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Preface

Semantic Spaces at the Intersection of NLP, Physics, and Cognitive Science (SemSpace2021) is the
latest edition of a series of workshops that brings together research at the intersection of NLP, Physics,
and Cognitive Science. Using the common ground of vector spaces, the workshop offers researchers in
these areas an appropriate forum for presenting their uniquely motivated work and ideas. The interplay
between the three disciplines fosters theoretically motivated approaches to understanding how meanings
of words interact with each other in sentences and discourse via grammatical types, how they are
determined by input from the world, and how word and sentence meanings interact logically.

We received 20 submissions of both extended abstracts and long papers, of which we accepted 7 extended
abstracts and 8 long papers. Each paper was reviewed by at least two members of the programme
committee. The submissions explored a range of topics, including the dynamics of language, grammar
and parsing, quantum algorithms and phenomena in NLP, and compositional approaches for words and
concepts.

Papers exploring the dynamics of language looked at how word meanings adapt in the context of a
sentence (Aguirre-Celis and Miikkulainen) and at universalities in language (De las Cuevas and Sole).
In the area of grammar and parsing, papers investigated various topics in pregroup grammar: efficient
algorithms for pregroup parsing (Rizzo), a functorial passage from pregroup grammar to combinatory
categorial grammar (Yeung and Kartsaklis), and equations within a pregroup grammar setting (Coecke
and Wang).

Within the area of quantum algorithms and phenomena in NLP, papers looked at contextual phenomena in
language use (Wang et al.), a functorial approach to language models (Toumi and Koziell-Pipe), quantum
algorithms for wh- questions (Correia et al.), and a talk on quantum NLP - the first NLP algorithm to be
run on a quantum computer (Meichanetzidis et al.)

A range of approaches to composing words and concepts were proposed. Phenomena such as conjunction
(Duneau), conversational negation (Rodatz et al.), and noun phrase plausibility (McPheat et al.) have
been investigated. The composition of fuzzy concepts was examined in Tull, and Hughes and Pavlovic
look at the formal relation between syntax and semantics. Widdows et al provide a comprehensive survey
of compositional approaches in vector space semantics, in particular looking at the link to quantum
approaches.

As well as submitted talks, we have two invited talks from Ellie Pavlick (Brown University) and Haim
Dubossarsky (Cambridge University).

We would like to thank everyone who submitted a paper or a talk to the workshop, all of the authors
for their contributions, the programme committee for all their hard work, our invited speakers and (in
advance) all the attendees. We hope for fruitful discussions and sharing of perspectives!

Workshop co-chairs

Martha Lewis, University of Bristol, UK

Mehrnoosh Sadrzadeh, University College London, UK
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Abstract 

How do people understand the meaning of 
the word small when used to describe a 
mosquito, a church, or a planet? While 
humans have a remarkable ability to form 
meanings by combining existing concepts, 
modeling this process is challenging. This 
paper addresses that challenge through 
CEREBRA (Context-dEpendent meaning 
REpresentations in the BRAin) neural 
network model. CEREBRA characterizes 
how word meanings dynamically adapt in 
the context of a sentence by decomposing 
sentence fMRI into words and words into 
embodied brain-based semantic features. It 
demonstrates that words in different 
contexts have different representations and 
the word meaning changes in a way that is 
meaningful to human subjects. 
CEREBRA’s context-based representations 
can potentially be used to make NLP 
applications more human-like. 

1   Introduction 

The properties associated with a word such as 
small vary in context-dependent ways: It is 
necessary to know what the word means, but also 
the context in which is used, and how the words 
combine in order to construct the word meaning. 
Humans have a remarkable ability to form 
meanings by combining existing concepts. 
Modeling this process is difficult (Hampton, 1997; 
Janetzko 2001; Middleton et al, 2011; Murphy, 
1988; Pecher et al., 2004; Sag et al., 2001, 
Wisniewski, 1997, 1998; Yee et al., 2016). How are 
concepts represented in the brain? How do word 
meanings change during concept combination or 
under the context of a sentence? What tools and 
approaches serve to quantify such changes?  

Significant progress has been made in 
understanding how concepts and word meanings 
are represented in the brain. In particular, the first 
two issues are addressed by the Concept Attribute 
Representation theory (CAR; Binder et al., 2009, 
2011, 2016a, 2016b). CAR theory represents 
concepts as a set of features that constitute the basic 
components of meaning in terms of known brain 
systems. It relates semantic content to systematic 
modulation in neuroimaging activity (fMRI 
patterns). It suggests that word meanings are 
instantiated by the weights given to different 
feature dimensions according to the context. The 
third issue is addressed by the CEREBRA or 
Context-dependent mEaning REpresentation in the 
BRAin neural network model (Aguirre-Celis & 
Miikkulainen, 2017, 2018, 2019, 2020a, 2020b). It 
is based on the CAR theory to characterize how the 
attribute weighting changes across contexts.  

In this paper the CAR theory is first reviewed. 
Then, the CEREBRA model is introduced, 
followed by the data that provides the basis for the 
model. Later, experimental results are presented, 
showing an individual example on the concept 
combination effect on word meanings, how this 
effect applies to the entire corpus, and a behavioral 
analysis to evaluate the neural network model.  

2   The CAR Theory 

CARs (a.k.a. The Experiential attribute 
representation model), represent the basic 
components of meaning defined in terms of neural 
processes and brain systems. They are composed 
of a list of well-known modalities that correspond 
to specialized sensory, motor and affective brain 
processes, systems processing spatial, temporal, 
and casual information, and areas involved in 
social cognition. (Anderson et al., 2016, 2017, 
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2018, 2019; Binder et al. 2016a). It is supported by 
substantial evidence on how humans acquire and 
learn concepts (Binder et al., 2009, 2011, 2016a, 
2016b). The central axiom of this theory is that 
concept knowledge is built from experience, as a 
result, knowledge representation in the brain is 
dynamic.  

The features are weighted according to 
statistical regularities. The semantic content of a 
given concept is estimated from ratings provided 
by human participants. For example, concepts 
referring to things that make sounds (e.g., 
explosion, thunder) receive high ratings on a 
feature representing auditory experience, relative 
to things that do not make a sound (e.g., milk, 
flower).  

Each word is modeled as a collection of 66 
features that captures the strength of association 
between each neural attribute and word meaning. 
Specifically, the degree of activation of each 
attribute associated with the concept can be 
modified depending on the linguistic context, or 
combination of words in which the concept occurs. 
More detailed account of the attribute selection and 
definition is given by Binder, et al. (2009, 2011, 
2016a, and 2016b). 

Figure 1, shows an example of the weighted 
CARs for the concept church. The weight values 
represent average human ratings for each feature. 
Given that church is an object, it has low 

weightings on animate attributes such as Face, 
Body, and Speech, and high weighting on attributes 
like Vision, Size, Shape, and Weight. However, 
since it is a building and a place for worship, it does 
include strong weightings for Sound and Music,  
spatial attributes such as Landmark and Scene, 
event attributes like Social, Time and Duration, as 
well as others such as Communication and Benefit. 

3   The CEREBRA Model 

Building on the idea of grounded word 
representation in CAR theory, this work aims to 
understand how word meanings change depending 
on context. The following sections describe the 
computational model that characterizes such 
representations. The specific terms to the 
CEREBRA model are denoted by abbreviations 
throughout the paper (e.g., CARWord, fMRISent, 
SynthWord). For reference, they are described in 
Figure 2. 

3.1   System Design 

The overall design of CEREBRA is shown in 
Figure 3. It is a neural network model that performs 
two main tasks: Prediction and Interpretation. 
During the Prediction task, the model form a 
predicted fMRI for each sentence without the 
context effects. Each sentence is thus compared 
against the observed fMRI sentence to calculate an  

 
Figure 1: Bar plot of the 66 semantic features for the 
word church (Binder et al., 2009, 2011, 2016a). 
Given that church is an object, it has low weightings 
on animate attributes such as Face, Body, and Speech, 
and high weighting on attributes like Vision, Shape, 
and Weight. However, since it is a building for 
worship, it does include stronger weightings for 
spatial attributes such as Landmark and Scene, event 
attributes like Social, Time and Duration, as well as 
others such as Communication and Benefit. CAR 
weighted features for the word church. 
 

 
Figure 2: Terminology for the abbreviated terms used 
in the CEREBRA model. 
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CAR representations for "CHURCH" Terminology

CARWord: The neural network input. CARWords are formed based on ratings by human
subjects (Section 3.3). They are the original brain-based semantic representations of
words, i.e., word without context. Each CARWord is a vector of 66 attributes.

CARWordRevised: The input of the neural network after FGREP. CARWordsRevised
are formed by FGREP modifying the original CARWords. They are the context-
dependent meaning representations of words for each sentence where they occurred.
Each CARWordRevised is a vector of 66 attributes.

!": The error signal. The SynthSent is subtracted voxelwise from the fMRISent to
produce an error signal. Each error is a vector of 396 changes.

fMRISent: The neural network target. They are the original brain data collected from
human subjects using neuroimaging. Each fMRISent is a vector of 396 voxels.

SyntSent: The predicted fMRI sentence after training. The SynthWords in the sentence
are averaged to form this prediction. Each SynthSent is a vector of 396 values.

SyntSentRevised: The modified SyntSent after applying the error signal changes. Each
of these SynthSentRevised is a vector of 396 values.

SyntWord: The neural network target. They are derived by averaging the fMRISent.
They are synthetic because individual fMRI data for words do not exist, thus they are
obtained by averaging each fMRISent where the word occurred. Each SynthWord is a
vector of 396 voxels.

SyntWordRevised: The target for the neural network after FGREP. They are derived
from the SynthSentRevised using the error signal changes.

W1..W3: labels for each CARWord in a sentence.

W’1..W’3: labels for each SynthWord in a sentence.
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Figure 3: The CEREBRA model to account for context effects. (1) Propagate CARWords to SynthWords. (2) 
Construct SynthSent by averaging the SynthWords into a prediction of the sentence. (3) Compare SynthSent 
with the observed fMRI. (4) Backpropagate the error with FGREP for each sentence, freezing network weights 
and changing only CARWords. (5) Repeat until error reaches zero or CAR components reach their upper or 
lower limits. The  modified CARs represent the word meanings in context. Thus, CEREBRA captures context 
effects by mapping brain-based semantic representations to fMRI sentence images. 

error signal. This error signal is used repeatedly by 
the Interpretation task. During the Interpretation 
task, the model is used to determine how the CARs 
should adjust to eliminate the remaining error. The 
error is used to change the CARs themselves using 
the FGREP mechanism (Forming Global 
Representations with Extended BP, Miikkulainen 
& Dyer, 1991). The process iterates until the error 
goes to zero. 

3.2   Mapping CARs to Synthetic Words 

The CEREBRA model is first trained to map the 
CARWord representations in each sentence to 
SynthWords (The “forward” side of Figure 3). It 
uses a standard three-layer backpropagation neural 
network (BPNN). Gradient descent is performed 
for each word, changing the connection weights of 
the network to learn this task (Rumelharth, et al., 
1986). 

The BPNN was trained for each of the eleven 
fMRI subjects for a total of 20 repetitions each, 
using different random seeds. Complete training 
thus yields 20 different networks for each subject, 
resulting in 20 sets of 786 predicted SynthWord 
representations, that is, one word representation for 
each sentence where the word appears. 

3.3   Sentence Prediction to Change CARs 

For the Prediction task, the sentences are 
assembled using the predicted SynthWords by 
averaging all the words that occur in the sentence, 
yielding the prediction sentence called SynthSent. 
For the Interpretation task, in addition to the 
construction of the predicted sentence, further 
steps are required. First, the prediction error is 
calculated by subtracting the newly constructed 
predicted SynthSent from the original fMRISent. 
Then, the error is backpropagated to the inputs 
CARWords for each sentence (The “backward” 
side of Figure 3). However, following the FGREP 
method the weights of the network no longer 
change. Instead, the error is used to adjust the 
CARWords in order for the prediction to become 
accurate. 

This process is performed until the prediction 
error is very small (near zero) or cannot be 
modified (CARWords already met their limits, i.e., 
0 or 1), which is possible since FGREP is run 
separately for each sentence. These steps are 
repeated 20 times for each subject. At the end, the 
average of the 20 representations is used to 
represent each of the 786 context-based words 
(CARWord Revised), for each subject. 

(w'1+w'2+w'3)/3

SynthSent

W2:builtW1:engineer W3:computer W2:built W3:computer

forward backward

SynthSent
(Revised)

CARWord

W1:engineer

(w'1+w'2+w'3)/3

W’2:SynthWordW'1:SynthWord W’3:SynthWord W’2:SynthWordW'1:SynthWord W’3:SynthWord

?
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Eventually, the Revised CARWord represents the 
word meaning for the current sentence such that, 
when combined with other Revised CARWords in 
the sentence, the estimate of sentence fMRI 
becomes correct. 

4   Data Collection and Processing 

The CEREBRA model is based on the following 
sets of data: A sentence collection prepared by 
Glasgow et al. (2016), the semantic vectors (CAR 
ratings) for the words obtained via Mechanical 
Turk, and the fMRI images for the sentences, 
collected by the Medical College of Wisconsin 
(Anderson et al., 2016, 2017, 2018, 2019; Binder 
et al., 2016a, 2016b). Additionally, fMRI 
representations for individual words (called 
SynthWord) were synthesized by averaging the 
sentence fMRI. 

4.1   Sentence Collection  

A total of 240 sentences were composed of two to 
five content words from a set of 242 words (141 
nouns, 39 adjectives and 62 verbs). The words 
were selected toward imaginable and concrete 
objects, actions, settings, roles, state and 
emotions, and events. Examples of words include 
doctor, car, hospital, yellow, flood, damaged, 
drank, accident, summer, chicken, and family. An 
example of a sentence containing some of these 
words is The accident damaged the yellow car. 

4.2   Semantic Word Vectors 

In a separate study Binder et al. (2016a, 2016b) 
collected CAR ratings for the original 242 words 
through Amazon Mechanical Turk. In a scale of 
0-6, the participants were asked to assign the 
degree to which a given concept is associated with 
a specific type of neural component of experience 
(e.g. “To what degree do you think of a church as 
having a fixed location, as on a map?”).  

Approximately 30 ratings were collected for 
each word. After averaging all ratings and 
removing outliers, the final attributes were 
transformed to unit length yielding a 66-
dimensional feature vector such as the one shown 
in Figure 1 for the word church. Note that this 
semantic feature approach builds its vector 
representations by mapping the conceptual content 
of a word (expressed in the questions) to the 
corresponding neural systems for which the CAR 
dimensions stand. This approach thus contrasts 

with systems where the features are extracted from 
text corpora and word co-occurrence with no direct 
association to perceptual grounding (Baroni et. al., 
2010; Burgess, 1998; Harris, 1970; Landauer & 
Dumais, 1997; Mikolov et al., 2013). 

4.3   Neural fMRI Sentence Representations 

If indeed word meaning changes depending on 
context, it should be possible to see such changes 
by directly observing brain activity during word 
and sentence comprehension. Binder and his team 
collected twelve repetitions of brain imaging data 
from eleven subjects by recording visual, sensory, 
motor, affective, and other brain systems.  

To obtain the neural correlates of the 240 
sentences, subjects viewed each sentence on a 
computer screen while in the fMRI scanner. The 
fMRI patterns were acquired with a whole-body 
Three-Tesla GE 750 scanner at the Center for 
Imaging Research of the Medical College of 
Wisconsin (Anderson, et al., 2016). The sentences 
were presented word-by-word using a rapid serial 
visual presentation paradigm, with each content 
word exposed for 400ms followed by a 200ms 
inter-stimulus interval. Participants were instructed 
to read the sentences and think about their overall 
meaning. 

The fMRI data were pre-processed using 
standard methods. The transformed brain 
activation patterns were converted into a single-
sentence fMRI representation per participant by 
taking the voxel-wise mean of all repetitions 
(Anderson et al., 2016; Binder et al., 2016a, 
2016b). To form the target for the neural network, 
the most significant 396 voxels per sentence were 
then chosen. The size selection mimics six case-
role slots of content words consisting of 66 
attributes each. The voxels were further scaled to 
[0.2..0.8].  

