
fine a distance metric between phonemes based
on sub-phoneme features, since no method has
emerged as clearly superior, researchers now favour
direct, empirical measures of confusability (Bailey
and Hahn, 2005). Likewise, our work assumes that
these classical feature-engineering approaches to
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predicting phoneme confusability can be improved
upon with neural approaches, just as automatic
speech recognition (ASR) systems have been im-
proved through the use of similar methods (e.g.,
Seide et al., 2011; Zeyer et al., 2019; Kumar et al.,
2020). In addition, these classical approaches do
not account for context (i.e., other phonemes sur-
rounding the phoneme of interest), whereas our
approach conditions on such context to refine the
confusion estimate.

3 Data

3.1 Data Gathering Process

To predict the phonemic confusability of utterances,
we would ideally use a data set in which each utter-
ance is annotated with speaker phonemic transcrip-
tion (the reference transcription), as well as listener
perceived phonemic transcription (the hypothesis
transcription). We could then compare these tran-
scriptions to identify phonemic confusion.

To the best of our knowledge, a data set of this
type does not exist. The English Consistent Con-
fusion Corpus contains a collection of individual
words spoken against a noisy background, with hu-
man listener transcriptions (Marxer et al., 2016).
This is similar to our ideal data set, however the
words are spoken in isolation, and thus without any
utterance context. This same issue arises in the
Diagnostic Rhyme Test and its derivative data sets
(Voiers et al., 1975; Greenspan et al., 1998). Other
corpora, such as the BioScope Corpus (Vincze
et al., 2008) and the AMI Corpus (Carletta et al.,
2005), contain annotations of dialogue acts, which
represent the intention of the speaker in producing
each utterance (e.g., asking a question is labeled
with the dialogue act elicit information).
However, dialogue acts relating to confusion only
appear when a listener explicitly requests clarifica-
tion from the speaker. This does not provide fine-
grained information regarding which phonemes
caused the confusion, nor does it capture any in-
stances of confusion in which the listener does not
explicitly vocalize their confusion.

We thus create a new data set for this work (Fig-
ure 2). The Parallel Audiobook Corpus contains
121 hours of recorded speech data across 59 speak-
ers (Ribeiro, 2018). We use four of its audiobooks:
Adventures of Huckleberry Finn, Emma, Treasure
Island, and The Adventures of Sherlock Holmes.
Crucially, the audio recordings in this corpus are
aligned with the text being read, which allows us to

Figure 2: We create a new data set with parallel ref-
erence and hypothesis transcriptions from audiobook
data with parallel text and audio recordings. The text
simply becomes the reference transcriptions. A tran-
scriber converts the audio recordings into hypothesis
transcriptions. In this preliminary work, we use an
ASR system as a proxy for human transcribers.

create aligned reference and hypothesis transcrip-
tions. For each text-audio pair, the text simply
becomes the reference transcriptions, while a tran-
scriber converts the audio into hypothesis transcrip-
tions. Given the preliminary nature of this work,
we create a proxy data set in which we use Google
Cloud’s publicly-available ASR system as a proxy
for human transcribers (Cloud, 2019). We then
process these transcriptions to identify phonemic
confusion events (as described in Section 3.2). The
final data set contains 84,253 parallel transcriptions.
We split these into 63,189 training, 10,532 valida-
tion, and 10,532 test transcriptions (a 75%-12.5%-
12.5% split). The average reference and hypothesis
transcription lengths are 65.2 and 62.3 phonemes,
respectively. The transcription error rate (i.e., the
proportion of phonemes that are mis-transcribed)
is only 8%, so there is significant imbalance in the
data set.

For the purposes of this preliminary work, the
Google Cloud ASR system (Cloud, 2019) is an
acceptable proxy for human transcription ability
under the reasonable assumption that, for any par-
ticular transcriber, the distribution of error rates
across different phoneme sequences is nonuniform
(i.e., within-transcriber variation is present). This
assumption holds in all practical cases, and is rea-
sonable since the confusion-mitigation framework
we propose can be conditioned on different tran-
scribers to control for inter-transcriber variation as
future work.

