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Abstract
Most recently proposed approaches in dia-
logue state tracking (DST) leverage the con-
text and the last dialogue states to track cur-
rent dialogue states, which are often slot-value
pairs. Although the context contains the com-
plete dialogue information, the information is
usually indirect and even requires reasoning
to obtain. The information in the lastly pre-
dicted dialogue states is direct, but when there
is a prediction error, the dialogue information
from this source will be incomplete or erro-
neous. In this paper, we propose the Dialogue
State Tracking with Multi-Level Fusion of
Predicted Dialogue States and Conversations
network (FPDSC). This model extracts infor-
mation of each dialogue turn by modeling in-
teractions among each turn utterance, the cor-
responding last dialogue states, and dialogue
slots. Then the representation of each dialogue
turn is aggregated by a hierarchical structure
to form the passage information, which is uti-
lized in the current turn of DST. Experimen-
tal results validate the effectiveness of the fu-
sion network with 55.03% and 59.07% joint
accuracy on MultiWOZ 2.0 and MultiWOZ
2.1 datasets, which reaches the state-of-the-art
performance. Furthermore, we conduct the
deleted-value and related-slot experiments on
MultiWOZ 2.1 to evaluate our model.

1 Introduction

Dialogue State Tracking (DST) is utilized by the di-
alogue system to track dialogue-related constraints
and user’s requests in the dialogue context. Tra-
ditional dialogue state tracking models combine
semantics extracted by language understanding
modules to estimate the current dialogue states
(Williams and Young, 2007; Thomson and Young,
2010; Wang and Lemon, 2013; Williams, 2014),
or to jointly learn speech understanding (Hender-
son et al., 2014; Zilka and Jurcicek, 2015; Wen
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et al., 2017). They rely on hand-crafted features
and complex domain-specific lexicons, which are
vulnerable to linguistic variations and difficult to
scale. Recently proposed approaches attempt to au-
tomatically learn features from the dialogue context
and the previous dialogue states. Most of them uti-
lize only the context (Shan et al., 2020) or encode
the concatenation of context and dialogue states
(Hosseini-Asl et al., 2020) or utilize a simple atten-
tion mechanism to merge the information from the
above two sources (Ouyang et al., 2020). These
methods do not fully exploit the nature of the in-
formation in the context and the predicted dialogue
states. The information nature of the context is
complete and may be indirect. While the nature of
the predicted dialogue states is direct and may be
incomplete or erroneous.

Our FPDSC model exploits the interaction
among the turn utterance, the corresponding last
dialogue states, and dialogue slots at each turn. A
fusion gate (the turn-level fusion gate) is trained
to balance the keep-proportion of the slot-related
information from the turn utterance and the corre-
sponding last dialogue states at each turn. Then
it applies a hierarchical structure to keep the com-
plete information of all dialogue turns. On top
of the model, we employ another fusion gate (the
passage-level fusion gate) to strengthen the impact
of the last dialogue states. Ouyang et al. (2020)
shows that such strengthening is vital to solve the
related-slot problem. The problem is explained in
Table 1. To eliminate the negative impact of the
error in the predicted dialogue states, we train our
models in two phases. In the teacher-forcing phase,
previous dialogue states are all true labels. While
in the uniform scheduled sampling phase (Bengio
et al., 2015), previous dialogue states are half pre-
dicted dialogue states and half true labels. Training
with such natural data noise from the error in the
predicted dialogue states helps improve the model’s
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U1: I need a place to dine in the centre.
State: restaurant-area=centre
S2:I recommend the rice house. Would you like me
to reserve a table?
U2:Yes, please book me a table for 9.
State: restaurant-area=centre; restaurant-book people=9;
restaurant-name=rice house
S3:Unfortunately, I could not book the rice house for that
amount of people.
U3: please find another restaurant for that amount of
people at that time.
State: restaurant-area=centre; restaurant-book people=9
restaurant-name=none
S4: how about tang restaurant ?
U4: Yes, please make me a reservation. I also need
a taxi.
State: restaurant-area=centre; restaurant-book people=9
restaurant-name=tang;
S5: What is your destination ?
U5: To the restaurant.
State: restaurant-area=centre; restaurant-book people=9
restaurant-name=tang; taxi-destination=tang