4.4   Synthetic fMRI Word Representations 

The Mapping CARs task in CEREBRA (described 
in Section 3.2) requires fMRI images for words in 
isolation. Unfortunately, the collected neural data 
set does not include such images. Therefore, a 
technique developed by Anderson et al. (2016) was 
adopted to approximate them. The voxel values for 
a word were obtained by averaging all fMRI 
images for the sentences where the word occurs. 
These vectors, called SynthWords, encode a 
combination of examples of that word along with 
other words that appear in the same sentence. Thus,
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the SynthWord representation for mouse obtained 
from Sentence 56:The mouse ran into the forest 
and Sentence 60:The man saw the dead mouse 
includes aspects of running, forest, man, seeing, 
and dead, altogether. This process of combining 
contextual information is similar to several 
semantic models in  computational linguistics 
(Baroni et al., 2010; Burgess, 1998; Landauer et al., 
1997; Mitchell & Lapata, 2010). Additionally, in 
other studies, this approach has been used 
successfully to predict brain activation (Anderson 
et al., 2016, 2017, 2018, 2019; Binder, et al., 2016a, 
2016b; Just, et al., 2017).  

Due to the limited number of sentences, some of 
SynthWords became identical and were excluded 
from the dataset. The final collection includes 237 
sentences and 236 words (138 nouns, 38 adjectives 
and 60 verbs). Similarly, due to noise inherent in 
the neural data, only eight subject fMRI patterns 
were used for this study. 

5   Experiments 

CEREBRA’s context-based representations were 
evaluated through several computational 
experiments as well as through a behavioral 
analysis. The computational experiments quantify 
how the CAR representation of a word changes in 
different sentences for individual cases by 
correlating these changes to the CAR 
representations of the other words in the sentence 
(OWS). The behavioral study evaluates the 

CEREBRA context-based representations against 
human judgements. 

5.1   Analysis of an Individual Example 

Earlier work showed that (1) words in different 
contexts have different representations, and (2) 
these differences are determined by context. These 
effects were demonstrated by analyzing individual 
sentence cases across multiple fMRI subjects 
(Aguirre-Celis & Miikkulainen, 2017, 2018).  

Particularly, in this example the attributes of the 
adjective-noun combinations are analyzed on the 
centrality effect for the word small, as expressed in 
Sentence 42: The teacher broke the small camera, 
and Sentence 58: The army built the small hospital. 
Centrality expresses the idea that some attributes 
are true to many different concepts but they are 
more important to some concepts than others 
(Medin & Shoben, 1988). For example, it is more 
important for boomerangs to be curved than for 
bananas. 

Figure 4 shows the differences for small in these 
two contexts. The left side displays all 66 attributes 
for the two sentence representations averaged 
across subjects, and the right side displays the 
context-based representations averaged across all 
subjects for camera and hospital.  
The size dimensions (e.g., Small and Large), 
demonstrated the centrality principle for these 
specific contexts. The left side of Figure 4 shows 
Sentence 42 (e.g., small camera) with salient 
activation for the central attribute Small and low  

  
                    (a) Averaged sentences across subjects                                         (b) Averaged concepts across subjects 
Figure 4: The effect of centrality on two contexts for the word small. (a) The average for all subjects for the two 
sentences. (b) The new camera and hospital representations averaged for all subjects. In the left side of the figure, the 
new CARs for Sentence 42 have salient activations for an object, denoting the camera properties like Dark, Small, 
Manipulation, Head, Upper Limb, Communication, and emotions such as Sad (e.g., broke the camera). The new 
CARs for Sentence 58, has high feature activations for large buildings describing a Large, and Heavy structure such 
as a hospital. In the right side of the figure, for each word the central attributes are highlighted to emphasize how 
same dimensions are more important to some concepts than others. The centrality effect correlation analysis (Medin 
& Shoben, 1988). 
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(b) Camera and Hospital averaged across subjects 
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activation for the non-central attribute Large. In 
contrast, Sentence 57 (e.g., small hospital) presents 
low activation on the non-central attribute Small 
but high activation  on the central attribute Large. 

These findings suggest that these attributes are 
essential to small objects and big structures, 
respectively. However, the size dimension alone 
cannot represent the centrality effect completely. 

Additionally, given that both camera and 
hospital are inanimate objects, the right side of 
Figure 4 shows that they share low weightings on  
human-related attributes like Biomotion, Face, 
Body, and Speech. However, they also differ in 
expected ways, including salient activations on 
Darkness, Color, Small and Large size, and 
Weight. As part of the sentence context, the 
activations include human-like attributes such as 
Social, Human, Communication, Pleasant, Happy, 
Sad and Fearful. Overall, each sentence 
representation moves towards their respective 
sentence context (e.g., camera or hospital).  

5.2   Aggregation Analysis 

Further work verified the above conclusions in the 
aggregate through a statistical analysis across an 
entire corpus of sentences. The goal was to 
measure how the CARs of a word changes in 
different sentences, and to correlate these changes 
to the CARs of the other words in the sentence 
(OWS). In other words, the conceptual 

combination effect was quantified statistically 
across sentences and subjects (Aguirre-Celis & 
Miikkulainen, 2019, 2020b). 

The hypothesis is based on the idea that similar 
sentences have a similar effect, and this effect is 
consistent across all words in the sentence. In order 
to test this hypothesis it is necessary to (1) form 
clusters of similar sentences for the entire 
collection, and (2) calculate the average changes on 
the words identified by the role they play for the 
same cluster of sentences. Through correlations, it 
is possible to demonstrate how similar sentences 
cause analogous changes in words that play 
identical roles in those sentences. 

The results are shown in Figure 5. The 
correlations are significantly higher for new CARs 
than for the original CARs across all subjects and 
all roles. Furthermore, the AGENT role represents 
a large part of the context in both analyses (i.e., 
modified and original CARs). Thus, the results 
confirm that the conceptual combination effect 
occurs reliably across subjects and sentences, and 
it is possible to quantify it by analyzing the fMRI 
images using the CEREBRA model on CARs. As 
a summary, the average correlation was 0.3201 
(stdev 0.020) for original CAR representations and 
0.3918 (stdev 0.034) for new CAR representations. 

Thus, this process demonstrated that changes in 
a target word CAR originate from the OWS. For 
instance, if the OWS have high values in the CAR  

 
Figure 5: Correlation results per subject cluster and word roles. Average correlations analyzed by word class for eight 
subjects comparing original and new CARs vs. the average of the OWS respectively. A moderate to strong positive 
correlation was found between new CARs and the OWS, suggesting that features of one word are transferred to OWS 
during conceptual combination. Interestingly, the original and new patterns are most similar in the AGENT panel, 
suggesting that this role encodes much of the context.  The results show that the effect occurs consistently across 
subjects and sentences. 
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Table 1: Comparing CEREBRA predictions with human judgements. (a) Distribution analysis and inter-rater 
agreement. The top table shows human judgement distribution for the three responses “less” (-1), “neutral” (0), 
and “more” (1). The bottom table shows percentage agreement for the four participants. Humans agree 47% of 
the time. (b) Matching CEREBRA predictions with human data, compared to chance baseline. The table shows 
the average agreement of the 20 repetitions across all subjects. CEREBRA agrees with human responses 54% 
while baseline is 45% - which is equivalent to always guessing “more”, i.e., the largest category of human 
responses. (c) Statistical analysis for CEREBRA and baseline. The table shows the means and variances of 
CEREBRA and chance models for each subject and the p-values of the t-test, showing that the differences are 
highly significant. Thus, the context-dependent changes are actionable knowledge that can be used to predict 
human judgements. 

 
 
spatial dimension for Path, then that dimension in 
the modified CAR should be higher than in the 
original CAR, for such target word. The 
CEREBRA model encodes this effect into the 
CARs where it can be measured.  

5.3   Behavioral Study 
While Sections 5.1 and 5.2 showed that 
differences in the fMRI patterns in sentence 
reading can be explained by context-dependent 
changes in the semantic feature representations of 
the words. The goal of this section is to show that 
these changes are meaningful to humans. 
Therefore, human judgements were compared 
against CEREBRA predictions (Aguirre-Celis & 
Miikkulainen, 2020a, 2020b). 

 
Measuring Human Judgements: A survey was 
designed to characterize context-dependent 
changes by asking the subject directly: In this 
context, how does this attribute change? Human 
judgements were crowdsourced using Google 
Forms. The complete survey was an array of 24 
questionnaires that included 15 sentences each. For 
each sentence, the survey measured 10 attribute 
changes for each target word. Only the top 10 
statistically most significant attribute changes for 
each target words (roles) were used. Overall, each 

questionnaire thus contained 150 evaluations. The 
24 questionnaires can be found at: 
https://drive.google.com/drive/folders/1jD
CqKMuH-SyTxcJ7oJRbr7mYV6WNNEWH?usp=sharing 

Human responses were first characterized 
through data distribution analysis. Table 1 (a) 
shows the number of answers “less” (-1), “neutral” 
(0), and “more” (1) for each participant. Columns 
labeled P1, P2, P3, and P4 show the answers of the 
participants. The top part of Table 1 (a) shows the 
distribution of the raters’ responses and the bottom 
part shows the level of agreement among them. As 
can be seen from the table, the participants agreed 
only 47% of the time. Since the inter-rater 
reliability is too low, only questions that were the 
most reliable were included, i.e., where three out of 
four participants agreed. There were 1966 such 
questions, or 55% of the total set of questions.  

 
Measuring CEREBRA’s Predictions: The 
survey directly asks for the direction of change of 
a specific word attribute in a particular sentence, 
compared to the word’s generic meaning. Since the 
changes in the CEREBRA model range within 
(-1,1), in principle that is exactly what the model 
produces. However, during the experiments it was 
found that some word attributes always increase, 
and do so more in some contexts than others. This 

HUMAN&RESPONSES &&&&&&&PARTICIPANTS&AVERAGE&AGREEMENT&

&&&&&&DISTRIBUTION RATINGS HUMAN CEREBRA CHANCE
Resp/Part P1 P2 P3 P4 AVG % !1 618 463 8

!1 2065 995 645 1185 1223 34.0% 0 456 3 0
0 149 1120 1895 1270 1109 30.8% 1 892 587 886
1 1386 1485 1060 1145 1269 35.3% TOTAL 1966 1053 894

TOT 3600 3600 3600 3600 3600 100% &&&&&&&&&&&&&&&&&&AVERAGE 54% 45%

&&&&&&&&PARTICIPANT (b) Matching Predictions
AGREEMENT&ANALYSIS&

P1 P2 P3 P4 AVERAGE % SUBJECTS CEREBRA CHANCE pAvalue
P1 0 1726 1308 1650 1561 43% MEAN VAR MEAN VAR
P2 1726 0 1944 1758 1809 50% S5051 1033 707.25 894 6.01 3.92E!24
P3 1308 1944 0 1741 1664 46% S9322 1035 233.91 894 7.21 6.10E!33
P4 1650 1758 1741 0 1716 48% S9362 1063 224.41 894 11.52 5.22E!36

S9655 1077 94.79 894 7.21 3.89E!44
TOTAL 6751 S9701 1048 252.79 895 12.03 1.83E!33
AVG&xPART 1688 S9726 1048 205.82 894 4.62 1.73E!35

S9742 1075 216.77 895 7.21 1.65E!37
AVERAGE 11Particip1match1each1other 47% S9780 1039 366.06 894 2.52 6.10E!30

      (a) Human Responses (c) Statistical Significance
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effect is well known in conceptual combination 
(Hampton, 1997; Wisniewsky, 1998), contextual 
modulation (Barclay, 1974, Barsalou et al., 1987, 
1993), and attribute centrality (Medin & Shoben, 
1988). The direction of change is therefore not a 
good predictor of human responses.  

These changes need to be measured relative to 
changes in the OWS. Thus, the approach was based 
on asking: What is the effect of CARs used in 
context as opposed to CARs used in isolation? This 
effect was measured by computing the average of 
the CEREBRA changes (i.e., new minus original) 
of the different representations of the same word in 
several contexts, and subtracting that average 
change from the change of the target word. 
 
Matching CEREBRA’s Predictions with 
Human Judgements: In order to demonstrate that 
the CEREBRA model has captured human 
performance, the agreements of the CEREBRA 
changes and human surveys need to be at least 
above chance. Therefore a baseline model that 
generated random responses from the distribution 
of human responses was created. The results are 
reported in Table 1 (b), and the statistical 
significance of the comparisons in Table 1 (c). 

The CEREBRA model matches human 
responses in 54% of the questions when the 
baseline is 45% - which is equivalent to always 
guessing “more”, i.e., the largest category of 
human responses. The differences shown in  Table 
1 (c) are highly statistically significant for the eight 
subjects. These results show that the changes in 
word meanings (i.e., due to sentence context 
observed in the fMRI and interpreted by 
CEREBRA) are real and meaningful to humans 
(Aguirre-Celis & Miikkulainen, 2020a, 2020b).  

6   Discussion and Future Work 

This paper described how the CAR theory, the 
fMRI images, and the CEREBRA model form the 
groundwork to characterize dynamic word 
meanings. The CEREBRA model generates good 
interpretations of word meanings considering that 
the dataset was limited and was not originally 
designed to address the dynamic effects in 
meaning. In future work, it would be interesting to 
replicate the studies on a more extensive data set. 
A fully balanced stimuli including sentences with 
identical contexts (e.g., The yellow bird flew over 
the field vs. The yellow plane flew over the field) 
and contrasting contexts (e.g., The aggressive dog 

chased the boy vs. The friendly dog chased the 
boy), could help characterize the effects in more 
detail. The context-based changes should be even 
stronger, and it should be possible to uncover more 
refined effects. Such data should also improve the 
survey design, since it would be possible to 
identify questions where the effects can be 
expected to be more reliable. 

Similarly, it would be desirable to extend the 
fMRI data with images for individual words. The 
CEREBRA process of mapping semantic CARs to 
SynthWords and further to sentence fMRI refines 
the synthetic representations by removing noise. 
However, such representations blend together the 
meanings of many words in many sentences. Thus, 
by acquiring actual word fMRI, the observed 
effects should become even more clear. 

One disadvantage on CEREBRA is that it is 
expensive to collect fMRI patterns and human 
ratings at a massive scale compared to running a 
statistical algorithm on a data repository. 
Furthermore, any changes to the model (e.g., 
adding features) would require new data to be 
collected. On the other hand, such data provides a 
grounding to neural processes and behavior that 
does not exist with statistical approaches. 

Concept representation in the CAR approach 
can be compared to other methods such as 
Conceptual Spaces (CS; Gardenfors, 2004; 
Bechberger & Kuhnberger, 2019), and 
distributional semantic models (DSMs; Anderson 
et. al., 2013; Bruni et al., 2014; Burgess, 1998; 
Landauer & Dumais, 1997; Mikolov et al., 2013; 
Mitchell & Lapata, 2010; Silberer & Lapata, 
2014). The CAR theory and CS characterize 
concepts with a list of features or dimensions as the 
building blocks. The CAR theory provides a set of 
primitive features for the analysis of conceptual 
content in terms of neural processes (grounded in 
perception and action). The CS framework 
suggests a set of “quality” dimensions as relations 
that represent cognitive similarities between 
stimuli (observations or instances of concepts). CS 
is also considered a grounding mechanism that 
connects abstract symbols to the real world. The 
CAR and CS approaches include similar 
dimensions (i.e., weight, temperature, brightness) 
and some of those dimensions are part of a larger 
domain (e.g., color) or a process (e.g., visual 
system). Whereas CAR theory is a brain-based 
semantic representation where people weigh 
concept dimensions differently based in context, 
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DSMs are not grounded on perception and motor 
mechanisms. Instead, DSM representations reflect 
semantic knowledge acquired through a lifetime of 
linguistic experience based on statistical co-
occurrence. DSMs do not provide precise 
information about the experienced features of the 
concept itself (Anderson et al., 2016). In 
CEREBRA, this grounding provides a multimodal 
approach where features directly relate semantic 
content to neural activity. 

7   Conclusions  

The CEREBRA model was constructed to test the 
hypothesis that word meanings change 
dynamically based on context. The results suggest 
three significant conclusions: (1) context-
dependent meaning representations are embedded 
in the fMRI sentences, (2) they can be 
characterized using CARs together with the 
CEREBRA model, and (3) the attribute weighting 
changes are real and meaningful to human 
subjects. Thus, CEREBRA opens the door for 
cognitive scientists to achieve better understanding 
and form new hypotheses about how semantic 
knowledge is represented in the brain. 
Additionally, the context-based representations 
produced by the model could be used for a broad 
range of artificial natural language processing 
systems, where grounding concepts as well as 
understanding novel combinations of concepts is 
critical. 
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Abstract
We define a linear pregroup parser, by apply-
ing some key modifications to the minimal
parser defined in (Preller, 2007a). These in-
clude handling words as separate blocks, and
thus respecting their syntactic role in the sen-
tence. We prove correctness of our algorithm
with respect to parsing sentences in a subclass
of pregroup grammars. The algorithm was
specifically designed for a seamless implemen-
tation in Python. This facilitates its integra-
tion within the DisCopy module for QNLP and
vastly increases the applicability of pregroup
grammars to parsing real-world text data.