3.2 Transcription Error Labeling

We post-process our aligned reference-hypothesis
transcription data set in two steps. First, each tran-
scription must be converted from the word-level
to the phoneme-level. For this, we use the CMU
Pronouncing Dictionary (Weide, 1998), which is
based on the ARPAbet symbol set. For any words
with multiple phonemic conversions, we simply
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Figure 3: Illustration of our transcription error labeling
process (using letters instead of phonemes for readabil-
ity). Given aligned reference (x) and hypothesis (y)
vectors, we use the Levenshtein algorithm to ensure
they have the same length. Because y is not available
at test time, we then “collapse” consecutive insertion
tokens to force the vectors to have the original length
of x. Finally, we replace ỹ with the binary vector d̃,
which has 1’s wherever x and ỹ don’t match.

default to the first conversion returned by the API.
Second, we label each resulting phoneme in each

reference transcription as either correctly or incor-
rectly transcribed. This is nontrivial, because the
number of phonemes in the reference and hypothe-
sis transcriptions are rarely equal, and thus require
phoneme-level alignment. For this purpose, we
use a variant of the phoneme-level Levenshtein dis-
tance that returns the actual alignment, rather than
the final distance score (Figure 3).

Formally, let x ∈ Ka be a vector of reference
phonemes and y ∈ Kb be a vector of hypothesis
phonemes from the data set. K refers to the set
{1, 2, 3, . . . , k,<INS>,<DEL>,<SOS>,<EOS>},
where k is the number of unique phonemes in
the language being considered (e.g., in English,
k ≈ 40 depending on the dialect). In general,
a 6= b, but we can manipulate the vectors by
incorporating insertion, deletion, and substitution
tokens (as done in the Levenshtein distance
algorithm). In general, this yields two vectors
of the same length, x̃, ỹ ∈ Kc, c = max(a, b).
While this manipulation can be performed at
training time because y and b are known, such
information is unavailable at test time. Therefore,
we modify the alignment at training time to ensure
x̃ ≡ x and c ≡ a. To achieve this, we “collapse”
consecutive insertion tokens into a single instance
of the insertion token, which ensures that |ỹ| = a.

Additionally, we assume that each hypothesis
phoneme, ỹi ∈ ỹ, is conditionally independent

of the others. That is, P (ỹi = xi |x, ỹ 6=i) =
P (ỹi = xi |x).1 We hypothesize that this assump-
tion, similar to the conditional independence as-
sumption of Naı̈ve Bayes (Zhang, 2004), will still
yield directionally-correct results, while drastically
increasing the tractability of the computation.

This assumption also allows us to simplify the
output space of the problem. Specifically, since
we only care to predict P (ỹ 6= x), with this as-
sumption, we now only need to consider, for each i,
whether ỹi = xi, rather than dealing with the much
harder problem of predicting the exact value of ỹi.
To achieve this, we use an element-wise Kronecker
delta function to replace ỹ with a binary vector, d̃,
such that d̃i ← ỹi 6= xi. Thus, the binary vector
d̃ records the position of each transcription error,
that is, the position of each phoneme in x that was
confused.

With the x’s as inputs and the d̃’s as ground truth
labels, we can train models to predict P (d̃i |x) for
each i. As a post-processing step, we can then
combine these individual probabilities to estimate
the utterance-level probability of phonemic confu-
sion, P (ỹ 6= x), which is the output of the central
confusion prediction component in Figure 1.

This formulation is general in the sense that any
xi can affect the predicted probability of any d̃i.
In practice, however, and especially for long utter-
ances, this is overly conservative, as only nearby
phonemes are likely to have a significant effect. In
Section 4, we describe any additional conditional
independence assumptions that each architecture
makes to further simplify its probability estimate.