Table 1: An example of dialogue contains (1) the
deleted-value problem at the 3rd turn, which changes
restaurant-name from rice house to none, and (2) the
related-slot phenomenon at the 5th turn, which carries
over the value from restaurant-name to taxi-destination.

robustness.
We design an ablation study for FPDSC, the vari-

ants of which are as follows: base model (without
turn/passage-level fusion gates), turn-level model
(with only turn-level fusion gate), passage-level
model (with only passage-level fusion gate) and
dual-level model (with both turn/passage-level fu-
sion gates). We also design the experiment for the
deleted-value problem, which is explained in Table
1, and the related-slot problem. Besides, we design
two comparative networks to validate the effective-
ness of the turn-level fusion gate and the whole
previous dialogue states. One comparative network
employs only the attention mechanism to merge in-
formation from the turn utterance, the correspond-
ing last dialogue states, and dialogue slots at each
turn. Another comparative network utilize only
the last previous dialogue states in the turn-level
fusion gate. Our model shows strong performance
on MultiWOZ 2.0 (Budzianowski et al., 2018) and
MultiWOZ 2.1 (Eric et al., 2019) datasets. Our
main contributions are as follows:

• We propose a novel model, which utilizes
multi-level fusion gates and the attention
mechanism to extract the slot-related infor-
mation from the conversation and previous
dialogue states. The experimental results of
two comparative networks validate the effec-

tiveness of the turn-level fusion gate to merge
information and the importance of the whole
previous dialogue states to improve DST per-
formance.

• Both turn/passage-level fusion between the
context and the last dialogue states helps at
improving the model’s inference ability. The
passage-level fusion gate on the top of the
model is more efficient than the turn-level fu-
sion gate on the root for slot correlation prob-
lem. While the turn-level fusion gate is sen-
sitive to signal tokens in the utterance, which
helps improve the general DST performance.

• Experimental results on the deleted-value and
the related-slot experiment shows the ability
of the structure to retrieve information. Be-
sides, our models reach state-of-the-art perfor-
mance on MultiWOZ 2.0/2.1 datasets.

2 Related Work

Recently proposed methods show promising
progress in the challenge of DST. CHAN (Shan
et al., 2020) employs a contextual hierarchical at-
tention network, which extracts slot attention based
representation from the context in both token- and
utterance-level. Benefiting from the hierarchical
structure, CHAN can effectively keep the whole
dialogue contextual information. Although CHAN
achieves the new state-of-the-art performance on
MultiWoz 2.0/2.1 datasets, it ignores the informa-
tion from the predicted dialogue states. Figures
1 and 2 show the difference between CHAN and
FPDSC in the extraction of the slot-related infor-
mation in one dialogue turn.

In the work of Ouyang et al. (2020), the prob-
lem of slot correlations across different domains is
defined as related-slot problem. DST-SC (Ouyang
et al., 2020) model is proposed. In the approach,
the last dialogue states are vital to solve the related-
slot problem. The method merges slot-utterance
attention result and the last dialogue states with an
attention mechanism. However, the general perfor-
mance of DST-SC is worse than CHAN.

SOM-DST (Kim et al., 2020) and CSFN-DST
Zhu et al. (2020) utilize part of the context and the
last dialogue states as information sources. The two
methods are based on the assumption of Markov
property in dialogues. They regard the last dialogue
states as a compact representation of the whole
dialogue history. Once a false prediction of a slot
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Figure 1: A part structure of CHAN and FPDSC
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Figure 2: A part structure of FPDSC (turn/dual-level)

exists and the slot-related context is dropped, the
dialogue states will keep the error.