1 Introduction

Pregroup grammars (PG), firstly introduced by J.
Lambek in (Lambek, 1997), are becoming popular
tools for modelling syntactic structures of natural
language. In compositional models of meaning,
such as DisCoCat (Coecke et al., 2010) and DisCo-
Circ (Coecke, 2019), grammatical composition is
used to build sentence meanings from words mean-
ings. Pregroup types mediate this composition by
indicating how words connect to each other, ac-
cording to their grammatical role in the sentence.
In DisCoCat compositional sentence embeddings
are represented diagrammatically; these are used
as a language model for QNLP, by translating dia-
grams into quantum circuits via the Z-X formalism
(Zeng and Coecke, 2016; Coecke et al., 2020a,b;
Meichanetzidis et al., 2020b,a). DisCopy, a Python
implementation of most elements of DisCoCat, is
due to Giovanni Defelice, Alexis Toumi and Bob
Coecke (Defelice et al., 2020).

An essential ingredient for a full implementation
of the DisCoCat model, as well as any syntactic
model based on pregroups, is a correct and efficient
pregroup parser. Pregroup grammars are weakly
equivalent to context-free grammars (Buszkowski,
2009). Thus, general pregroup parsers based on

this equivalence are poly-time, see e.g. (Earley,
1970). Examples of cubic pregroup parsers exist by
Preller (Degeilh and Preller, 2005) and Moroz (Mo-
roz, 2009b) (Moroz, 2009a). The latter have been
implemented in Python and Java. A faster Minimal
Parsing algorithm, with linear computational time,
was theorised by Anne Preller in (Preller, 2007a).
This parser is correct for the subclass of pregroup
grammars characterised by guarded dictionaries.
The notion of guarded is defined by Preller to iden-
tify dictionaries, whose criticalities satisfy certain
properties (Preller, 2007a). In this paper we define
LinPP, a new linear pregroup parser, obtained gen-
eralising Preller’s definition of guards and applying
some key modifications to the Minimal Parsing al-
gorithm. LinPP was specifically designed with the
aim of a Python implementation. Such implemen-
tation is currently being integrated in the DisCopy
package (github:oxford-quantum-group/discopy).

The need for a linear pregroup parser originated
from the goal of constructing a grammar inference
machine learning model for pregroup types, i.e. a
Pregroup Tagger. training and evaluation of such
model is likely to involve parsing of several thou-
sand sentences. Thus, LinPP will positively affect
the overall efficiency and performance of the Tag-
ger. The Tagger will enable us to process real world
data and test the DisCoCat pregroup model against
the state-of-the-art with respect to extensive tasks
involving real-world language data.

2 Pregroup Grammars

We recall the concepts of monoid, preordered
monoid and pregroup.

Definition 2.1. A monoid 〈P, •, 1〉 is a set P to-
gether with binary operation • and an element 1,
such that

(x • y) • z = x • (y • z) (1)
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x • 1 = x = 1 • x (2)

for any x, y ∈ P . We refer to • as monoidal prod-
uct, and we often omit it, by simply writing xy in
place of of x • y.

Definition 2.2. A preordered monoid is a monoid
together with a reflexive transitive relation P → P
such that:

x→ y =⇒ uxv → uyv (3)

Definition 2.3. A pregroup is a preordered
monoid 〈P, •, 1〉, in which every object x has a
left and a right adjoint, respectively written as xl

and xr, such that:

contraction rules xlx→ 1; xxr → 1

expansion rules 1→ xrx; 1→ xxl

Adjoints are unique for each object.

In the context of natural language, pregroups are
used to model grammatical types. This approach
was pioneered by J. Lambek, who introduced the
notion of Pregroup Grammars (Lambek, 1997).
These grammars are constructed over a set of basic
types, which represent basic grammatical roles. For
example, {n, s} is a set consisting of the noun type
and the sentence type.

Definition 2.4. Let B be a set of basic types. The
free pregroup over B, written PB , is the free pre-
group generated by the set B ∪ Σ, where Σ is the
set of iterated adjonts of the types in B.

In order to easily write iterated adjoints, we de-
fine the following notation.

Definition 2.5. Given a basic type t, we write tl
n

to indicate its n-fold left adjoint, and tr
n

for its
n-fold right adjoint.E.g. we write tl

2
to indicate

(tl)
l.

Thanks to the uniqueness of pregroup adjoints
we can mix the right and left notation. E.g. (tr

2
)
l

is simply tr. We write tl
0

= t = tr
0
. We now

define pregroup grammars, following the notation
of (Shiebler et al., 2020).

Definition 2.6. A pregroup grammar is a tuple
PG = {V,B,D, PB, s} where:

1. V is the vocabulary, i.e. a set of words.

2. B is a set of basic grammatical types.

3. PB is the free pregroup over B.

4. D ⊂ V × PB is the dictionary, i.e it contains
correspondences between words and their as-
signed grammatical types.

5. s ∈ PB is a basic type indicating the sentence
type.

Example 2.7. Consider the grammar given by
V = {Alice, loves,Bob}, B = {n, s} and a dic-
tionary with the following type assignments:

D = {(Alice, n), (Bob, n), (loves, nrsnl)}

Note that the grammatical types for Alice and Bob
are so-called simple types, i.e basic types or their
adjoints. On the other hand, the type of the transi-
tive verb is a monoidal product. The type of this
verb encodes the recipe for creating a sentence: it
says give me a noun type on the left and a noun
type on the right and I will output a sentence type.
In other words, by applying iterated contraction
rules on nnrsnln we obtain the type s. Diagram-
matically we represent the string as

Then, after applying the contraction rules, we
obtain a sentence diagram:

This diagram is used to embed the sentence
meaning. This framework - introduced by Coecke
et al. in 2010 - is referred to as DisCoCat and pro-
vides a mean to equip distributional semantics with
compositionality. The composition is mediated by
the sentence’s pregroup contractions, as seen in the
example above. (Coecke et al., 2010).

The iterated application of contraction rules
yields a reduction.

Definition 2.8. Let S := t1....tn be a string of
simple types, and let TS := tj1 ....tjp with ji ∈
[1, n] for all i. We say that R : S → TS is a
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reduction if R is obtained by iterating contraction
rules only. We say that TS is a reduced form of S. If
TS cannot be contracted any further, we say that it
is irreducible and we often write R : S =⇒ TS .
Note that neither reductions nor irreducible forms
are unique, as often we are presented with different
options on where to apply contraction rules.

In the context of pregroup grammars, we are
interested in reducing strings to the sentence type
s, whenever this is possible. Thus, we give such
reduction a special name (Shiebler et al., 2020):

Definition 2.9. a reduction R : S =⇒ TS is
called a parsing of S, if Ts is the simple type s. A
string S is a sentence if there exists a parsing.

Often, we want to keep track of the types as they
get parsed:

Definition 2.10. The set of reductions of R :
S → TS is a set containing index pairs {i, j} such
that titj is the domain of a contraction in R. These
pairs are referred to as underlinks, or links (Preller,
2007a).

3 Linear vs critical

We now discuss critical and linear types in a pre-
group grammar. We first need to introduce the
notion of complexity (Preller, 2007a, Definition 5)
[Preller].

Definition 3.1. A pregoup grammar with dictio-
nary D has complexity k if, for every type t ∈ D,
any left (right) adjoint tl

n
(tr

n
) in D is such that

n < k.

Complexity 1 indicates a trivial grammar that
contains only basic types (no adjoints). Complexity
2 allows for dictionaries containing at most basic
types and their 1-fold left and right adjoints,
e.g. nl and nr. As proven in (Preller, 2007b),
every pregroup grammar is strongly equivalent
to a pregroup grammar with complexity 2. This
means that the subclass of complexity 2 pregroup
grammars has the same expressive power of the
whole class of pregroup grammars.

We now introduce critical types (Preller, 2007a).

Definition 3.2. A type c is critical, if there exists
types a, b ∈ D such that ab → 1 and bc → 1. A
type is linear if it is not critical.

We say that a grammar is linear if all types in
the dictionary are linear types. Given a string from
a linear grammar, its reduction links are unique

(Preller, 2007a, Lemma 7). In fact, a very simple
algorithm can be used to determine whether a linear
string is a sentence or not.

3.1 Lazy Parsing

The Lazy Parsing algorithm produces parsing for
all linear sentences.

Definition 3.3. Consider a linear string S. Let St
be an initially empty stack, andR an initially empty
set of reductions. The Lazy Parsing algorithm re-
duces the string as follows:

1. The first type in S is read and added to St.

2. Any following type tn is read. Letting ti in-
dicate the top of the stack St up until then, if
titn → 1 then St is popped and the link is
added to R. Otherwise tn is added to St and
R remains unchanged.

By (Preller, 2007a, Lemma8, Lemma9) Lazy
Parsing reduces a linear string to its unique irre-
ducible form, thus a linear string is a sentence if
and only if the Lazy Parsing reduces it to s. Un-
fortunately linear pregroup grammars do not hold
a lot of expressive power, and criticalities are im-
mediately encountered when processing slightly
more complex sentences than ‘subject + verb + ob-
ject’. Thus, defining parsing algorithms that can
parse a larger class of pregroup grammars becomes
essential.

3.2 Guards

In order to discuss new parsing algorithms in the
next sections, we introduce some useful notions.

Definition 3.4. Given a reduction R, a subset of
nested links is a called a fan if the right endpoints
of the links form a segment in the string. A fan
is critical if the right endpoints are critical types
(Preller, 2007a).

Below, we define guards, reformulating the no-
tion introduced by Preller in (Preller, 2007a).

Definition 3.5. Let us consider a string S :=
t1....tb = XtpY , containing a critical type tp. Let
S reduce to 1. We say that tb is a guard of tp in S
if the following conditions are satisfied:

1. X contains only linear types and there exists
a reduction R : X =⇒ 1.

2. There exists a link {j, k} of R such that
tktp → 1 and tjtb → 1 are contractions.
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3. There exist subreductions R1, R2 ⊂ R such
that R1 : tk+1..tp−1 =⇒ 1 and R2 :
t1...tj−1 =⇒ 1.

4. There exists a reduction Ry : Y =⇒ tb.

If such guard exists, we say that the critical type is
guarded and we say that {j, b} is a guarding link
for the critical type.

Let us adapt this definition to critical fans.

Definition 3.6. Let us consider the segment S :=
t1.....tn = XTcY . Let us assume there exists a
reduction S =⇒ 1, that contains a critical fan
with right end points tp....tp+q =: Tc. We say that
the fan is guarded in S if:

1. X is linear and there exists a reduction R :
X =⇒ 1.

2. There exist links {ji, ki} ∈ R, for i ∈ [p, p+
q], with kp > ... > kp+q, jp < ... < jp+q and
tkp+q ...tkpTc =⇒ 1.

3. The segments t1...tjp and tkp+1..tp−1, as well
as the ones in between each tk or tj and the
next ones, have reductions to 1.

4. There exists a reduction Ry : Y =⇒ T l
c .

3.3 Critical types in complexity 2 grammars
Critical types are particularly well behaved in dic-
tionaries of complexity 2, as they are exactly the
right adjoints tr of basic types t. We recall the
following results from (Preller, 2007a, Lemma 17
& 18). We assume complexity 2 throughout.

Lemma 3.7. Let R : t1...tm =⇒ 1. Let tp be
the leftmost critical type in the string and let R link
{k, p}. Let ti be the top of the stack produced by
Lazy Parsing, then i ≤ k. Moreover, if k > i, there
are j, b with i < j < k and b > p, such that Lazy
Parsing links {j, k} and R links {j, b}.
Corollary 3.8. Let tp be the leftmost critical type
of a sentence S. With i as above, if titp reduce to
the empty type, then all reductions to type s will
link {i, p}.

We prove the following result.

Lemma 3.9. Let S := s1....sn be a string with
m ≥ 2 critical types. Let them all be guarded.
Let sp be a critical type, and let sq be the next
one. Let sbp and sbq be their guards respectively.
Assume the notation of the previous definitions.
Then, either jq > p and bq < bp, or jq > bp.

Proof. By assumption, sp is guarded, and by defi-
nition of guard, the segment sp+1....sbp−1 reduces
to the empty type. For the sake of contradiction,
assume jq < p. Then, because crossings are not
allowed, we must have jq < kp. Since jq is a left
adjoint of a basic type, it can only reduce on its
right, and we have kq < kp. However, the seg-
ment Yp does contain sq, and does not contain its
reduction skq , thus Yp cannot reduce to type sbp ,
which is a contradiction. Thus jq > p, and to
avoid crossings, it is either jq > p and bq < bp or
jq > bp.

The lemmas above also hold for guarded critical
fans.

4 MinPP : Minimal Parsing Algorithm

In this section we define MiniPP , a minimal
parsing algorithm complexity 2 pregroup gram-
mars.

MinPP pseudo-code. Let sentence : t1....tm be
a string of types from a dictionary with complexity
2. We associate each processing step of the
algorithm with a stage Sn. Let S0 be the initial
stage, and Sn := {a, n} with n ≥ 1 be the stage
processing the type a in position n. Let Rn and
Stn be respectively the set of reductions and the
reduced stack at stage Sn. Let us write >(Stn) for
the function returning the top element of the stack
at stage n and pop(Stn) for the function popping
the stack. The steps of the algorithms are defined
as follows. At stage S0, we have R0 = ∅ and
St0 = ∅. At stage S1, R1 = ∅ and St1 = t1. At
stages Sn, n > 1, let ti = >(Stn−1). We define
the following cases.

• If titn → 1:

Stn =pop(Stn−1)

Rn =Rn−1 ∪ {i, n}

• Elif tn is linear:

Stn =Stn−1 + tn

Rn =Rn−1

• Else (tn is critical):

1. while types are critical read sentence
forward starting from tn and store read
types. Let T r := tn...tn+v, v ≥ 0, be
the segment of stored types.
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2. Create a new empty stack Stback. Pro-
cess sentence backward, starting from
T r and not reading further than ti+1.

3. If Stback is never found empty, set Stn =
Stn−1 + T r, Rn = Rn−1 and move to
stage Sn+v+1 i.e. the first type after the
critical fan. If instead Stback becomes
empty, proceed as follows.

4. Stback being empty means that T r was
reduced with some types T . By con-
struction, T had been initially reduced
with some types T l by the forward pro-
cess. Set Stn = Stn−1 + T l. Write
RTprec for the set of links that origi-
nally reduced T lT . Write RT for the
set of links for the TT r reduction, as
found by the backward process. Set
Rn = (Rn−1 ∪ RT )/RTprec. Move to
the next stage.

4.1 Formal Verification
In this section we prove the correctness ofMinPP
with respect to reducing strings to an irreducible
form, given some restrictions on the grammar. First
we prove that MinPP is a sound and terminat-
ing parsing algorithm for complexity 2 pregroup
grammars. Then, we prove that it is also correct
with respect to a subclass of complexity 2 pregroup
grammars identified bt certain restrictions.

Theorem 4.1. Let str be a string of types from a
complexity 2 pregroup grammar. If we feed str to
MinPP , then:

1. Termination: MinPP eventually halts.

2. Completeness: If str is a sentence, MinPP
reduces str to sentence type s.

3. Soundness: If str is not a sentence, then
MinPP will reduce it to an irreducible form
different from s.

Proof. Let ti always indicate the top of the stack.
Termination. Let us consider strings of finitely
many types. We prove that at each stage the
computation is finite, and that there are a finite
number of stages. A stage Sn is completed once its
corresponding stack Stn and set of reductions Rn

is computed. If tn is linear, updating Stn and Rn

only involves two finite computations: checking
whether titn → 1 (done via a terminating truth
value function), and popping or adding tn to the
stack. In the case of tn being critical, if titn → 1,

this is handled like in the linear case. Else, the
following computations are involved: first, the al-
gorithm will read forward to identify a critical fan.
This will halt when either reading the last critical
type of the fan, or the last type in the string. Then
the string is processed backward. This computation
involves finite steps as in the forward case, and
halts when reading ti or the first type in the string,
or when the stack is empty. The next computations
involve updating the stack and reduction sets
via finite functions. This proves that each step
of the process is finite and thatMinPP terminates.