4 Model Architectures and Baseline

With recent advances, various neural architectures
have been applied to NLP tasks. Early work in-
cludes n-gram-based, fully-connected architectures
for language modeling tasks (Bengio et al., 2003;
Mikolov et al., 2013). Recurrent neural network
(RNN) architectures were then shown to be suc-
cessful for applications such as language model-
ing, speech recognition, and phoneme recognition
(Graves and Schmidhuber, 2005; Mikolov et al.,
2011). RNN architectures such as the LSTM
(Hochreiter and Schmidhuber, 1997) and GRU
(Chung et al., 2015) variants had been successful
in many NLP applications, such as machine lan-
guage translation and phoneme classification (Sun-
dermeyer et al., 2012; Graves et al., 2013; Graves

1ỹ 6=i is every element in ỹ except the one at position i.
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and Schmidhuber, 2005). Recently, the transformer
architecture (Vaswani et al., 2017), which uses at-
tention instead of recurrence to form dependencies
between inputs, has shown state-of-the-art results
in many areas of NLP, including syllable-based
tasks (e.g., Zhou et al., 2018).

In this work, we propose a fixed-context-window
architecture and a residual bi-LSTM architec-
ture for the central component of our confusion-
mitigation framework. While similar architectures
have already been applied to phoneme-based appli-
cations, such as phoneme recognition and classifi-
cation (Graves and Schmidhuber, 2005; Weninger
et al., 2015; Graves et al., 2013; Li et al., 2017),
to our knowledge, our study is the first to apply
these architectures to identify phonemes related to
confusion for listeners. In our opinion, these archi-
tectures strike an acceptable balance between com-
pute and capability for this current work, unlike the
more advanced transformer architectures, which
require significantly more resources to train.2

Since the data set is imbalanced (see Sec-
tion 3.1), without sample weighting, early experi-
ments showed that both architectures never identi-
fied any phonemes as likely to be mis-transcribed
(i.e., high specificity, low sensitivity). Accordingly,
since the imbalance ratio is approximately 1:10,
transcription errors are given 10-times more weight
than properly-transcribed phonemes in our binary
cross-entropy loss function.

4.1 Fixed-Context Network

The fixed-context network takes as input the current
phoneme, xi, and the 4 phonemes before and after
it as a fixed window of context (Figure 4a). This
results in the additional conditional independence
assumption that P (d̃i |x) = P (d̃i |xi−4:i+4). That
is, only phonemes within the fixed context window
of size 4 can affect the predicted probability of d̃i.

These 9 phonemes are first embedded in a 15-
dimensional embedding space. The embedding
layer is followed by a sequence of seven fully-
connected hidden layers with 512, 256, 256, 128,
128, 64, and 64 neurons respectively. Each layer
is separated by Rectified Linear Unit (ReLU) non-
linearities (Nair and Hinton, 2010; He et al., 2016).
Finally, an output with a sigmoid activation func-
tion predicts the probability of a transcription er-
ror. We train with minibatches of size 32, using

2Link to code: https://github.com/francois-rd/phonemic-
confusion

the Adam optimizer with parameters α = 0.001,
β1 = 0.9, and β2 = 0.999 (Kingma and Ba, 2014)
to optimize a 1:10 weighted binary cross-entropy
loss function. We explored alternative parameter
settings, and in particular a larger number of neu-
rons, but found this architecture to be the most
stable and highest performing of all variants tested,
given the nature and relatively small size of the
data set.

4.2 LSTM Network
The LSTM network receives the entire reference
transcription, x, as input and predicts the entire bi-
narized hypothesis transcription, d̃, as output (Fig-
ure 4b). Since the LSTM is bidirectional, we do
not introduce any additional conditional indepen-
dence assumptions. Each input phoneme is passed
through an embedding layer of dimension 42 (equal
to |K|) followed by a bidirectional LSTM layer and
two residual linear blocks with ReLU activations
(He et al., 2016). An output residual linear block
with a sigmoid activation predicts the probability
of a transcription error. These skip connections
are added since residual layers tend to outperform
simpler alternatives (He et al., 2016). Passing the
embedded input via skip connections ensures that
the original input is accessible at all depths of the
network, and also helps mitigate against any van-
ishing gradients that may arise in the LSTM.