3 Model

Figure 3 shows the overall structure of FPDSC
(dual-level). The followings are important nota-
tions for our model.
Inputs: The context D =
{(U1, R1), . . . , (Ut, Rt)} where Ut and Rt

represent utterance for user and system at
the t-th dialogue turn; The previous dia-
logue states B = {B1, . . . , Bt−1} where
Bt = {(s, vt), s ∈ S}, S is slot set, s is one of
the slot names, vt is the corresponding slot value
at the t-th turn; V = {Vs, s ∈ S} are slot value
candidates of all slots .
Turn-level Information: The slot-related informa-
tion for each dialogue turn in Figure 2 is the turn-
level information. In Figure 3, the turn-level in-
formation is denoted as {ms,tl

1 , . . . ,ms,tl
t−1,m

s,tl
t },

which is the fusion (the turn-level fusion gate)
result of the slot-utterance attention results
{csl , . . . , cst−1, cst} and the slot-dialogue-states at-
tention results {lsl , . . . , lst−1, lst}. The weights
{gs,tl1 , . . . , gs,tlt−1, g

s,tl
t } are from the same fusion

gate, which is utilized to allocate the keep-
proportion from the conversations and previous
dialogue states. The turn-level information of a slot
is fed to a transformer encoder to form the mutual
interaction information {hs,tlt,1 , · · · , h

s,tl
t,t−1, h

s,tl
t,t }.

Passage-level Information: The attention
{Attention 3} result of the mutual interaction
information and a slot is the passage-level
information {ms,pl

t } of a slot.
Core Feature: The weight {gs,plt } are applied
to balance the turn-level information of the cur-
rent dialogue turn {ms,tl

t } and the passage-level
information {ms,pl

t } of a slot. We employ the
attention {Attention 4} mechanism between the
turn/passage-level balanced information {fs,plt }
and the last dialogue states {hlt} to strengthen the
impact of the last dialogue states. Another weight

{gs,pl
′

t } (from the passage-level fusion gate) merge
the turn/passage-level balanced information {fs,plt }
and the strengthened information {f s,pl

′

t } to form
the core feature {fst }, which is utilized in the down-
stream tasks.

3.1 BERT-Base Encoder
Due to pre-trained models’ (e.g., BERT) strong
language understanding capabilities (Mehri et al.,
2020), we use the fixed-parameter BERT-Base en-
coder (BERTfixed) to extract the representation
of slot names, slot values and the previous dia-
logue states. Three parts share the same parame-
ters from HuggingFace 1. We also apply a tunable
BERT-Base encoder (BERTtunable) to learn the
informal and noisy utterances distribution (Zhang
et al., 2020b) in the dialogue context. The two
BERT-Base Encoders are input layers of the model.
[CLS] and [SEP] represent the beginning and the
end of a text sequence. We use the output at [CLS]
to represent the whole text for BERTfixed. A slot-
value pair in the last dialogue states at the t-th turn
is denoted as:

hlst = BERTfixed([s; vt−1]) (1)

where hlst is the s slot-related representation of last
dialogue state at the dialogue t-th turn. Thus the
full representation of the last dialogue states at the
t-th turn is as follows:

hlt = hls1t ⊕ · · ·h
lsk
t · · · ⊕ h

lsn
t lsk ∈ S (2)

⊕means concatenation. The entire history of the di-
alogue states is Hp

t = {hl1, · · · , hlt−1, hlt}. The rep-
resentations of slot s and its corresponding value
vt are as follows:

hs = BERTfixed(s) (3)
1https://huggingface.co/
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Figure 3: The structure of dual-level FPDSC. The dialogue utterance at the t-th turn is [CLS]Rt[SEP]Ut[SEP]. The
dialogue state is a list of slot-value pairs ([CLS]Slot1[SEP]Value1[SEP],. . .,[CLS]Slotn[SEP]Valuen[SEP]). All
slot values are none in the initial dialogue states. The turn-level approach is without Attention 4 and the passage-

level fusion gate (gs,pl
′

t is the output weight of the gate). The passage-level approach is without Attention 1

and the turn-level fusion gate ({gs,tl1 , · · · , gs,tlt−1, g
s,tl
t } are the output weights of the gate). The base approach is

without Attention 1/4 and turn/passage-level fusion gate. The base approach has the same structure as CHAN
with different early stop mechanism.