Soundness. We prove it by induction on
the number of critical fans.
Base Case
Consider a string with one critical fan with right
endpoints T r, and assume it is not a sentence.
The case in which the fan reduces with the stack
is trivial, so we assume otherwise. We have two
cases:
# 1: Let T r have a left reduction T . Assuming the
notation above, consider segments θprec, θ, θpost.
θ reduces to the empty type. So we must have
θprecθpost → C, with C 6= s. Since this string is
linear MinPP will reduce the full string to C.
# 2: Assume T r doesn’t have a left reduction.
Then the backward stack will not become empty,
and once the backward parsing will reach ti,
MinPP will add T r to the forward stack. At this
stage, the remaining string will be CT rD with C
possibly empty. D is linear and cannot contain
right reductions for T r since the complexity is 2.
Thus MinPP will reduce it by Lazy Parsing to its
unique irreducible form T rU 6= s.
Inductive Hypothesis
Assume that MinPP reduces any non-sentences
to to an irreducible form different from s, given
that the string has no more than m critical fans.
Inductive Step
We consider a string with m+ 1 critical fans, and
no reduction to the sentence type.
# 1: Assume the notation above and let T r have
left reductions. Then, we remove the segment θ.
MinPP : θ =⇒ 1. The remaining string has m
critical fans and no reduction to sentence type, so
by induction hypothesis, MinPP won’t reduce it
to the sentence type.
# 2: Assume that T r has no left adjoints in the
string. Then, MinPP will add T r to the to the
top of the forward stack. The remaining string
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to process is CT rD, with C linear, irreducible
and possibly empty, and D containing m critical
fans. Thus, MinPP will correctly parse D to its
irreducible form, by inductive hypothesis or by
proof of completeness (depending on whether D
has a reduction to s or not). Therefore MinPP
will reduce CT rD to an irreducible form, that
must be different from s since T r cannot contain s
and cannot reduce further.

In order to prove completeness we need to re-
strict our grammars further.

Theorem 4.2. Let str be a string of types from a
complexity 2 pregroup grammar. Let also assume
that all critical fans are guarded or their critical
types contract with the top of the stack of the corre-
sponding stages. If we feed str to MinPP , then:
(Completeness) If str is a sentence, MinPP re-
duces str to sentence type s.

Proof. We prove it by induction on the number of
critical fans.
Base case
Let us consider a sentence with one critical fan,
with right-end points T r := tp....tp+n. At stage
Sp, we have two cases: # 1: Let titp → 1. Then,
by 3.8 all reductions of the string to the sentence
type will link i, p. Since links cannot cross, we
have kq < i for all q. Thus all critical types are
linked to types in the stack. Thus, their links are
unique and will be reduced by Lazy Parsing. By
assumption, all types other than the critical fan
are linear, thus their links are unique. Thus, Lazy
Parsing will correctly reduce this sentence, and, by
construction, so will MinPP .

# 2: Let titp 9 1, letR be an arbitrary reduction
of the string to sentence type. Then, by 3.7, R
links each critical type tq on the left with some tkq ,
such that i < kq < p. Moreover, since the fan is
guarded, the backward stack will become empty
when the type tkp+n is read. At this point, the
segment T l := tjp ....tjp+n is added to the forward
stack. The remaining reductions are linear and
T l will be linearly reduced by Lazy parsing, since
the fan is guarded. Thus, MinPP will correctly
reduce this string to the sentence type.
Inductive Hypothesis
Assume MinPP parses any sentence with at most
m guarded critical fans.
Inductive Step
Consider a string with m+ 1 guarded critical types.
Consider the leftmost critical fan, and write T r :=

tp...tp+n for the segment given by its right end
points. Let R be a reduction of the string to the
sentence type. We have again two cases:

# 1: Let R reduce T r with T in the top of the
stack computed by Lazy Parsing. MinPP will
reduce TT r → 1 by lazy parsing. After this stage,
consider the string P obtained by appending the
remaining unprocessed string to St. P contains m
critical fans and reduces to sentence type, thus, by
inductive hypothesis, MinPP will parse it.
# 2: Assume T r does not reduce with types in
the stack. Let T := tlp+n...t

l
p be the types in

the string which are reduced with T r. Their in-
dex must be larger than i. Write θ := tlp+n...T

r.
Write θprec for the segment preceding θ, and θpost
for the segment following θ. θprec is linear, so
its irreducible form D is unique. Moreover, by
construction, we must have D = CT l. Then
MinPP : θprec =⇒ CT l by Lazy Parsing.
Since T r is guarded, the backward stack will even-
tually be empty and MinPP : θprecθ =⇒ CT l.
The remaining string CT lθpost containsm guarded
critical types and, since T r is guarded, it has a re-
duction to sentence type. By inductive hypothesis,
MinPP : Cθpost =⇒ s.

Note that this proves that MinPP is correct
for the class of complexity 2 pregroup grammars
identified by the above restrictions on the critical
fans. We recall that complexity 2 grammars hold
the same expressive power of the whole class of
pregroup grammars. We now verify that MinPP
parses string in quadratic computational time.

Lemma 4.3. MinPP parses a string in time pro-
portional to the square of the length of the string.

Proof. Let N be the number of simple types in the
processed string. MinPP sees each type exactly
once in forward processing. This includes either
attempting reductions with the top of the stack or
searching for a critical fan. In both cases these
processes are obtained via functions with constant
time d. Thus the forward processing happens over-
all in time dN . Then, for each critical fan, we read
the string backward. This process is done in time
dN2 at most. Finally, when backward critical re-
ductions are found, we correct the stack and set
of reductions. The correction functions have con-
stant time c, so all corrections happen in time cN
at most. Summing these terms we obtain:

time = dN2 + (d+ c)N.
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5 LinPP : Linear Pregroup Parsing
algorithm

Certain words are typically assigned compound
types by the dictionary, e.g. T := nrsnl for tran-
sitive verbs. It might be the case that a compound
type TW of a word W , is not irreducible. Both
MinPP and the parsers mentioned in the Intro-
duction will read types in TW and reduce TW to
an irreducible form. However, the main purpose of
grammatical pregroup types is to tell us how to con-
nect different words. Reducing words internally
defeats this purpose. We want to overcome this
limitation and construct an algorithm that ignores
intra-word reductions. Given a word W1 let T1 be
its corresponding type (simple or compound). In
MinPP we defined stages Sn corresponding to
each simple type tn being read. Let us write Z1 for
the super stage corresponding to word W1 being
read. Z1 contains one or more Sn corresponding
to each simple type in T1. We modify MinPP as
follows.

• At stage Z1, we add T1 = t1...tj to the stack.
We immediately jump to super stage Z2 and
stage Sj+1.

• When each new word Wm, with m > 1 and
Tm := tm1 ...tmk

is processed, We try to con-
tract titm1 . While types contracts we keep
reducing the types tmj with the top of the
stack. We stop when either a pair titmj does
not contract or when we reach the end of the
word.

• If titmj 9 1 and tmj is linear, we add
tmj ...tmk

to the stack and jump to stages
Zm+1, Smk+1. If tmj is critical, we handle
it as in MinPP : if a backward reduction is
found, the stack and reduction set are updated
and we move to Smj+1; if the backward re-
duction is not found, we add tmj ...tmk

to the
stack and move to the next word as above.

In other words, LinPP follows the same com-
putational steps of MinPP , while only checking
reductions between types of separate words. By
assuming dictionaries whose sentences do not in-
volve intra-word reductions, the above proof of cor-
rectness can be adapted to hold for LinPP . Mod-
ifications are trivial. We previously highlighted
the importance of a linear parser; up to this point

LinPP computes parsing in quadratic time. Below
we impose some further restrictions on the input
data, which enable linear computational time.

Definition 5.1. We say that a dictionary of com-
plexity 2 is critically bounded if, given a constant
K ∈ N, for each critical type tc in a string, exactly
one of the following is true:

• tc reduces when processing the substring
tc−K ...tc backwards;

• tc does not not reduce in the string.

In other words, critical underlinks cannot exceed
lenght K.

Lemma 5.2. Assume the restrictions of section 4.1,
no-intra word reductions, and critically bounded
dictionaries. Then LinPP parses strings in linear
computational time.

Proof. Assume a string of length N . LinPP for-
ward processing involves reading each type at most
once. Thus it happens at most in time dN , with d
as in section 4.1. Moreover, when a critical fan is
read, the string is parsed backward, reading at most
K types. This process takes dK time per critical
fan. Thus it takes overall times dKN . Finally there
is an extra linear term, cN , given by the time spent
to correct the stack and reduction set. Summing
up those terms, we obtain overall computational
time CN , with C = d(1+K)+c being a constant
specific to each bounded dictionary.

6 Conclusion

In this paper we first defined a quadratic pregroup
parser, MinPP , inspired by Preller’s minimal
parser. We proved its correctness with respect to
reducing strings to irreducible forms, and in partic-
ular to parse sentences to the sentence type, in the
class of pregroup grammar charactorised by com-
plexity 2 and guarded critical types. Note that our
definition of guards differs from the one given in
(Preller, 2007a). We then modified MinPP in or-
der to remove intra-words links. We proved that the
obtained algorithm, LinPP , is linear, given that
the dictionaries are critically bounded. LinPP
was implemented in Python and it’s soon to be
integrated in the DisCopy package. The reader
can find it at github:oxford-quantum-group/discopy.
LinPP is an important step towards the implemen-
tation of a supervised pregroup tagger, which will
enable extensive testing of the DisCoCat model on
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task involving larger data-sets. Future theoretical
work and implementations will involve researching
a probabilistic pregroup parser based on LinPP .
Future work might also involve investigation the
connection between pregroup parsers and composi-
tional dynamical networks.
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Abstract

While the DisCoCat model (Coecke et al.,
2010) has been proved a valuable tool for
studying compositional aspects of language at
the level of semantics, its strong dependency
on pregroup grammars poses important restric-
tions: first, it prevents large-scale experimen-
tation due to the absence of a pregroup parser;
and second, it limits the expressibility of the
model to context-free grammars. In this pa-
per we solve these problems by reformulating
DisCoCat as a passage from Combinatory Cat-
egorial Grammar (CCG) to a category of se-
mantics. We start by showing that standard
categorial grammars can be expressed as a bi-
closed category, where all rules emerge as cur-
rying/uncurrying the identity; we then proceed
to model permutation-inducing rules by ex-
ploiting the symmetry of the compact closed
category encoding the word meaning. We pro-
vide a proof of concept for our method, con-
verting “Alice in Wonderland” into DisCoCat
form, a corpus that we make available to the
community.

1 Introduction

The compositional model of meaning by Coecke,
Sadrzadeh and Clark (Coecke et al., 2010) (from
now on DisCoCat1) provides a conceptual way of
modelling the interactions between the words in a
sentence at the level of semantics. At the core of
the model lies a passage from a grammatical deriva-
tion to a mathematical expression that computes a
representation of the meaning of a sentence from
the meanings of its words. In its most common
form, this passage is expressed as a functor from
a pregroup grammar (Lambek, 2008) to the cate-
gory of finite-dimensional vector spaces and linear
maps, FdVect, where the meanings of words live
in the form of vectors and tensors (Kartsaklis et al.,

1DIStributional COmpositional CATegorical.

2016). The job of the functor is to take a grammati-
cal derivation and translate it into a linear-algebraic
operation between tensors of various orders, while
the composition function that returns the meaning
of the sentence is tensor contraction.

The particular choice of using a pregroup gram-
mar as the domain of this functor is based on the
fact that a pregroup, just like the semantics cate-
gory on the right-hand side, has a compact-closed
structure, which simplifies the transition consider-
ably. However, while this link between pregroup
grammars and DisCoCat is well-motivated, it has
also been proved stronger than desired, imposing
some important restrictions on the framework. As
a motivating example for this paper we mention the
absence of any robust statistical pregroup parser (at
the time of writing) that would provide the deriva-
tions for any large-scale DisCoCat experiment on
sentences of arbitrary grammatical forms. As up to
the time of writing (11 years after the publication
of the paper that introduced DisCoCat), all exper-
imental work related to the model is restricted to
small datasets with sentences of simple fixed gram-
matical structures (e.g. subject-verb-object) that
are provided to the system manually.

Furthermore, pregroup grammars have been
proved to be weakly equivalent to context-free
grammars (Buszkowski, 2001), a degree of expres-
siveness that it is known to be not adequate for natu-
ral language; for example Bresnan et al. (1982) and
Shieber (1985) have shown that certain syntacti-
cal constructions in Dutch and Swiss-German give
rise to cross-serial dependencies and are beyond
context-freeness. While in practice these cases are
quite limited, it would still be linguistically inter-
esting to have a version of DisCoCat that is free of
any restrictions with regard to its generative power.

In this paper we overcome the above problems by
detailing a version of DisCoCat whose domain is
Combinatory Categorial Grammar (CCG) (Steed-
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man, 1987, 1996). We achieve this by encoding
CCG as a biclosed category, where all standard
order-preserving rules of the grammar find a natu-
ral translation into biclosed diagrams. CCG rules
whose purpose is to relax word ordering and allow
cross-serial dependencies are encoded as special
morphisms. We then define a closed monoidal func-
tor from the biclosed category freely generated over
a set of atomic types, a set of words, and the set of
arrows encoding the special rules of the grammar
to a compact-closed category. We show that since
the category of the semantics is symmetric, the
special rules that allow word permutation can be
encoded efficiently using the mechanism of “swap-
ping the wires”. As we will see in Section 3, while
in the past there were other attempts to represent
CCG in DisCoCat using similar methods (Grefen-
stette, 2013), this is the first time that a complete
and theoretically sound treatment is provided and
implemented in practice.

By presenting a version of DisCoCat which is
no longer bound to pregroups, we achieve two im-
portant outcomes. First, since CCG is shown to be
a mildly context-sensitive grammar (Vijay-Shanker
and Weir, 1994), we increase the generative power
of DisCoCat accordingly; and second, due to the
availability of many robust CCG parsers that can
be used for obtaining the derivations of sentences
in large datasets – see, for example (Clark and
Curran, 2007) – we make large-scale DisCoCat ex-
periments on sentences of arbitrary grammatical
structures possible for the first time.

In fact, we demonstrate the applicability of the
proposed method by using a standard CCG parser
(Yoshikawa et al., 2017) to obtain derivations for
all sentences in the book “Alice’s Adventures in
Wonderland”, which we then convert to DisCoCat
diagrams based on the theory described in this pa-
per. This resource – the first in its kind – is now
available to the DisCoCat community for facili-
tating research and experiments. Furthermore, a
web-based tool that allows the conversion of any
sentence into a DisCoCat diagram is available at
CQC’s QNLP website.2

2 Introduction to DisCoCat

Based on the mathematical framework of compact-
closed categories and inspired by the category-
theoretic formulation of quantum mechanics
(Abramsky and Coecke, 2004), the compositional

2Links for the the corpus and the web demo are provided
in Section 10.

distributional model of Coecke et al. (2010) com-
putes semantic representations of sentences by
composing the semantic representations of the in-
dividual words. This computation is guided by the
grammatical structure of the sentence, therefore at
a higher level the model can be summarised as the
following transition:

Grammar⇒Meaning

Up until now, at the left-hand side of this map-
ping lies a pregroup grammar (Lambek, 2008), that
is, a partially-ordered monoid whose each element
p has a left (pl) and a right (pr) adjoint such that:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl (1)

The inequalities above form the production rules
of the grammar. As an example, assume a set of
atomic types {n, s} where n is a noun or a noun
phrase and s a well-formed sentence, and type-
assignments (Alice, n), (Bob, n), and (likes, nr ·
s · nl); based on Eq. 1, the pregroup derivation for
the sentence “Alice likes Bob” becomes:

n · nr · s · nl · n ≤ 1 · s · 1 ≤ s (2)

showing that the sentence is grammatical. Note that
the transitive verb “likes” gets the compound type
nr · s · nl, indicating that such a verb is something
that expects an n on the left and another one on the
right in order to return an s. In diagrammatic form,
the derivation is shown as below:

Alice likes Bob
n snr nl

n

where the “brackets” (t) correspond to the gram-
matical reductions. Kartsaklis et al. (2016) showed
how a structure-preserving passage can be defined
between a pregroup grammar and the category of
finite-dimensional vector spaces and linear maps
(FdVect), by sending each atomic type to a vector
space, composite types to tensor products of spaces
and cups to inner products. The DisCoCat diagram
(also referred to as a string diagram) for the above
derivation in FdVect becomes:

Alice likes Bob

N S NN N

where N,S are vector spaces, “Alice” and “Bob”
are represented by vectors in N , while “likes” is a
tensor of order 3 inN⊗S⊗N . Here the “cups” (∪)
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correspond to tensor contractions, so that the vector
for the whole sentence lives in S. The preference
for using a pregroup grammar in the DisCoCat
model becomes clear when we notice the structural
similarity between the two diagrams above, and
how closely the pregroup derivation dictates the
shapes of the tensors and the contractions.