We use the following output dimensions for each
layer: 50 for LSTM hidden and cell states, 40 for
the first residual linear block, and 10 for the second.
We train with minibatches of size 256, using the
Adam optimizer with parameters α = 0.00005,
β1 = 0.9, and β2 = 0.999 (Kingma and Ba, 2014)
to optimize a 1:10 weighted binary cross-entropy
loss function.

4.3 Weighted n-Gram Baseline
We compare our neural models to a weighted n-
gram baseline model. That is, d̃i depends only
on the n previous phonemes in x (an order-n
Markov assumption). Formally, we make the con-
ditional independence assumption that P (d̃i |x) =
p(d̃i |xi−n+1:i). Extending this baseline model to
include future phonemes would violate the order-n
Markov assumption that is standard in n-gram ap-
proaches. In this preliminary work, we opt to keep
the baseline as standard as possible.

A weighted n-gram model is computed using an
algorithm similar to the standard maximum like-
lihood estimation (MLE) n-gram counting algo-
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(a) The fixed-context network uses a fixed window of context
of size 4. These 9 phonemes are embedded using a shared
embedding layer, concatenated, and then passed through 7
linear layers with ReLU activations, followed by an output
layer with a sigmoid activation.

(b) Unrolled architecture of the LSTM network. The architec-
ture consists of one bidirectional LSTM layer, two residual
linear blocks with ReLU activations, and an output residual
linear block with a sigmoid activation. Additional skip con-
nections are added throughout.

Figure 4: Architectural variants of the confusion prediction component of our confusion-mitigation framework.

rithm, but with the introduction of a weighting
scheme to deal with the class imbalance issue. The
weighting is necessary for a fair comparison to the
weighted loss function used in the neural network
models. This approaches generalizes the standard
MLE n-gram counting algorithm, which implicitly
uses a weight of 1.

Formally, let W > 0 be the selected weight, and
define ci ≡ xi−n+1:i to simplify the notation. Also,
let C(d̃i | ci) be the count of all incorrect phoneme
transcriptions in the context ci in the entire data set,
and similarly, C(1 − d̃i | ci) for correct transcrip-
tions.3 The weighted n-gram is then computed as
follows:

P (d̃i | ci) =
W × C(d̃i | ci)

C(1− d̃i | ci) +W × C(d̃i | ci)

Empirically, we find that a weighted 3-gram
model works best; larger contexts are too sparse
given the size of the data set and smaller contexts
lack expressive capacity. We do not use any n-gram
smoothing methods. Instead, any missing contexts
encountered at test time are simply marked as in-
correct predictions. For this particular data set,
such missing contexts are vanishingly rare (occur-
ring only 0.003% of the time), which justifies our
approach.

3We slightly abuse the notation here. Recall that d̃i ←
ỹi 6= xi, so we notate ỹi = xi as 1− d̃i.

5 Results and Discussion

5.1 Quantitative Analysis

We report receiver operating characteristic (ROC)
curves for all models (Figure 5). To facilitate fair
comparison, all models are trained with the same
random ordering of training data in each epoch.
Both neural network architectures outperform the
weighted n-gram baseline by a small margin, with
the fixed-context network appearing to perform
slightly better overall. While no individual model
exhibits any significant performance gain over the
others, all models perform significantly better than
random chance. This shows the promise of our
framework, which is precisely the objective of this
work. We next speculate as to the causes of the
slight gaps that are observed.