hv = BERTfixed(vt) (4)

BERTtunable extracts utterances distribution of
user Ut = {wu

1 , · · · , wu
l } and system Rt =

{wr
1, · · · , wr

l } at the t-th turn, which are marked
as:

ht = BERTtunable([Rt;Ut]) (5)

The dialogue context until t-th turn is Ht =
{h1, · · · , ht−1, ht}.

3.2 MultiHead-Attention Unit
We utilize MultiHead-Attention (Vaswani et al.,
2017) here to get the slot-related information from
the turn utterance and the corresponding last dia-
logue states. The representations at the t-th turn

are as follows:

lst = Attention 1(hs, hlt, h
l
t) (6)

cst = Attention 2(hs, ht, ht) (7)

Another attention unit is applied to get the passage-
level information of a slot from the mutual interac-
tion information Hs,tl

t = {hs,tlt,1 , · · · , h
s,tl
t,t−1, h

s,tl
t,t },

which is described in section 3.3.

ms,pl
t = Attention 3(hs, Hs,tl

t , Hs,tl
t ) (8)

We apply an attention unit to connect the represen-
tation of the merged turn/passage-level balanced
information fs,plt and the last dialogue states to
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enhance the impact of the last dialogue states.

fs,pl
′

t = Attention 4(f s,plt , hlt, h
l
t) (9)

fs,pl
′

t is the enhanced result. All attention units
above do not share parameters.

3.3 Transformer Encoder
The complete turn-level merged information
M s,tl

t = {ms,tl
1 , · · · ,ms,tl

t−1,m
s,tl
t } has no dialogue

sequence information. Besides, each turn represen-
tation does not fully share information. Thus we
apply a transformer encoder (Vaswani et al., 2017).

Hs,tl
t = TransformerEncoder(M s,tl

t ) (10)

where Hs,tl
t = {hs,tlt,1 , · · · , h

s,tl
t,t−1, h

s,tl
t,t } means the

mutual interaction information. hs,tlt,1 means the s
slot-related representation of the 1st dialogue turn
after turn interaction, when the dialogue comes to
the t-th turn. The transformer encoder utilizes posi-
tional encoding to record the position information
and self-attention to get interacted information in
each dialogue turn.

3.4 Fusion Gate
Fusion gate is applied to merge the information as
follows:

gs,tlt = σ(Wtl � [cst ; l
s
t ]) (11)

ms,tl
t = (1− gs,tlt )⊗ cst + gs,tlt ⊗ lst (12)

� and ⊗ mean the matrix product and point-wise
product. σ is the sigmoid function. gs,tlt is the
output weight of the fusion gate to keep the in-
formation from the last dialogue state. M s,tl

t =

{ms,tl
1 , · · · ,ms,tl

t−1,m
s,tl
t } is the turn-level informa-

tion;

gs,plt = σ(Wpl � [ms,tl
t ;ms,pl

t ]) (13)

fs,plt = (1− gs,plt )⊗ms,pl
t + gs,plt ⊗ms,tl

t (14)

gs,plt is the weight to balance the turn-level merged
information ms,tl

t and the passage-level extracted
information ms,pl

t ;

gs,pl
′

t = σ(Wpl′ � [fs,plt ; fs,pl
′

t ]) (15)

fst = (1− gs,pl
′

t )⊗ fs,plt + gs,plt ⊗ fs,pl
′

t (16)

gs,pl
′

t is the weight to balance the merged
turn/passage-level balanced information f s,plt and

the enhanced result f s,pl
′

t from equation 9. fst is s
slot-related core feature from context and the entire
history of dialogue states.