3 Related work

Implementations of the DisCoCat model have been
provided by Grefenstette and Sadrzadeh (2011) and
Kartsaklis et al. (2012), while Piedeleu et al. (2015)
detail a version of the model based on density ma-
trices for handling lexical ambiguity. DisCoCat
has been used extensively in conceptual tasks such
as textual entailment at the level of sentences, see
for example (Bankova et al., 2019; Lewis, 2019).
Further, exploiting the formal similarity of the
model with quantum mechanics, Meichanetzidis
et al. (2020) and Lorenz et al. (2021) have used it
recently with success for the first implementations
of NLP models on NISQ computers.

The connection between categorial grammars
and biclosed categories is long well-known (Lam-
bek, 1988), and discussed by Dougherty (1993).
More related to DisCoCat, and in an attempt to
detach the model from pregroups, Coecke et al.
(2013) detail a passage from the original Lambek
calculus, formed as a biclosed category, to vector
spaces. In (Grefenstette, 2013) can be found a first
attempt to explicitly provide categorical semantics
for CCG, in the context of a functor from a closed
category augmented with swaps to FdVect. In
that work, though, the addition of swaps introduces
an infinite family of morphisms that collapse the
category and lead to an overgenerating grammar.
Further, the actual mapping of crossed composition
rules to the monoidal diagrams has flaws, as given
in diagrammatic and symbolic forms – see footnote
5. We close this section by mentioning the work by
Maillard et al. (2014), which describes how CCG
derivations can be expressed directly as tensor op-
erations in the context of DisCoCat, building on
(Grefenstette, 2013).

4 Categorial grammars

We start our exposition by providing a short intro-
duction to categorial grammars. A categorial gram-
mar (Ajdukiewicz, 1935) is a grammatical formal-
ism based on the assumption that certain syntactic
constituents are functions applied on lower-order
arguments. For example, an intransitive verb gets

the type S\NP, denoting that this kind of verb is a
function that expects a noun phrase on the left in
order to return a sentence, while a determiner has
type NP/N – a function that expects a noun on the
right to return a noun phrase. The direction of the
slash determines the exact position of the argument
with regard to the word that represents the func-
tion. In the following derivation for the sentence
“Alice likes Bob”, the noun phrases and the tran-
sitive verb are assigned types NP and (S\NP)/NP
respectively.

Alice likes Bob
NP (S\NP)/NP NP

>
S\NP

<
S

As the diagram shows, a term with type X/Y
takes a term of type Y on the right in order to return
a term of type X . Similarly, a term with type X\Y
takes a term of type Y on the left, in order to return
a term of type X . In this paper we adopt a slightly
different and hopefully more intuitive notation for
categorial types: X/Y becomes X � Y while
for X\Y we will use Y � X . Using the new
notation, the above diagram takes the form shown
in Figure 1.

Alice likes Bob
NP (NP �S) �NP NP

>
NP�S

<
S

Figure 1

The two rules described above are called for-
ward and backward application, respectively, and
formally can be defined as below:

α : X � Y β : Y
FA (>)

αβ : X
α : Y β : Y � X

BA (<)
αβ : X

Categorial grammars restricted to application
rules are known as basic categorial grammars
(BCG) (Bar-Hillel, 1953), and have been proved to
be equivalent to context-free grammars (Bar-Hillel
et al., 1960) and pregroup grammars (Buszkowski,
2001). Interestingly, although all grammars men-
tioned above are equivalent in terms of theoretical
expressiveness, BCGs are restrictive on the order
of the reductions in a sentence. In the derivation of
Figure 1, we see for example that a transitive verb
must always first compose with its object, and then
with the subject.

To address this problem, some categorial gram-
mars (including CCG) contain type-raising and
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composition rules which, although they do not af-
fect grammar’s theoretical power, allow some addi-
tional flexibility in the order of composition. These
rules can be seen of as a form of currying, and are
discussed in more depth in Section 6.

α : X � Y β : Y � Z
FC (B>)

αβ : X � Z
α : Z � Y β : Y � X

BC (B<)
αβ : Z � X

α : XFTR (T>)
α : T � (X � T )

α : XBTR (T<)
α : (T � X) � T

In Figure 2 we see how type-raising (T) and
composition (B) can be used to change the order
of reductions in our example sentence, in a version
that the verb is first composed with the subject and
then with the object.

Alice likes Bob
NP

>T
S � (NP � S) (NP � S) � NP NP

>B
S � NP

>
S

Figure 2

Finally, in CCG composition has also a general-
ized version, where additional arguments (denoted
below as $1) are allowed to the right of the Z cate-
gory.

α : X � Y β : (Y � Z) � $1
GFC (Bn

>)
αβ : (X � Z) � $1

α : X � Y β : (Y � Z) � $1
GBC (Bn

<)
αβ : (X � Z) � $1

The rule can be seen as “ignoring the brackets”
in the right-hand type:

might give
(NP � S) � VP (VP � NP) � NP

>B2

((NP � S) � NP) � NP

The generalized composition rules have special
significance, since it is argued to be the reason
for the beyond context-free generative capacity of
CCG – see for example (Kuhlmann et al., 2015).

5 Categorial grammars as biclosed
categories

Categorial grammars can be seen as a proof sys-
tem, and form a biclosed category B whose objects
are the categorial types while the arrows X → Y
correspond to proofs with assumption X and con-
clusion Y . A word with categorial type X lives
in this category as an axiom, that is, as an arrow
of type I → X where the monoidal unit I is the

empty assumption. Below we show the biclosed
diagram for the CCG derivation of the sentence
“Alice likes Bob”:

BobAlice likes

FA

(NP » S) « NP

BA

NPNP

NP » S

S

We remind the reader that a biclosed category is
both left-closed and right-closed, meaning that it is
equipped with the following two isomorphisms:

κL
A,B,C

: B(A⊗B,C) ∼= B(B,A� C)

κR
A,B,C

: B(A⊗B,C) ∼= B(A,C � B)

where κL corresponds to left-currying and κR to
right-currying. Diagrammatically:

(A » C)

fL ←− [
A B

C

f
κL

A,B,C 7−→
A

(C « B)

fR

κR
A,B,C

B

A key observation for the work in this paper
is that all basic categorial rules exist naturally in
any biclosed category and can emerge solely by
currying and uncurrying identity morphisms; this
is shown in Figure 3. Hence any CCG derivation
using the rules we have met so far3 exists in a bi-
closed category freely generated over atomic types
and word arrows.

6 From biclosed to compact-closed

We will now define a monoidal functor from a
grammar expressed as a biclosed category to Dis-
CoCat diagrams. DisCoCat diagrams exist in a
compact-closed category C, where every object is
left- and right-dualisable and the left and right in-
ternal hom-objects between objects X and Y are
isomorphic to Xr ⊗ Y and Y ⊗ X l respectively.
Thus we can directly define the left and right curry-
ing isomorphisms using the dual objects:

kLa,b,c : C(a⊗ b, c) ∼= C(b, ar ⊗ c)
kRa,b,c : C(a⊗ b, c) ∼= C(a, c⊗ bl)

Left and right currying in compact-closed cate-
gories get intuitive diagrammatic representations:

←− [
a b

c

f

kLa,b,c 7−→
kRa,b,c

ar

b

c

fL

a

c

fR

bl

3CCG also uses a crossed version of composition, which
is a special case and discussed in more detail in Section 7.
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(A » B)

7→
A (A » B)

B

BA(A » B)
(κL)−1

(B « A)

7→
(B « A) A

B

FA(B « A)
(κR)−1

A (A » B) (B » C)

B

C

BA(A » B)

BA(B » C)

7→

(A » B) (B » C)

(A » C)

BC((A » B), (B » C))
κL

(C « B) (B « A) A

B

C

FA(B « A)

FA(C « B)

7→

(C « B) (B « A)

(C « A)

FC((C « B), (B « A))
κR

(T « X) X

T

FA(T « X) 7→
X

((T « X) » T)

BTR(X, T)
κL

X (X » T)

T

BA(X » T) 7→
X

(T « (X » T))

FTR(X, T)
κR

(D « C) (C « B) « A A

(C « B)

(D « B)

FA((C « B) « A)

FC(D « C, C « B)

7→

(D « C) (C « B) « A)

(D « B) « A

GFC(D « C, (C « B) « A)
κR

Figure 3: Categorial rules as currying/uncurrying in a
biclosed category.

which allows us to functorially convert all cate-
gorial grammar rules into string diagrams, as in
Figure 4.

Definition 6.1. F is a closed monoidal functor
from the biclosed category B of CCG derivations
to the compact-closed category C of DisCoCat dia-
grams.

Let {NP,S,PP} be a set of atomic CCG types,
indicating a noun phrase, a sentence, and a prepo-
sitional phrase, respectively, and T a lexical type.
We define the following mapping:

F (NP) = n F (S) = s F (PP) = p

F (wordB : IB → T ) = wordC : IC → F (T )

As a closed monoidal functor, F : B → C satis-
fies the following equations:

F (X ◦ Y ) = F (X) ◦ F (Y ) F (IdX) = IdF (X)

F (X ⊗ Y ) = F (X)⊗ F (Y ) F (IB) = IC

F (X � Y ) = F (X)r ⊗ F (Y )

F (X � Y ) = F (X)⊗ F (Y )l

Furthermore, for any diagram d : A⊗B → C,

F (κLA,B,C(d)) = kLa,b,c(F (d))

F (κRA,B,C(d)) = kRa,b,c(F (d))

where F (A) = a, F (B) = b, F (C) = c.
Alternatively we can say that the following dia-

gram commutes:

B(B,A� C) C(b, ar ⊗ c)

B(A⊗B,C) C(a⊗ b, c)

B(A,C � B) C(a, c⊗ bl)

κLA,B,C

F

kLa,b,c

F

F

κRA,B,C
kRa,b,c

As an example, below you can see how the back-
ward application rule, derived by uncurrying an
identity morphism, is converted into a string dia-
gram in C.

F (BA(A� B)) = F ((κLA,A�B,B)
−1(IdA�B))

= (kLa,ar⊗ b,b)
−1(F (IdA�B))

= (kLa,ar⊗ b,b)
−1(IdF (A�B))

= (kLa,ar⊗ b,b)
−1(Idar⊗ b)

= (kLa,ar⊗ b,b)
−1(Idar ⊗ Idb)

al

7→
b a(B « A) A

B

FA(B « A)

al

7→
(C « B) (B « A)

(C « A)

FC((C « B), (B « A))

blc b

=
blc b al

al

7→
cld c

=
cld c al

bl

bl

(D « C) (C « B) « A)

(D « B) « A

GFC(D « C, (C « B) « A)

7→
X

T « (X » T)

FTR(X, T)

tl xt

=
tl xt

Figure 4: Functorial conversion of “forward” categorial
grammar rules in biclosed form into string diagrams.
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Alice likes Bob

n s nnr nl

Alice likes Bob

n s nnr nl

s
⇒

Figure 5: Rewriting of string diagrams. The starting di-
agram corresponds to the derivation of Figure 2, which
uses type-raising. By re-arranging the sentence wire
we get the non-type-raised version of Figure 1.

ar

7→
ba(A » B)A

B

BA(A » B)

Figure 4 provides the translation of all forward
rules into DisCoCat diagrams. The conversion for
the backward rules can be obtained by reflecting the
diagrams horizontally and replacing the left/right
adjoints with right/left adjoints.

One advantage of representing parse trees using
compact-closed categories over biclosed categories
and categorial grammars is that the rewriting rules
of string diagrams enable us to show more clearly
the equivalence between two parse trees. Take
for example the phrase “big bad wolf”, which in
biclosed form has two different derivations:

wolfbig bad

FA
NP « NP

FA

NPNP « NP

NP

NP

wolfbig bad

FC
NP « NP

FA

NPNP « NP

NP « NP

NP

However, when these derivations are sent to a
compact-closed category, they become equivalent
to the following diagram which is agnostic with
regard to composition order:

wolfbig bad

nnn nl nl

Another example of this is in the use of the type-
raising rule in CCG, which is analogous to expan-
sion in pregroups, and in DisCoCat can be repre-
sented using a “cap” (∩). Therefore, the derivations
in Figures 1 and 2, when expressed as DisCoCat
diagrams, are equal up to planar isotopy (Figure 5).

dat ik Cecilia de nijlpaarden zag voeren
that I Cecilia the hippos saw feed...

...

dat ik Cecilia de nijlpaarden zag voeren
NP NP NP (NP �(NP�S)) �VP NP�VP

>B×
NP �(NP �(NP�S))

<
NP �(NP�S)

<
NP�S

<
S

Figure 6: Cross-serial dependencies in Dutch for the
phrase “...that I saw Cecilia feeding the hippos” (Steed-
man, 2000).

7 Crossed composition

All rules we have met so far are order-preserving,
in the sense that they expect all words or textual
constituents in a sentence to be found at their canon-
ical positions. This is not always the case though,
since language can be also used quite informally.
To handle those cases without introducing addi-
tional types per word, CCG is equipped with the
rule of crossed composition (Steedman, 2000), the
definition of which is the following:

α : X � Y β : Z � Y
FCX (BX>)

αβ : Z � X
α : Y � Z β : Y � X

BCX (BX<)
αβ : X � Z

In biclosed form, the crossed composition rules
are expressed as below:

(Y « Z) (Y » X)

(X « Z)

BCX((Y « Z), (Y » X))

(X « Y) (Z » Y)

(Z » X)

FCX((X « Y), (Z » Y))

Crossed composition comes also in a generalized
form as the standard (or harmonic) composition,
and allows treatment of cross-serial dependencies,
similar to those met in Dutch and Swiss-German
(Figure 6). In English the rule is used in a restricted
form4, mainly to allow a certain degree of word as-
sociativity and permutativity when this is required.

For example, such a case is heavy NP-shift,
where the adverb comes between the verb and its
direct object (Baldridge, 2002). Consider the sen-
tence “John passed successfully his exam”, the
CCG derivation of which is shown below:

4Steedman (2000) disallows the use of the forward version
in English, while the backward version is permitted only when
Y = NP�S.
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John passed successfully his exam
NP (NP � S) � NP (NP � S) � (NP � S) NP

<BX
(NP � S) � NP

>
NP � S

<
S

Note that the rule introduces a crossing between
the involved types, which is not representable in
pregroups. However, we remind the reader that
the compact closed category where the DisCoCat
diagrams live is a symmetric monoidal category,
which means that for any two objects A and B it
holds that A⊗B ∼= B ⊗A. In diagrammatic form
this corresponds to a swap of the wires, as below:

M

A B
M

A B

(a) (b)
B A

In the case of FdVect, the state above would
correspond to a matrix M ∈ A⊗ B (a), while its
swap (b) is nothing more than the transposition of
that matrix, MT.

Thus, by exploiting the symmetry of the seman-
tics category, the DisCoCat diagrams for the two
crossed composition rules take the form shown in
Figure 7.5

α

y zl

β

yr x

zlx

α

yzr

β

ylx

zr x

Figure 7: Crossed composition in DisCoCat (forward
version on the left, backward on the right).

We are now in position to revisit the functorial
passage described in Section 6 in order to include
crossed composition. In contrast to other categorial
rules, crossed composition does not occur naturally
in a biclosed setting, so we have to explicitly add
the corresponding boxes in the generating set of
category B, which is the domain of our functor.
The mapping of these special boxes to compact-
closed diagrams is defined in Figure 7. Deriving

5 The idea of representing crossing rules using swaps also
appears in (Grefenstette, 2013); however the mapping pro-
vided there is incorrect, since there is a swap clearly missing
before the last evaluation in the monoidal diagrams (p. 142,
Fig. 7.7) as well as from the symbolic representations of the
morphisms (p. 145).

the generalized versions of the rules in biclosed
and compact-closed form similarly to the harmonic
cases is a straightforward exercise.