The neural network models likely outperform
the weighted n-gram baseline for multiple reasons.
First, both neural network models condition on a
context that includes both past and future phonemes
(i.e., bidirectional), whereas the baseline only con-
ditions on past phonemes (i.e., unidirectional). Uti-
lizing future phonemes as context is useful since
both humans and most state-of-the-art ASR sys-
tems use this information to revise their predic-
tions. Second, the neural networks can learn sub-
contextual patterns that the baseline cannot. For
example, the contexts A B C and A B D have
the sub-context A B in common. Whereas the
weighted n-gram treats these as completely dif-
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Ground Truth Phrase

... for they say every body is in love once ...

... his grave looks shewed that she was not ...

... shall use the carriage to night ...

... making him understand I warn’t dead ...

... shore at that place so we warn’t afraid ...

... read Elton’s letter as I was shewn in ...

... sacrifice my poor hair to night and ...

... we warn’t feeling just right ...

... that there was no want of taste ...

... knew that Arthur had discovered ...

Transcription of Audio Recording

... for they say everybody is in love once ...

... his grave look showed that she was not ...

... shall use the carriage tonight ...

... making him understand I warrant dead ...

... sure at that place so we weren’t afraid ...

... read Elton’s letters I was shown in ...

... sacrifice my poor head tonight and ...

... we weren’t feeling just right ...

... that there was no on toothpaste ...

... knew was it also have discovered ...

Table 1: Randomly selected phrases from amongst the top 100 phonemes predicted to be incorrectly transcribed
by the fixed-context model (transcription error probability > 0.999). Bold text denotes ASR transcription errors.
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Figure 5: ROC curves for our model variants.

ferent contexts, the neural networks may be able to
exploit the similarity between them. This kind of
parameter sharing is more data efficient, which can
lead to lower variance estimates (less overfitting)
in the small data set setting we are considering.

The simpler fixed-context network slightly out-
performs the more complex LSTM alternative.
While RNN architectures have been shown to out-
perform feed-forward networks in language pro-
cessing tasks (Sundermeyer et al., 2012), other re-
search has shown that simpler architectures are still
able to process phonemic data effectively (Ba and
Caruana, 2014). The lack of an additional con-
ditional independence assumption for the LSTM
model may have resulted in worse data efficiency,
since the model needs to expend parameters on
all reference phonemes, even those very far away
that may have little impact on the current one. In
addition, the smaller number of parameters to esti-
mate may have lead to lower variance in the fixed-

context model. Given this, our avoidance of more
advanced or deeper model, such as transformers,
seems justified for this preliminary work. We hy-
pothesize that such models could outperform all
the models considered here given a significantly
larger data set.

5.2 Qualitative Analysis

5.2.1 Description
We perform qualitative error analysis on randomly
selected phonemes from amongst those that are
most (Table 1) and least (Table 2) likely to contain
transcription errors according to the fixed-context
model. This offers some qualitative insights re-
garding phonemic confusion. We sample from the
fixed-context model due to its slightly superior per-
formance, and show small phrases centered around
the phoneme most (least) likely to cause confusion,
rather than full transcriptions, for clarity.

In addition, to improve readability, we show
words rather than the underlying phonemes. As a
result, some of the errors appear to be orthographic
in nature even if they are not. For example, “every
body” becomes “everybody” in the first example
of Table 1. However, the phonemes that constitute
“every body” and “everybody” are indeed differ-
ent: “EH V ER IY B AA D IY” versus “EH
V R IY B AA D IY”. As per our definitions in
Section 3.2, these cases do represent transcription
errors. However, it may be argued that such errors
introduce unwanted noise in the data set, which we
hope to correct in future work.

5.2.2 Analysis
First, we note that every sample in Table 1 does
indeed have a transcription error, while few sam-
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Ground Truth Phrase

... the exquisite feelings of delight and ...

... gone Mister Knightley called ...

... has been exceptionally ...

... not afraid of your seeing ...

... the sale of Randalls was long ...

... her very kind reception of himself ...

... for the purpose of preparatory inspection ...

... you would not be happy until you ...