3.5 Loss Function
Here we follow Shan et al. (2020) to calculate
the probability distribution of value vt and predict
whether the slot s should be updated or kept com-
pared to the last dialogue states. Thus our loss
functions are as follows:

ost = LayerNorm(Linear(Dropout(f st ))) (17)

p(vt|U≤t, R≤t, s) =
exp(−‖ost − hv‖2)∑

v′∈Vs
exp(−‖ost − hv

′‖2)

(18)

Ldst =
∑
s∈S

T∑
t=1

−log(p(v̂t|U≤t, R≤t, s)) (19)

Ldst is the distance loss for true value v̂ of slot s;

cs,stpt = tanh(Wc � fst ) (20)

ps,stpt = σ(Wp � [cs,stpt ; cs,stpt−1 ]) (21)

Lstp =
∑
s∈S

T∑
t=1

−ys,stpt · log(ps,stpt ) (22)

Lstp is the loss function for state transition pre-
diction, which has the value set {keep, update}.
ps,stpt is update probability for slot s at the t-th
turn. ys,stpt is the state transition label with update
ys,stpt = 1 and keep ys,stpt = 0 . We optimize the
sum of above loss in the training process:

Ljoint = Ldst + Lstp (23)

4 Experiments Setup

4.1 Datasets
We evaluate our model on MultiWOZ 2.0 and Mul-
tiWOZ 2.1 datasets. They are multi-domain task-
oriented dialogue datasets. MultiWOZ 2.1 identi-
fied and fixed many erroneous annotations and user
utterances (Zang et al., 2020).

4.2 Baseline
We compare FPDSC with the following ap-
proaches:
TRADE is composed of an utterance encoder, a
slot-gate, and a generator. The approach gener-
ates value for every slot using the copy-augmented
decoder (Wu et al., 2019).
CHAN employs a contextual hierarchical attention
network to enhance the DST. The method applies
an adaptive objective to alleviate the slot imbalance
problem (Shan et al., 2020).
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Model MultiWOZ 2.0 MultiWOZ 2.1
Joint Acc (%) Joint Acc (%)

TRADE (Wu et al., 2019) 48.62 46.00
DST-picklist (Zhang et al., 2020a) 54.39 53.30

TripPy (Heck et al., 2020) - 55.30
SimpleTOD (Hosseini-Asl et al., 2020) - 56.45

CHAN (Shan et al., 2020) 52.68 58.55
CHAN∗ (Shan et al., 2020) - 57.45

FPDSC (base) 51.03 54.91
FPDSC (passage-level) 52.31 55.86

FPDSC (turn-level) 55.03 57.88
FPDSC (dual-level) 53.17 59.07

Table 2: Joint accuracy on the test sets of MultiWOZ 2.0 and 2.1. CHAN∗ means performance without adaptive
objective fine-tuning, which solves the slot-imbalance problem. CHAN means performance with the full strategy.
The overall structure of FPDSC (dual-level) is illustrated in Figure 3.

DST-picklist adopts a BERT-style reading compre-
hension model to jointly handle both categorical
and non-categorical slots, matching the value from
ontologies (Zhang et al., 2020a).
TripPy applies three copy mechanisms to get value
span. It regards user input, system inform memory
and previous dialogue states as sources (Heck et al.,
2020).
SimpleTOD is an end-to-end approach and regards
sub-tasks in the task oriented dialogue task as a
sequence prediction problem(Hosseini-Asl et al.,
2020).

4.3 Training Details

Our code is public 2, which is developed based on
CHAN’s code 3. In our experiments, we use the
Adam optimizer (Kingma and Ba, 2015). We use
a batch size of 2 and maximal sequence length of
64 for each dialogue turn. The transformer encoder
has 6 layers. The multi-head attention units have
counts of 4 and hidden sizes of 784. The training
process consists of two phases: 1) teacher-forcing
training; 2) uniform scheduled sampling (Bengio
et al., 2015). The warmup proportion is 0.1 and the
peak learning rate is 1e-4. The model is saved ac-
cording to the best joint accuracy on the validation
data. The training process stops with no improve-
ment in 15 continuous epochs. Our training devices
are GeForce GTX 1080 Ti and Intel Core i7-6800
CPU@3.40GHZ. The training time of an epoch
takes around 0.8 hour in the teacher-forcing phase
and 1.6 hours in the uniform scheduled sampling
phase with a GPU.