Based on the above, our NP-shift case gets the
following diagrammatic representation:

successfullyJohn passed

srnr sn nl

his exam

nrrnr s n

Interestingly, this diagram can be made planar
by relocating the state of the object in its canonical
(from a grammar perspective) position:

successfullyJohn passed

srnr sn nl

his exam

nrrnr sn

which demonstrates very clearly that, in a proper
use of English, permutation-inducing rules become
redundant.

We would like to close this section with a com-
ment on the presence of swaps in the DisCoCat
category, and what exactly the implications of this
are. Obviously, an unrestricted use of swaps in
the semantics category would allow every possi-
ble arbitrary permutation of the words, resulting
in an overgenerating model that is useless for any
practical application. However, as explained in Sec-
tion 2, DisCoCat is not a grammar, but a mapping
from a grammar to a semantics. Hence it is always
responsibility of the grammar to pose certain re-
strictions in how the semantic form is generated. In
the formulation we detailed in Sections 6 and 7, we
have carefully defined a biclosed category as to not
introduce extra morphisms to CCG, and a functor
that maps to a subcategory of a compact-closed
category such that the rigid structure of traditional
DisCoCat is preserved.

8 Putting everything together

At this point we have the means to represent as
a DisCoCat diagram every sentence in English
language. In the following example, we consider
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a derivation that includes type-raising, harmonic
composition, and crossed composition:

Bruce puts on his hat
NP (NP �S)�NP (NP�S) �(NP�S) NP

>T <BX
S�(NP�S) (NP�S)�NP

>B
S�NP

>
S

The corresponding DisCoCat diagram is given
below:

onBruce put

srnr sn nl

his hat

nrrnr s n

As before, relocating the object and yanking the
wires produces a planar version of the diagram:

onBruce put

srnr sn nl

his hat

nrr nr sn

reflecting how the sentence would look if one used
the separable6 version of the phrasal verb.

9 Adhering to planarity

We have seen in Sections 7 and 8 how diagrams
for sentences that feature crossed composition can
be rearranged to equivalent diagrams that show a
planar derivation. It is in fact always possible to
rearrange the diagram of a derivation containing
crossed composition into a planar diagram, since
every instance of crossed composition between two
subtrees α and β is subject to the following trans-
formation:

6A phrasal verb is separable when its object can be posi-
tioned between the verb and the particle.

α

y zl

β

yr x

zlx

β

yr x

α

y zl

x zl

⇒

By performing this rearrangement recursively on
the subtrees, we obtain a planar monoidal diagram
for the whole derivation. For example, a sentence
containing a phrasal verb gets the following dia-
gram:

on

Bruce

put

sr

nr s

n

nl

his hat

nrr nr s

nnr s nl

Note how the two constituents of the phrasal
verb are grouped together in a single state with
type nr ·s ·nl, forming a proper transitive verb, and
how the diagram is planar by construction without
the need of any rearrangement.

Being able to express the diagrams without
swaps is not only linguistically interesting, but also
computationally advantageous. As mentioned be-
fore, on classical hardware swaps correspond to
transpositions of usually large tensors; on quantum
hardware, since a decomposition of a swap gate
contains entangling gates, by reducing the number
of swaps in a diagram we reduce the currently ex-
pensive entangling gates (such as CNOTs) required
to synthesise the diagram.

10 A DisCoCat version of “Alice in
Wonderland”

We demonstrate the theory of this paper by con-
verting Lewis Carroll’s “Alice in Wonderland”7 in
DisCoCat form. Our experiment is based on the
following steps:

7We used the freely available version of Project Gutenberg
(https://www.gutenberg.org).
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1. We use DepCCG parser8 (Yoshikawa et al.,
2017) to obtain CCG derivations for all sen-
tences in the book.

2. The CCG derivation for a sentence is con-
verted into biclosed form, as described in Sec-
tion 5.

3. Finally, the functorial mapping from biclosed
to string diagrams is applied, as detailed in
Sections 6 and 7.

The DepCCG parser failed to parse 18 of the
3059 total sentences in the book, resulting in a set
of 3041 valid CCG derivations, all of which were
successfully converted into DisCoCat diagrams
based on the methodology of this paper. The new
corpus is now publicly available to further facili-
tate research in DisCoCat9, and is provided in three
formats: biclosed, monoidal, and DisCoCat, while
PDF versions of the diagrams are also available.
For the representation of the diagrams we used Dis-
CoPy10 (de Felice et al., 2020), a Python library
for working with monoidal categories. Further, a
Web tool that allows the conversion of any sentence
to DisCoCat diagram providing various configura-
tion and output options, including LATEX code for
rendering the diagram in a LATEX document, is avail-
able at CQC’s website11. In the Appendix we show
the first few paragraphs of the book in DisCoCat
form by using this option.

11 Some practical considerations

For the sake of a self-contained manuscript, in this
section we discuss a few important technicalities
related to CCG parsers that cannot be covered by
the theory. The most important is the concept of
unary rules, where a type is changed in an ad-hoc
way at some point of the derivation in order to
make an outcome possible. In the following CCG
diagram, we see unary rules (U) changing NP�S
to NP�NP and N to NP at a later point of the
derivation.

not much to say
N �N N (NP �S)�(NP �S) NP �S

> >
N NP �S

<U <U
NP NP �NP

<
NP

8https://github.com/masashi-y/depccg
9https://qnlp.cambridgequantum.com/

downloads.html.
10https://github.com/

oxford-quantum-group/discopy
11https://qnlp.cambridgequantum.com/

generate.html

We address this problem by employing an index-
ing system that links the categorial types with their
corresponding arguments in a way that is always
possible to traverse the tree backwards and make
appropriate replacements when a unary rule is met.
For the above example, we get:

not much to say
N1 �N2 N2 (NP �S)1�(NP �S)2 (NP �S)2

> >
N1 (NP�S)1

<U <U
NP NP�NP

<
NP

Applying the unary rules is now distilled into
replacing all instances of N1 with NP and (NP�S)1
with NP�NP in the already processed part of the
tree, which leads to the following free of unary
rules final diagram:

not much to say
NP�N N (NP�NP)�(NP�S) NP�S

> >
NP NP�NP

<
NP

Finally, we discuss conjunctions, which in CCG
parsers take the special type conj. We essentially
treat these cases as unary rules, constructing the
destination type by the types of the two conjuncts:

apples and oranges
NP conj NP

<U
(NP�NP) �NP

>
NP�NP

<
NP

12 Future work and conclusion

In this paper we showed how CCG derivations can
be expressed in DisCoCat, paving the way for large-
scale applications of the model. In fact, presenting
a large-scale experiment based on DisCoCat is a
natural next step and one of our goals for the near
future. Creating more DisCoCat-related resources,
similar to the corpus introduced in this paper, is
an important direction with obvious benefits to the
community.
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A Appendix
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Abstract

Diagrammatically speaking, grammatical cal-
culi such as pregroups provide wires between
words in order to elucidate their interactions,
and this enables one to verify grammatical
correctness of phrases and sentences. In this
paper we also provide wirings within words.
This will enable us to identify grammatical
constructs that we expect to be either equal
or closely related. Hence, our work paves the
way for a new theory of grammar, that pro-
vides novel ‘grammatical truths’. We give a
nogo-theorem for the fact that our wirings for
words make no sense for preordered monoids,
the form which grammatical calculi usually
take. Instead, they require diagrams – or
equivalently, (free) monoidal categories.

1 Introduction

Grammatical calculi (Lambek, 1958; Grishin,
1983; Lambek, 1999) enable one to verify gram-
matical correctness of sentences. However, there
are certain grammatical constructs that we expect
to be closely related, if not the same, but which
grammatical calculi fail to identify. We will focus
on pregroups (Lambek, 2008), but the core ideas
of this paper extend well beyond pregroup gram-
mars, including CCGs (Steedman, 1987), drawing
on the recent work in (Yeung and Kartsaklis, 2021)
that casts CCGs as augmented pregroups.

In this paper we both modify and extend gram-
matical calculi, by providing so-called ‘internal
wirings’ for a substantial portion of English. Di-
agrammatically speaking, while grammatical cal-
culi provide wires between words in order to elu-
cidate their interactions, we also provide wirings
within words. For example, a pregroup diagram
for the phrase:

-ingDance man

will become:

-ing
Dance

man

We show how these additional wirings enable one
to identify grammatical constructs that we expect
to be closely related. Providing these internal
wirings in particular involves decomposing basic
types like sentence-types over noun-types, and this
decomposition may vary from sentence to sen-
tence. Hence our refinement of grammar-theory
also constitutes a departure from some of the prac-
tices of traditional grammatical calculi.

Additional structure for grammatical calculi
was previously introduced by providing semantics
to certain words, for example, quantifiers within
Montague semantics (Montague, 1973). This is
not what we do. We strictly stay within the realm
of grammar, and grammar only. Hence, our work
paves the way for a new theory of grammar, that
provides novel ‘grammatical truths’.

Usually grammatical calculi take the form of
preordered monoids (Coecke, 2013). However,
the internal wirings cannot be defined at the
poset level, for which we provide a nogo-theorem.
Hence passing to the realm of diagrammatic rep-
resentations – which correspond to proper free
monoidal categories – is not just a convenience,
but a necessity for this work. They moreover pro-
vide a clear insight in the flow of meanings.

Internal wirings were proposed within the Dis-
CoCat framework (Coecke et al., 2010), for rela-
tive pronouns and verbs (Sadrzadeh et al., 2013,
2016; Grefenstette and Sadrzadeh, 2011; Kartsak-
lis and Sadrzadeh, 2014; Coecke et al., 2018; Co-
ecke, 2019; Coecke and Meichanetzidis, 2020).
They are made up of ‘spiders’ (a.k.a. certain
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Frobenius algebras) (Coecke et al., 2013; Coecke
and Kissinger, 2017). We point out a shortcom-
ing of those earlier proposed internal wirings, and
fix them by introducing a ‘wrapping gadget’, that
forces certain wires to stay together. This re-
introduces composite types such as sentence types.

What we present here is only part of the full
story. For the latter we refer to a forthcoming
much longer paper (Coecke and Wang), which be-
sides providing many more internal wirings than
given here, also uses them to provide bureaucracy-
free grammar as circuits, the equivalence classes
for the equations introduced here. These circuits
also have direct practical applications within nat-
ural language processing – see e.g. (Coecke et al.,
2020).

2 Statement of the problem

For our purposes, a pregroup has a set of ‘basic
types’ n, s, ... each of which admit left and right
inverses −1n and n−1. Each grammatical type is
assigned a string of these, e.g. a transitive verb in
English gets: tv = −1n · s · n−1. The inverses
‘cancel out’ from one direction:

n · −1n → 1 n−1 · n → 1 (1)

A sentence is grammatical if when taking the
string of all of its grammatical types, the inverses
cancel to leave a special, ‘final’, basic type s (for
sentence), like here for n · tv · n:

n ·
(−1n · s · n−1

)
· n

(assoc.)→
(
n · −1n

)
· s ·

(
n−1 · n

)

(1)→ 1 · s · 1
(unit)→ s

This calculation can be represented diagrammati-
cally:

n ntv

(2)

Now consider the following examples:

Alice likes the flowers that Bob gives

Claire

Bob gives Claire the flowers that Alice

likes

The pregroup diagrams now look as in Figure (1).
Without any further context the factual data con-

veyed by these two sentences is the same.1 How
can we formally establish this connection between
the two sentences?

3 Rewriting pregroup diagrams via
internal wirings

What is needed are ‘internal wirings’ of certain
words, that is, not treating these words as ‘black
boxes’, but specifying what is inside, at least to
some extent. Equationally speaking, they provide
a congruence for pregroup diagrams, and we can
establish equality by means of topological defor-
mation.

For constructing these internal wirings we make
use of ‘spiders’ (Coecke et al., 2013; Coecke and
Kissinger, 2017) (a.k.a. Frobenius algebras (Car-
boni and Walters, 1987; Coecke and Paquette,
2011)). One can think of these spiders as a gen-
eralisation of wires to multi-wires, as rather than
having two ends, they can have multiple ends.
Still, all they do, like wires, is connect stuff, and
when you connect connected stuff to other con-
nected stuff (a.k.a. ‘spider-fusion’):

. . .

. . . . . .

. . .

=
. . .

. . .

= =

We presented internal wiring in terms of pre-
group diagrams. This is because they do not make
sense in terms of symbolic pregroups presented as
preordered monoids:
Theorem 3.1. A pregroup with spiders is trivial.
Concretely, given a preordered monoid (X,≤,⊗)
with unit 1, if for x ∈ X there are spiders with x
as its legs, then x ' 1.

Proof. Having spiders on x means that for all
j, k ∈ N there exists:

j︷ ︸︸ ︷
x⊗ x⊗ · · · ⊗ x

x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
k

1Additional context could indicate a causal connection be-
tween the two parts of the sentence, which could result in the
two sentences having different meanings – see (Coecke and
Wang) for more details.
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Alice flowerslikes that Bob gives Claire

Bob gives Claire flowers that Alice likes

Figure 1

that is, we have
⊗j x ≤ ⊗k x. So in particular,

x ≤ 1 and 1 ≤ x, so x ' 1.

Hence this paper requires diagrams in a funda-
mental manner.2

3.1 Internal wiring for relative pronouns
For relative pronouns we start with the internal
wirings that were introduced in (Sadrzadeh et al.,
2013, 2016):

relative pronoun

sentencenouns

(3)

Substituting this internal wiring in the pregroup di-
agrams we saw above: and permuting the boxes
a bit, more specifically, swapping Bob gives
Claire and Alice likes in the 2nd diagram,
the two diagrams start to look a lot more like each
other, as can be seen in figure 2. Their only differ-
ence is a twist which vanishes if we take spiders to
be commutative,3 and either a loose sentence-type
wire coming out of the verb likes in the first di-
agram, versus coming out the verb give in the
second diagram, the other verb having its sentence
type deleted.

3.2 Internal wiring for verbs
The deleting of sentence-types of verbs:

likes
(4)

2One SEMSPACE referee requested a category-theoretic
generalisations of the above stated nogo-theorem. Such a
generalisation has been provided on Twitter following our re-
quest (Hadzihasanovic, 2021). Our result should also not be
confused with the (almost contradictory sounding) following
one, which states that pregroups are spiders in the category of
preordered relations (Pavlovic, 2021).

3Non-commutativity can be seen as a witness for the fact
that within a broader context the two sentences may defer in
meaning due to a potential causal connection between its two
parts – see (Coecke and Wang) for more details.

by the internal wiring of relative pronouns seems
to prevent us from bringing the diagrams of Fig-
ure (2) any closer to each other. However, this ir-
reversibility does not happen for a particular kind
of internal wiring for the verb (Grefenstette and
Sadrzadeh, 2011; Kartsaklis and Sadrzadeh, 2014;
Coecke, 2019; Coecke and Meichanetzidis, 2020),
here generalised to the non-commutative case as
demonstrated by the transitive verb in Figure (5).
For transitive verbs in spider-form, if the sentence
type gets deleted we can bring back the original
form by copying the remaining wires:

=

*trans v*
*trans v*

introduce spider7→ =

*trans v**trans v*

So nothing was ever lost. To conclude, for the in-
ternal wiring of verbs proposed above, the copy-
ing and deleting spiders now guarantee that in (4)
nothing gets lost.

3.3 Rewriting pregroup diagrams into each
other

Introducing the internal wiring (5) and deleting all
outputs, our example sentences now appear as in
the first two diagrams of Figure (3). Except for
the twist the two pregroup diagrams have become
the same. As we have no outputs anymore, let’s
just stick in a copy-spider for all nouns, and then
after fusing all deletes away, our sentence is trans-
formed into the third diagram of figure 3.

The recipe we followed here is an instance of
a general result that allows us to relate sentences
for a substantial portion of English, by providing
internal wirings for that fragment. In Section 5
we will provide internal wirings some grammati-
cal word classes – in (Coecke and Wang) we pro-
vide a much larger catalog – that will generate
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Alice flowerslikes Bob gives Claire

Bob givesflowerslikesAlice Claire

Figure 2

BobflowersAlice Claire

*likes* *gives*

BobflowersAlice Claire

*likes* *gives*

Bob*likes* flowers *gives* ClaireAlice

Figure 3

correspondences between grammatical constructs,
just like the one established above. In Section 6
we provide some further examples of this. In (Co-
ecke and Wang) we also provide a normal induced
by grammar equations.