... with the exception of this little blot ...

... night we were in a great bustle getting ...

Transcription of Audio Recording

... the exquisite feelings of delight and ...

... gone Mister Knightley called ...

... has been exceptionally ...

... not afraid if you’re saying ...

... the sale of Randalls was long ...

... her very kind reception to himself ...

... for the purpose of preparatory inspection ...

... you would not be happy until you ...

... with the exception of this little blot ...

... night we were in a great bustle getting ...

Table 2: Randomly selected phrases from amongst the top 100 phonemes predicted to be correctly transcribed by
the fixed-context model (transcription error probability < 0.03). Bold text denotes ASR transcription errors.

ples have errors in Table 2. It therefore seems as
though, when the fixed-context model is very cer-
tain about the presence or absence of errors, it is
usually correct.

Second, many of the transcription errors in Ta-
ble 1 are seemingly caused by the archaic or id-
iosyncratic writing present in the books used to
create the data set. While this can be seen as a
source of unwanted noise (we used an ASR sys-
tem trained on standard modern English), we argue
that, as per Rothwell’s model of communication
(Section 2), familiarity with the vocabulary is, in
fact, a very legitimate source of semantic noise.
Indeed, phrases using more modern and standard
vernacular are seemingly less likely to be confus-
ing, according to the fixed-context model.

Third, many of the errors not related to ar-
chaism involve stop words, homonyms, or near-
homophones, which intuitively makes sense. Ad-
ditionally, hard consonant sounds between words
(and stress at the beginning rather than at the end
of words) appears more common in the set of
correctly-transcribed phrases as compared to the set
of incorrectly-transcribed ones. These findings sug-
gest the fixed-context model has picked up on some
underlying patterns governing phonemic confusion,
which is promising for our confusion-mitigation
framework as a whole.

5.3 Future Work
This work uses a relatively small data set. Creat-
ing and using a significantly larger corpus using
human subjects rather than an ASR proxy would
likely yield more directly relevant results. We pos-
tulate that, with a larger and higher quality data
set, a deeper and more advanced neural network

architecture, such as the transformer, may produce
stronger results. Future work can also investigate
the differences in human phonemic confusability
on ‘natural’ versus semantically-unpredictable sen-
tences.

A major aspect of our confusion-mitigation
framework, which we have not explored in this
work, is the generation of alternative, clearer utter-
ances that retain the initial meaning. Constructively
enumerating these alternatives is non-trivial, as is
identifying the neighbourhood beyond which their
meaning differs too significantly from the original.
Conditioning on a specific listener’s priors as an
additional mechanism to reduce communication
breakdown is another major aspect we leave to fu-
ture work.

Perhaps most significantly, we have limited the
scope of our confusion assessment drastically in
this preliminary work, primarily to simplify the
data gathering process. While our results are
promising, communication breakdown is a nuanced
and multi-faceted phenomenon of which phonemic
confusion is but one small component. Modeling
these larger and more complex processes remains
an important open challenge.

6 Conclusion

Reducing communication breakdown is critical
to successful interaction in dialogue systems and
other generative NLP systems. In this work, we
proposed a novel confusion-mitigation framework
that such systems could employ to help minimize
the probability of human confusion during an in-
teraction. As a first step towards implementing
this framework, we evaluated two potential neu-
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ral architectures—a fixed-context network and an
LSTM network—for its central component, which
predicts the confusion probability of a candidate
utterance. These neural architectures outperformed
a weighted n-gram baseline (with the fixed-context
network performing best overall) when trained us-
ing a proxy data set derived from audiobook record-
ings. In addition, qualitative analyses suggest that
the fixed-context model has uncovered some of the
more intuitive causes of phonemic confusion, in-
cluding stop words, homonyms, near-homophones,
and familiarity with the vocabulary. These prelim-
inary results show the promise of our confusion-
mitigation framework. Given this early success,
further investigation and refinement is warranted.
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