2https://github.com/helloacl/DST-DCPDS
3https://github.com/smartyfh/CHAN-DST

Deleted-Value
Base Turn Passage Dual
2.84% 22.87% 23.98% 25.22%

Related-Slot
Base Turn Passage Dual

46.63% 57.85% 62.23% 70.85%

Table 3: Success change rate of the deleted-value
and related-slot experiment for FPDSC. Turn, Pas-
sage, Dual mean turn-level, passage-level and dual-
level FPDSC.

5 Results and Analysis

5.1 Main Results

We use the joint accuracy to evaluate the general
performance. Table 2 shows that our models get
55.03% and 59.07% joint accuracy with improve-
ments (0.64% and 0.52%) over previous best re-
sults on MultiWOZ 2.0 and 2.1. All of our ap-
proaches get better performance on 2.1 than 2.0.
This is probably because of fewer annotations error
in MultiWOZ 2.1. Though table 3 shows that the
passage-level variant performs better than the turn-
level variant in the deleted-value and the related-
slot test, passage-level variant gets worse results in
the general test. The small proportion of the above
problem in the MultiWOZ dataset and the strong
sensitivity of the turn-level fusion gate to signal
tokens in the utterance explain the phenomenon.

5.2 The Comparative Experiment for the
Fusion Gate

We design a comparative network to validate the
effectiveness of the turn-level fusion gate. Figure
4 shows the part structure of the comparative net-
work (no turn-level fusion gate). The rest of the
comparative network is the same as the FPDSC
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Figure 4: A part structure of the comparative network

Dataset no-gate∗ no-gate turn-level∗ turn-level
dev 46.38 52.58 56.17 61.39
test 43.03 49.24 54.08 57.88

Table 4: Joint accuracy of the comparative network (no-
gate) and the FPDSC (turn-level) on the MultiWOZ 2.1
dataset. ∗ indicates the approach is only trained with
teacher-forcing, otherwise is trained by uniform sched-
uled sampling after teacher-forcing.

(turn-level). The table 4 shows the performance
of the comparative network and the FPDSC (turn-
level) on the MultiWOZ 2.1. The result validates
the effectiveness of the fusion gate to merge the
different information sources.

5.3 The Comparative Experiment for the
Complete Dialogue States

We design another comparative network to val-
idate the effectiveness of the complete pre-
vious dialogue states. As Figure 3 shows,
{ms,tl

1 , . . . ,ms,tl
t−1,m

s,tl
t } are fed to the transformer

encoder in the FPDSC (turn-level). In the compara-
tive network (single), {cs1, . . . , cst−1,m

s,tl
t } are fed

to the transformer encoder. Table 5 shows the com-
plete previous dialogue states improve the general
performance of the model.

5.4 Deleted-value Tests
We select dialogues containing the deleted-value
problem from test data in MultiWOZ 2.1. We re-

Dataset single∗ single turn-level∗ turn-level
dev 57.25 60.94 56.17 61.39
test 54.40 56.70 54.08 57.88

Table 5: Joint accuracy of the comparative network
(single) and the FPDSC (turn-level) on the MultiWOZ
2.1 dataset. ∗ means that the approach is only trained in
the teacher-forcing training, otherwise is trained by uni-
form scheduled sampling training after teacher-forcing
training.