4 The wrapping gadget

Above in (5) we saw that sentence wires were de-
composed into noun wires. However, for pregroup
proofs it is important to know that those wires do
belong together, so we need to introduce a tool that
enables us to express that they belong together.

Definition 4.1. The wrapping gadget forces a
number of wires to be treated as one, i.e. it wraps
them, and is denoted as follows:

· · · · · ·
Y1 Yi YN

[ N⊗
i=1

Yi
]

By unfolding we mean dropping the restrictions
imposed by the wrapping gadget. Cups and spi-
ders carry over to wrapped wires in the expected
way, following the conventions of (Coecke and
Kissinger, 2017).

In fact, in the case of relative pronouns simply
wrapping the noun-wires making up the sentence
type isn’t enough, as the counterexample in Figure
(4) shows.

5 Some more internal wirings

We now provide internal wirings for some gram-
matical word classes that feature in the examples
of the next section. We distinguish between ‘con-
tent words’, like the verbs in (5), and ‘functional
words’, like the relative pronouns in (7).

5.1 Content words
We provide internal wirings for intransitive and
transitive verbs in Figure (5), and predicative and
attributive adverbs for transitive verbs in Figure
(6).

5.2 Functional words
We provide internal wirings for subject and ob-
ject relative pronouns for intransitive verbs, and
a passive-voice construction ‘word’ for transitive
verbs in Figure (7).

6 Proof-of-concept

We provide a number of examples of how the
internal wirings proposed above enable us to re-

35



Alice flowersgives

that

Bob plays chess

Figure 4: The deleting of the sentence type of plays belongs together with the noun-wire now connecting the
relative pronoun with gives, like in Figure (1). This is enforced by the internal wiring of the object relative
pronoun in Figure (7)

*TV*

−1n · [n · n] · n−1

*IV*

−1n · [n]

Intransitive Verb Transitive Verb

Figure 5

*Adv*

−1[[n · −1n] · [n · n] · [n−1 · n]] · n · −1n · [n · n] · n−1 · n

*Adv*

−1n · n · −1n · [n · n] · n−1 · n · [[n · −1n] · [n · n] · [n−1 · n]]−1 · n

Attributive AdverbTV Predicative AdverbTV

Figure 6

Passive voiceTV

−1[−1n · [n · n] · n−1] · −1n · [n · n] · n−1

Sub. Rel. Pron.IV

−1n · n · [−1n · [n]]−1
−1n · n · [[n · n] · n−1]−1

Ob. Rel. Pron.TV

Figure 7
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late different grammatical constructs just as in the
case of what the relative pronoun and verb inter-
nal wirings did for the sentences in Figure (1).
We omit the pregroup typings, instead depicting
the pregroup diagrams directly. Wrapping gadgets
correspond to bracketing pregroup types together.
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Passive VoiceTV

Obj. Subj.*TV*

Obj. Subj.*TV*

(unfolding)

7→

*TV*Subj. Obj.

(rearranging wires, wrapping)

7→

Figure 8: We relate: Alice is bored by︸ ︷︷ ︸
passive voice

the class to: The class bores Alice
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Subj. Obj.
*TV*

*Adv*

7→

Subj. Obj.
*TV*

*Adv*

=

Subj. Obj.
*TV*

*Adv*

Subj. Obj.
*TV*

*Adv*

7→

Figure 9: We relate: Alice washes Fido gently to: Alice gently washes Fido
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*TV*owns

possessor possessed Obj.

*TV*owns

7→

(unwrapping wires)

possessor possessed Obj.

*TV*

=

(dragging wires into place)
possessor possessed Obj.

owns

owns *TV*

whose

(recovering a pregroup proof with bracketing)

7→

possessor possessed Obj.

Figure 10: From: author that owns book that John (was) entertain(s) -ed (by) we
derive a possessive relative pronoun: author whose book entertained John
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owns

owns
that

possessorpossessed

owns

owns
7→ =

(unfolding) (twisting inputs)

possessed
possessor

possessor
possessed

owns

"-’s"

=

possessedpossessor

(simplifying)

Figure 11: From: (possessed) that (possessor) owns we derive the possessive modifier:
(possessor) ’s (possessed)
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Abstract

Language is contextual as meanings of words
are dependent on their contexts. Contextual-
ity is, concomitantly, a well-defined concept
in quantum mechanics where it is considered
a major resource for quantum computations.
We investigate whether natural language ex-
hibits any of the quantum mechanics’ contex-
tual features. We show that meaning combi-
nations in ambiguous phrases can be modelled
in the sheaf-theoretic framework for quantum
contextuality, where they can become possi-
bilistically contextual. Using the framework of
Contextuality-by-Default (CbD), we explore
the probabilistic variants of these and show
that CbD-contextuality is also possible.

1 Introduction

We start with a peculiar observation: even though
polysemy and homonymy are common phenomena
of natural language, i.e. many words have more
than one meaning, this does not create a consid-
erable obstacle in our day-to-day comprehension
of texts and conversations. For example, the word
charge has 40 different senses in English according
to WordNet, however, its meaning in the sentence
The bull charged. remains fairly unambiguous. On
the other hand, polysemy and word sense disam-
biguation are computationally difficult tasks and is
amongst the challenges faced by linguists (Rayner
and Duffy, 1986; Pickering and Frisson, 2001; Fra-
zier and Rayner, 1990).

The emergence of the field of quantum methods
in Natural Language Processing offers promising
leads for introducing quantum methods to classical
NLP tasks, e.g. language modelling (Basile and
Tamburini, 2017), distributional semantics (Blacoe
et al., 2013), mental lexicon (Bruza et al., 2009),
narrative structure (Meichanetzidis et al., 2020),
emotion detection (Li et al., 2020b), and classifica-
tion (Liu et al., 2013; Li et al., 2020a).

Distributional semantics is a natural language
semantic framework built on the notion of contex-
tuality. Herein, frequencies of co-occurrences of
words are computed from their contexts and the
resulting vector representations are used in auto-
matic sense discrimination (Schütze, 1998). An
issue with this framework is that the grammatical
structure of phrases and sentences is ignored and
the focus is mainly on large-scale statistics of data.
Oppositely, even though the interaction between
context and syntax has been studied in the past
(Barker and Shan, 2015), no distributional data has
been considered in them. Finally, distributional
and compositional models of language have been
proposed (Coecke et al., 2010), small experiments
have been implemented on quantum devices (Me-
ichanetzidis et al., 2020), and choices of meaning
in concept combinations have been analysed using
superposition (Bruza et al., 2015; Piedeleu et al.,
2015). Our work complements these lines of re-
search by modelling the underlying structure of
contextuality using distributional data.

We investigate the contextual nature of meaning
combinations in ambiguous phrases of natural lan-
guage, using instances of the data gathered in psy-
cholinguistics (Pickering and Frisson, 2001; Tanen-
haus et al., 1979; Rayner and Duffy, 1986), frequen-
cies mined from large scale corpora (BNC, 2007;
Baroni et al., 2009), and models coming from the
sheaf-theoretic framework (Abramsky and Bran-
denburger, 2011; Abramsky and Hardy, 2012) and
the Contextuality-By-Default (CbD) theory (Dzha-
farov and Kujala, 2016). We consider phrases with
two ambiguous words, in subject-verb and verb-
object predicate-argument structures and find in-
stances of logical and CbD contextuality.

The structure of the paper is as follows. We start
by introducing the main concepts behind quantum
contextuality (section 2). We then introduce the
sheaf-theoretic framework and logical contextual-
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ity (section 3), before applying it to possibilistic
natural language models (section 4 and 5). In sec-
tion 6 and 7, we discuss probabilistic models and
signalling in natural language respectively. In sec-
tion 8, we offer the possibility of studying contex-
tuality in signalling models via the Contextuality-
by-Default framework and discuss two CbD con-
textual examples that we found. We then close
the paper with insights on how to perform a large
scale experiment and the possibility of finding more
CbD-contextual examples in natural language.

2 Quantum contextuality

Early critics of quantum mechanics claimed that
quantum theory was not complete (Einstein et al.,
1935), but instead was subject to unobserved hid-
den variables, and claimed that any physical theory
should satisfy local realism. By local realism, one
means that in a “complete” physical theory, the
global behaviour of a system is entirely, and deter-
ministically, fixed by a set of local variables. How-
ever, the well-known Bell theorem (Bell, 1964),
supported by experimental data (Hensen et al.,
2015), shows that a description of quantum me-
chanics cannot comply with local realism; if quan-
tum systems need to have a “reality” independent
of the observers (realism), one should allow inter-
actions between systems to be unrestricted spatially
(non-local).

The Bell inequality offers a proof by contradic-
tion that one cannot extend the probabilistic models
obtained from observations of quantum systems to
a deterministic hidden-variable model. In Kochen
and Specker (1967), the authors prove a stronger
statement about the existence of hidden-variable
models via a logical argument. This more general
result provides a description of contextuality as it
is understood in quantum mechanics.

3 Presheaves and logical contextuality

The sheaf-theoretic framework of contextuality
starts from the observation that contextuality in
quantum mechanics translates to the impossibility
of finding a global section in special presheaves. In
other words, a model is contextual if some of its
local features cannot be extended globally.

The presheaves considered in the framework de-
veloped by Abramsky et. al. (Abramsky and Bran-
denburger, 2011; Abramsky et al., 2015) are so-
called distribution presheaves on events. An em-
pirical model corresponds to the experiment that

A B (0,0) (0,1) (1,0) (1,1)
a b 1/2 0 0 1/2
a b′ 3/8 1/8 1/8 3/8
a′ b 3/8 1/8 1/8 3/8
a′ b′ 1/8 3/8 3/8 1/8

(a) Probability distributions

a

a'

b

b'

0
1

(b) Bundle diagram of the logical model

Figure 1: Empirical model associated with the mea-
surement of the bipartite state |Ψ〉 = 1√

2

(
|00〉+ |11〉

)

with local measurements a, b = |1〉 〈1|A,B and a′, b′ =

|φ〉 〈φ|A,B where |φ〉 =
√
3
2 |0〉+ i 12 |1〉.

is undertaken; it consists of the list of measure-
ments that can be made, which measurements can
be made together and what are the associated prob-
ability distributions. For example, Fig. 1 can rep-
resent a standard Bell experiment where the list of
measurements is the list of all local measurements
that can be made on the two qubits involved in the
experiment, i.e. {a, a′, b, b′}, under the condition
that each laboratory performs exactly one measure-
ment at each run of the experiment, e.g. (a, b) can
be a joint measurement, but (a, a′) cannot. The
distribution presheaf then associates the observed
(or theoretical) probabilities for the global measure-
ment outcomes, that is, the joint outcomes of both
parties in a Bell scenario, for each measurement
context. In this framework, a global assignment
corresponds to an assignment of an outcome for
every local measurement. A global section will on
the other hand represent a distribution defined on
all global assignments, which is consistent with all
the observed probabilities.

The framework of Abramsky et al. (Abram-
sky and Brandenburger, 2011; Abramsky et al.,
2015; Abramsky and Hardy, 2012) also introduces
a stronger type of contextuality, called logical
(or possibilistic) contextuality. Indeed, they have
found that the contextuality of some systems can be
established from the support of each of the context-
dependent distributions. These are referred to as
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possibilistic empirical models. In these models, we
are only interested in whether an outcome of a lo-
cal measurement (given a global measurement con-
text) is possible. A consistent global assignment
will then be an assignment of a possible outcome
to every measurement, and hence can be repre-
sented by a logical statement about a subsystem. A
global section will then be a disjunction of consis-
tent global assignments that describes the entirety
of the model. Hence, one can prove logical con-
textuality, i.e. the impossibility of being able to
write such a logical statement about the system, by
finding a locally possible outcome that cannot be
extended to a consistent global assignment.

For small systems, it is convenient to represent
possibilistic models by bundle diagrams (Abram-
sky et al., 2015). In these diagrams, we represent
each of the local measurements by a vertex. There
is an edge1 between every two of these vertices
if the joint measurement is possible. We then de-
pict, for each individual measurements, the set of
possible outcomes as a set “sitting” on top of the
associated vertex. Similarly, an edge is added be-
tween two of the “outcome”-vertices if the joint
measurement has a non-zero probability (e.g. see
Fig. 1b). In particular, global assignments can
be seen in these bundle diagrams as shapes go-
ing through exactly one outcome for each of the
measurements that mirror the structure of the base
(measurements). In Fig. 1b for example, global
assignments correspond to connected loops.

The sheaf-theoretic framework relies on the fact
that the described distribution presheaf is indeed
a presheaf. That is, the distributions associated
with measurement contexts that intersect at a lo-
cal measurement (i.e. two contexts where at least
one party performs the same measurement) agree
on their restrictions. These are here defined as
the marginals of the distributions of interest. This
requirement coincides with the non-signalling con-
dition in quantum mechanics. This condition is
stated for possibilistic models by requiring that the
supports of intersecting distributions coincides.

As we will see, many empirical models from
natural language will be signalling. That is also the
case for many behavioural and psychological ex-
periments (see e.g. Bruza et al. (2015); Dzhafarov
et al. (2016)), and in fact, there is no reason why
natural language systems should be non-signalling

1More generally simplices if multiple measurements are
carried out simultaneously.

and we will discuss this issue in sections 7.

4 Contextuality and ambiguity in natural
language

We are interested in studying the influence of the
context on the process of meaning selection in am-
biguous phrases. Indeed, homonymy and polysemy
in natural language give rise to an interpretation for
context-dependent probability distributions. Prob-
abilities will correspond to the likelihood that a
certain meaning of a word is selected in the context
of interest. By analogy with quantum contextuality,
existence of contextual natural language examples
confirms that the context in which words are found
plays a non-trivial role in the selection of an ap-
propriate interpretation for them and the following
question arises: given that a certain interpretation
of a word is selected within a certain context, can
we use this information to deduce how the same
word may be interpreted in a different context (e.g.
in different phrases) in the corpus?

Our intuition is that this is not the case. Consider
the ambiguous adjective green: this either refers
to the colour of its modifier (e.g. a green door),
or the environmental-friendly nature of it (e.g. the
Green party). Now, if we consider an unambigu-
ous adjective such as new, then trivially, the same
interpretations of new can be selected in both of
the phrases new paint and new policy. This, how-
ever, does not imply that the same interpretations
of green will be selected in green paint and green
policy. With this intuition in mind, we start by con-
sidering the basic structure of ambiguous phrases
of English by considering only the support of prob-
ability distributions attributed to these phrases and
for now appeal to our common sense to determine
the values of these supports.

In the first part of the paper, we consider a struc-
ture similar to Bell scenarios with multiple parties,
or agents, each of which will choose one measure-
ment context from a predetermined set. A “mea-
surement” will be associated with each word and
will return the activated meaning according to a
fixed encoding. For example the two meanings
of green could be encoded as: relative to colour
7→ 0, environmental-friendly 7→ 1. In a given con-
text, multiple ambiguous words will be allowed
to “interact” and form a phrase. A measurement
context will then be labelled by the words in this
phrase. The interaction will be dictated by some
predetermined rules, such as which part-of-speech
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coach
boxer

lap

file

0
1

(a) {coach, boxer} × {lap, file}

tap

box

pitcher

cabinet

0
1

(b) {tap, box} × {pitcher, cabinet} (c) {press, box} × {can, leaves}

Figure 2: Instances of bundle diagrams arising from ambiguous phrases. The local assignments which cannot be
extended to a global one are depicted in red.

each word will correspond to. For each global mea-
surement context, the recorded activated meanings
will then form a joint distribution. These distribu-
tions can be represented in the form of an empirical
model as described in section 3. In order to obtain
a valid empirical model, all the possible combina-
tions of words need to make sense. For example,
take two parties A and B such that A chooses an
adjective in the set {green,new} and B chooses its
modifier within the set {paint, policy}. All the
combinations of A and B are possible, i.e. phrases
green paint, green policy, new paint and new policy
all make sense and can indeed be found in natural
language corpora. However, if the set of adjectives
is changed to {blue, new}, we will face a problem
since the phrase blue policy does not make much
sense and we could not find any occurrence of it
in the corpora considered in this paper.2 In order
to keep the models and computations simple, we
work with 2-word phrases, where each word of the
phrase is ambiguous. From the analogy with Bell
scenarios, this means that we are working with bi-
partite scenarios (see Fig. 3). The set of ambiguous
words is taken from experimental data sets from
the studies: Pickering and Frisson (2001); Rayner
and Duffy (1986); Tanenhaus et al. (1979).