U1:Find me a museum please
restaurant-name: None
S2:There are 23 museums. Do you have an area as
preference?
U2:I just need the area and address for one of them.
restaurant-name: None
S3:I have the broughton house gallery in the centre
at 98 king street.
U3:Thank you so much. I also need a place to dine
in the centre that serves chinese food.
restaurant-name: None
S4:I have 10 place in the centre. Did you have a price
range you were looking at?
U4:I would like the cheap price range.
restaurant-name: None
S5:I recommend the rice house. Would you like me
to reserve a table?
U5:yes, please book me a table for 9 on monday at 19:30.
restaurant-name: rice house
S6:Unfortunately, I could not book the rice house for
that day and time. Is there another day or time that would
work for you?
U6:Can you try a half hour earlier or later and see if the
have anything available?
restaurant-name: rice house
Dual-level: restaurant-name: rice house
Base: restaurant-name: rice house
S7:No luck, would you like me to try something else?
U7:Yes, please find another cheep restaurant for that
amount of people at that time.
restaurant-name: None
Dual-level: restaurant-name: None
Base: restaurant-name: rice house

Table 6: Dialogue id MUL2359 from MultiWOZ 2.1

gard the above dialogues as templates and augment
the test data by replacing the original slot value
with other slot values in the ontology. There are
800 dialogues in the augmented data. We only
count the slots in dialogue turn, which occurs the
deleted-value problem. As shown in Table 6, if
restaurant-name=rice house at the 6th turn and
restaurant-name=None at the 7th turn, we regard
it as a successful tracking. We use the successful
change rate to evaluate the effectiveness. Table 3
shows that the explicit introduction of the previous
dialogue states in both turn-level and passage-level
helps solve the problem.

5.5 Related-slot Tests

We focus on the multi-domain dialogues which con-
tain dialogue domain of taxi for the related-slot test.
We select 136 dialogue turns from the MultiWOZ
2.1 test data, which contains the template such as
book a taxi from A to B or commute between A and
B. We replace the explicit expression in order to
focus on the actual related-slot filling situation. For
example, in the dialogue from table 7, we replace
the value Ballare to attraction in the user utterance
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U1: Can you give me information on an attraction
called ballare?
taxi-departure: None;taxi-destination: None
S2: The Ballare is located in Heidelberg Gardens,
Lion Yard postcode cb23na, phone number is
01223364222. The entrance fee is 5 pounds.
U2: Thanks. I’m also looking for somewhere to stay
in the north. It should be in the moderate price range
and has a star of 2 as well
taxi-departure: None;taxi-destination: None
S3: Would you want to try the lovell lodge,
which is in the moderate price range and in the north.
U3: Let’s do that. Please reserve it for 6 people and
5 nights starting from thursday.
taxi-departure: None;taxi-destination: None
S4: The booking goes through and the reference
number is TY5HFLY1.
U4: Can you help me to book a taxi from the
hotel to the Ballare. I want to leave by 17:30.
taxi-departure: lovell lodge
taxi-destination: ballare;taxi-leave: 17:30

Table 7: Dialogue id MUL2657 from MultiWOZ 2.1

Joint Acc Normal Evaluation Evaluation with
% Teacher Forcing

Dataset dev test dev test
Base 58.01 54.91 − −

Turn-level∗ 56.17 54.08 69.13 65.82
Turn-level 61.39 57.88 − −

Passage-level∗ 55.21 52.40 66.84 61.92
Passage-level 61.11 55.86 − −
Dual-level∗ 56.17 54.08 70.22 67.17
Dual-level 61.89 59.07 − −

Table 8: Joint accuracy results of variants of our
approach in different training phase on MultiWOZ
2.1. Normal evaluation means that the approach uses
predicted dialogue states as inputs. Evaluation with
teacher forcing means that it uses truth label as previ-
ous dialogue states. ∗ means that the approach is only
trained in teacher-forcing training otherwise is trained
by uniform scheduled sampling training after teacher-
forcing training.

at the 4th turn. We only count slots taxi-departure
and taxi-destination without value of None in the
dialogue turns, which contain the related-slot phe-
nomenon. We divide the sum of successful tracking
counts by the number of the above slots to get the
success change rate. Table 3 shows the result.

5.6 Gate Visualization
Figure 5 shows the output weight of the
turn/passage-level fusion gates in dialogue
MUL2359 (Table 6) and MUL2657 (Table 7)
from MultiWOZ 2.1. Turn, Passage, Dual in
titles of subplots represent FPDSC with turn-level,
passage-level, and dual-level. All the weights in
Figure 5 mean the information keep-proportion
from the last dialogue states.

When we focus on the slot restaurant-name
in dialogue MUL2359. The output weight in the
turn-level fusion gate is small at the 5th and the 7th

dialogue turn in turn/dual-level approaches. Since
the slot value rice house is first mentioned at the
5th turn and the constraint is released at the 7th

turn, the change of the weight for slot restaurant-
name is reasonable. When we focus on slots
taxi-departure, taxi-destination, and taxi-leave
at at the 4th turn of dialogue MUL2657, the re-
spective information sources for above three slots
are only previous dialogue state (hotel-name to
taxi-departure), both previous dialogue state and
current user utterance (Ballare can be found in
both user utterance and previous dialogue states of
attraction-name), only user utterance (17:30 ap-
pears only in the user utterance at the 4th dialogue
turn). As shown in Figure 5, at the 4th dialogue turn
of MUL2657, taxi-departure has a large weight,
taxi-destination has a middle weight, taxi-leave
at has a small weight. This trend is as expected.

Figure 5 also shows that the turn-level fusion
gate is sensitive to signal tokens in the current user
expression. At the 4th dialogue turn of MUL2359,
the word cheap triggers low output weight of the
turn-level fusion gate for slots hotel-price range
and restaurant-price range. It is reasonable that
no domain signal is in the 4th utterance. The out-
put of the passage-level fusion gate will keep a
relatively low weight once the corresponding slot
is mentioned in the dialogue except for the name-
related slot.

Although the output weights of the passage-
level fusion gate share similar distribution in
passage/dual-level method at the 7th dialogue turn
of MUL2359. FPDSC (passage-level) has a false
prediction of restaurant-name and FPDSC (dual-
level) is correct. Two fusion gates can work to-
gether to improve the performance. It explains the
high performance in dual-level strategy.

5.7 Ablation Study

Table 2 shows that the passage/turn/dual-level
approaches get improvements (0.95%, 2.97%,
4.16%) compared to the base approach in Multi-
WOZ 2.1. The results show the turn-level fusion
gate is vital to our approaches. The entire history
of dialogue states is helpful for DST. The uniform
scheduled sampling training is crucial to improve
our models’ performance. In Table 8, dev and
test represent validation and test data. As the table
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Figure 5: The output weights in the fusion gates. The weight represents the proportion of the information from
the previous dialogue states. The large weight with dark color means that the prediction of the slot value pays
much attention to the previous dialogue states. Turn, Passage, Dual mean FPDSC with turn-level, passage-level
and dual-level.

shows, all of our approaches improve the joint accu-
racy around 3% after uniform scheduled sampling
training. The falsely predicted dialogue states work
as the data noise, which improves the model’s ro-
bustness. The base approach utilizes only the infor-
mation from the context without uniform scheduled
sampling training.

6 Conclusion

In this paper, we combine the entire history of the
predicted dialogue state and the contextual repre-
sentation of dialogue for DST. We use a hierarchi-
cal fusion network to merge the turn/passage-level
information. Both levels of information is useful
to solve the deleted-value and related-slot problem.
Besides, our models reach state-of-the-art perfor-
mance on MultiWOZ 2.0 and MultiWOZ 2.1.

The turn-level fusion gate is sensitive to signal
tokens from the current turn utterance. The passage-
level fusion gate is relatively stable. Uniform sched-
uled sampling training is crucial to improve the
performance. The entire history of dialogue states
helps at extracting information in each dialogue
utterance. Although error exists in the predicted
dialogue states, the errors work as the data noise in

the training to enhance the model’s robustness.
Although our approach is based on predefined

ontology, the strategy for information extraction
is universal. Besides, the core feature fst can be
introduced to a decoder to generate the slot state,
which suits the open-domain DST.
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