In sections 5.4 and 6.4, we introduce another
kind of experiment which departs from Bell sce-
narios. Measurements of these examples have the
same interpretation as before, but the focus is on
combinations involving a single verb and a sin-
gle noun for which both of subject-verb and verb-
object phrases are possible. This structure is anal-
ogous to the scenario in behavioural sciences for
the “Question Order effect” (Wang and Busemeyer,

2One may imagine a metaphorical meaning of this phrase,
e.g. when referring to a depressing policy. In this paper,
however, we work with non metaphorical meanings in order
to keep the hand annotations of interpretations manageable.

Figure 3: Example of a 2-words scenario. The state
(triangle) represents the predefined conditions of the in-
teraction (e.g. verb− object).

2013). In the sheaf-theoretic framework measure-
ment contexts are dictated only by the choices of
local measurements and we face two possibilities
when modelling these examples. In the first possi-
bility, one can consider the two contexts subject-
verb/verb-object as disjoint and as a result lose
some semantic information. This is because, for
example, adopt in adopt boxer would be treated
as completely unrelated to adopt in boxer adopts.
In this case, all such systems will be trivially non-
contextual, as there will be no intersecting local
measurements. In our paper, on the other hand, we
choose a second possibility and decide to keep the
semantic information but as a result any system for
which the distribution arising from the verb-object
context differs from the one associated with subject-
verb context will be signalling. This type of model
does not easily lend itself to a sheaf-theoretic anal-
ysis but admits a straightforward CbD analysis3.

5 Possibilistic examples

We demonstrate the methodology by choosing
three sets of phrases from the sets considered by
Wang (2020) as well as two verb-object/subject-

3We are not aware of any theoretical reason why Bell-
scenario-like models could not be CbD-contextual, none, how-
ever, have been found using the corpus mining methodology
of this paper.
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verb examples. For each of these phrases, we tabu-
late how we encoded the meanings of each word,
provide an empirical Bell-style table for the pos-
sibilistic cases and outline the different types of
contextual features each example demonstrates.

5.1 {coach, boxer} × {lap, file}

Encoding
Meanings of

coach boxer lap file
0 sport boxing run document
1 bus dog drink smooth

(a) Encoding of meanings of coach, boxer, lap and file.
subject verb (0,0) (0,1) (1,0) (1,1)
coach lap 1 1 1 0
coach file 1 1 0 0
boxer lap 1 1 1 1
boxer file 1 1 0 0

(b) Empirical model

Figure 4: Possibilistic model associated with the
subject-verb model {coach, boxer} × {lap, file}.

We start with two subject-verb phrases where
both of the subjects and both of the verbs are am-
biguous. The verbs are lap and file, which can
be understood as drinking a liquid (e.g. the dog
lapped the water) or going past someone on a track
(e.g. the runner lapped their competitor) for lap,
and storing information (e.g. filing a complaint) or
smoothing surfaces with a tool (e.g. filing nails or
teeth) for file. The nouns coach and boxer mean
a person who trains athletes (e.g. a sport coach)
or a type of bus (e.g. a coach trip), and a person
practising boxing (e.g. a heavyweight boxer), or
a specific dog breed respectively. This example is
modelled possibilistically in Fig. 4b and depicted
in the bundle diagram of Fig. 2a. Not all of the lo-
cal assignments can be extended to a global one, for
example, the assignment coach 7→ bus is possible
in the phrase the coach laps, but this assignment
cannot be extended in the phrase the coach files.

This apparent “contextuality”, however, is en-
tirely due to the fact that the model is possibilis-
tically signalling and can be seen by the fact that
the support of the contexts the coach lap and the
coach files, restricted to the measurement coach
do not coincide ([coach 7→ bus] ∈ coach lap|coach
but [coach 7→ bus] 6∈ coach file|coach). Hence,
we cannot judge the contextuality of this model in
the sheaf-theoretic framework.

5.2 {tap, box} × {pitcher, cabinet}
We now consider an empirical model which is
possibilistically non-signalling, and in fact con-
textual. This model deals with two verb-object
phrases where the verbs are {tap, box}, and their
objects are {pitcher, cabinet}. Here, tap is taken
to mean either gently touching (e.g. tapping some-
body on the shoulder) or secretly recording (e.g.
tapping phones); other meanings of the verb tap
exist (e.g. doing tap dancing, tapping resources,
etc.), but since these other meanings are irrelevant
in the phrases of interest, we restrict ourselves to
these two meanings. In addition, the verb box is
understood as putting in a container and practising
boxing. Again, other meanings of the verb to box
exist, but as before, we worked with two dominant
meanings and ignored the rest. The noun cabinet
either represents a governmental body (e.g. the
Shadow Cabinet) or a piece of furniture, and finally
the noun pitcher either refers to a jug or a baseball
player. As we can see in Fig. 2b, the assignment
tap 7→ touch cannot be extended to a global assign-
ment and is therefore possibilistically contextual.

Encoding
Meanings of

tap box cabinet pitcher
0 touch put in boxes government jug
1 record fight furniture baseball

player

(a) Encoding of meanings of tap, box, cabinet and pitcher.
verb object (0,0) (0,1) (1,0) (1,1)
tap pitcher 1 1 0 1
tap cabinet 0 1 1 0
box pitcher 1 0 0 1
box cabinet 0 1 1 0

(b) Empirical model

Figure 5: Possibilistic model associated with the verb-
object model {tap, box} × {pitcher, cabinet}.

As we move to section 6 and mine probability
distributions from corpus for this same model, we
see that this possibilistically non-signalling model
becomes probabilistically signalling.

5.3 {press, box} × {can, leaves}
In this model, each word has multiple grammatical
types and different meanings as follows:

- to press (v): Exert pressure upon something
- press (n): Media which publishes newspapers

and magazines
- press (n): Device used to apply pressure. (e.g.

They used to use printing presses before the
invention of printers.)
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- to box (v): To put in a box
- to box (v): To fight, to practice boxing
- box (n): Container
- can (n) : Tin container
- to can (v): To preserve food in a can (e.g. He

cans his own sardines.)
- can (auxiliary): To be able to
- leaves (v) : Conjugated form of to leave
- leaves (n): Plural of leaf

As we can see in the bundle diagram associated
with the model (Fig. 2c), the marginals of the pos-
sibilistic distributions which share a local measure-
ment have the same support, making this model
possibilistically non-signalling. In addition, every
local section can be extended to a global assign-
ment, which makes the model non-contextual. In
section 6.3 and section 8, we endeavour to see
whether this model is probabilistically contextual.

Encoding
Meanings of

press box can leaves
0 push put in boxes tin leave
1 media fight preserve leaf
2 machine container able to ?

(a) Encoding of meanings of press, box, can and leaves.
A B (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

press can 1 0 0 0 0 1 0 1 1
press leaves 0 1 0 1 0 0 1 0 0
box can 1 0 0 0 0 0 0 1 1
box leaves 0 1 0 0 0 0 1 0 0

(b) Empirical model

Figure 6: Possibilistic model associated with the model
{press, box} × {can, leaves}.

5.4 Subject-verb v. Verb-object
We now introduce two models for which both of
subject-verb and verb-object contexts are possi-
ble and provide two examples. These are the
combinations adopt boxer/boxer adopts and throw
pitcher/pitcher throws, where boxer and pitcher are
defined as in sections 5.1 and 5.2 respectively, and
the verbs adopt and throw can either take literal
(e.g. adopt a child or a pet, throwing a projectile)
or figurative (e.g. adopt a new feature, or throwing
shadows) interpretations. The possibilistic models
associated with these examples are depicted in Fig.
7 and in the bundle diagrams of Fig. 8. The models
are signalling and hence, a sheaf-theoretic analysis
would not be possible.

6 Probabilistic variants

We consider the same examples as in the previ-
ous section, but from a probabilistic point of view.

(adopt, boxer) (0,0) (0,1) (1,0) (1,1)
adopt→ boxer 0 1 1 1
adopt← boxer 1 1 1 1

(a) adopt boxer/boxer adopts
(throw, pitcher) (0,0) (0,1) (1,0) (1,1)
throw→ pitcher 1 0 1 1
throw→ pitcher 0 1 1 1

(b) throw pitcher/pitcher throws

Figure 7: Empirical models for the pairs of words ex-
amples. Here, the different contexts are depicted as
follows: verb→ noun corresponds to the verb-object
context while verb←noun corresponds to the subject-
verb phrase. The outcomes labels are the same for both
contexts; for example (0, 1) in (a) means adopt 7→ 0,
boxer 7→ 1 for both contexts.

(a) adopt boxer/boxer
adopts

(b) throw pitcher/pitcher
throws

Figure 8: Bundle diagrams of the two noun-verb pairs
with contexts verb-object and subject-verb. The encod-
ing of the nouns are the same as in Figs. 4a and 5a;
for verbs, outcomes 0 and 1 represent literal and figura-
tive meanings, respectively. The measurement contexts
(verb-object or subject-verb) are depicted by arrows on
the associated edges.

The probability distributions are obtained from the
British National Corpus (BNC, 2007) and UKWaC
(Baroni et al., 2009). BNC is an open-source text
corpus comprising of 100 million words, spread
across documents of different nature (including
press articles, fiction, transcription of spoken lan-
guage, and academic publications). UKWaC is a
2 billion word corpus constructed from the Web
limiting the crawl to the .uk domain. Both BNC
and UKWaC are part-of-speech tagged, hence, they
provide grammatical relations and the lemma forms
of words. The semantic interpretation of the words
and phrases are absent from these corpora and had
to be decided by the authors manually.

6.1 {coach, boxer} × {lap, file}
Recall that the model in section 5.1 was possibilis-
tically signalling. The frequencies mined from
corpora were found to have the same support as the
model described in section 5.1 (see Fig. 9), whence
the probabilistic analogue remains signalling.
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subject verb (0,0) (0,1) (1,0) (1,1)
coach lap 2/11 7/11 2/11 0
coach file 43/44 1/44 0 0
boxer lap 11/53 22/53 8/53 12/53
boxer file 35/54 19/54 0 0

Figure 9: Empirical model associated with the proba-
bilistic model of {coach, boxer} × {lap, file}

6.2 {tap, box} × {pitcher, cabinet}

By mining frequencies of co-occurrences of
phrases in our two corpora, the model described
in section 5.2 becomes probabilistically signalling,
see Fig. 10a. We therefore cannot decide whether
this model is probabilistically contextual in the
sheaf-theoretic framework.

verb object (0,0) (0,1) (1,0) (1,1)
tap pitcher 17/22 15/22 0 0
tap cabinet 1/21 3/7 11/21 0
box pitcher 3/4 1/4 0 0
box cabinet 3/7 10/21 2/21 0

(a) Empirical model

(b) Bundle diagram

Figure 10: Probabilistic model associated with the
probabilistic model of {tap, box}× {pitcher, cabinet}.

It is important to note that, given the finite size
and the nature of the corpora considered, many
interpretations of the phrases considered did not oc-
cur; for example, there was no instance of baseball
players’ (pitchers’) phones or conversations being
recorded (tapped). On the other hand, several other
interpretations of the phrases did occur, for exam-
ple figuratively putting cabinet members in boxes
or black-boxing a group of ministers.

6.3 {press, box} × {can, leaves}

The possibilistic version of this example, presented
in section 5.3, was non-signalling. Even if tabu-
lating the observed frequencies did not change the
support of the distributions, the model has become
probabilistically signalling. Indeed, one can check
that:

P
[
box leaves|box 7→ put in boxes

]
=2/3

6=P
[
box can|box 7→ put in boxes

]
=7/74 (1)

Yet again, we cannot use the sheaf-theoretic frame-
work to evaluate the contextuality of this model.

A B (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
press can 2/25 0 0 0 0 41/50 0 1/50 2/25
press leaves 0 6/13 0 5/13 0 0 2/13 0 0
box can 7/74 0 0 0 0 0 0 1/74 33/37
box leaves 0 2/3 0 0 0 0 1/3 0 0

Figure 11: Empirical model associated with the proba-
bilistic model of {press, box} × {can, leaves}.

6.4 Subject-verb v. Verb-object
We now present the probability distribution aris-
ing from the examples in section 5.4. As some of
the previous models, the two corpora did not have
instances of all the possible readings of each of
the contexts. The obtained probability distributions
are shown in Fig. 12. As expected, the probability
distribution is also signalling.

(adopt, boxer) (0,0) (0,1) (1,0) (1,1)
adopt→ boxer 0 29/30 1/30 0
adopt← boxer 1/4 0 0 3/4

(a) adopt boxer/boxer adopts
(throw, pitcher) (0,0) (0,1) (1,0) (1,1)
throw→ pitcher 2/5 0 1/10 1/2
throw← pitcher 0 2/3 1/3 0

(b) throw pitcher/pitcher throws

Figure 12: Empirical models for the pairs of words.

7 Non-signalling and ambiguity in
natural language

Non-signalling is a necessary condition for demon-
strating non-locality in quantum mechanics. In
experiments such as the one described in Einstein
et al. (1935), this assumption models the space-like
separation between the systems, e.g. two entan-
gled qubits which are measured in geographically
different labs, or more generally the fact that no
communication between these systems is possible
after their preparation. Non-signalling is a prop-
erty that ensures some laws of quantum mechanics
hold in specific systems and certainly there is no
reason to assume it for natural language. In order
to understand why not, let’s try and use an analogy
with quantum systems. In our experiment, am-
biguous phrases become analogous to entangled

48



quantum systems and each word within a phrase to
a qubit. In the subject-verb phrases we considered,
a form of communication between words within a
phrase becomes possible if after, say the subject-
measuring agent determines the meaning of the sub-
ject, the verb-measuring agent has a more limited
choice in determining the meaning of the verb. A
similar situation is true for the verb-object phrases.
In these cases, communication between the words
of a phrase may seem possible but will definitely
not in general. For instance, consider the coach lap
phrase, if the subject-measuring agent decides that
the meaning of coach is bus, the verb-measuring
agent does not get a choice, since buses cannot
drink. In this case, communication between the
subject and verb-measuring agents is needed. If the
subject-agent, however, sets the meaning of coach
to be sports trainer, the verb-measuring agent still
gets a choice for the meaning of lap, since a trainer
can run in circles as well as drink something up. In
this case, communication between the agents is not
as clearly possible as before.

8 Contextuality-by-Default

We will now study the contextuality of the proba-
bilistic signalling systems we obtained in section
6 using the Contextuality-by-Default framework.
In this framework, each set of jointly distributed
measurements of the empirical model is called a
context, and the contextuality of a system is defined
by the impossibility of creating a global joint dis-
tribution in which the variables corresponding to
each measurement in each pair of contexts where
they appear are equal to each other with maximal
probability (instead of always). For example, in
expression (1) we noticed that the proportions with
which the word “box” is assigned the meaning “put
in boxes” differs between the contexts with mea-
surements “box leaves” and “box can”. This differ-
ence makes the system signalling and implies that
the two variables cannot be treated as equal to each
other within a global assignment. They need to be
treated as different random variables. The maxi-
mal probability that those two random variables
can both receive the assignment “put in boxes” is
min{2/3, 7/74} = 7/74. These probabilities can
be found for every pair of variables corresponding
to each measurement. Continuing with the exam-
ple of the variables corresponding to the measure
of “box” from the example in Section 6.3, the max-
imal probability with which they could be assigned

the meaning “fight” in the contexts “box leaves”
and “box can” is equal to min{0, 0} = 0, and the
probability with which they both can be assigned
“container” is min{1/3, 67/74} = 1/3.

The task of finding whether a global joint distri-
bution that maximizes these probabilities for every
measurement exists can be solved by linear pro-
gramming. Dzhafarov and Kujala (2016) describe
how to define this task for systems that include
measurements with a finite number of outcomes
by taking all possible dichotomizations of their re-
spective outcome sets. We illustrate the procedure
with the proportions of the system in Section 6.3.
The description of this system simplifies by noting
that the word “leaves” could only be assigned two
meanings and that for the word “box”

P
[
box leaves|box 7→ fight

]
= 0,

P
[
box can|box 7→ fight

]
= 0,

effectively making those variables also binary.
Thus, we need only consider dichotomizations of
variables corresponding to the measurements for
“press” and “box”.

A global joint distribution of all dichotomized
variables in our system must define probabili-
ties for 216 different events. They are the com-
bination of the outcomes of 16 binary random
variables: a) 6 in context “press can” including
the three dichotomizations of press can|press and
press can|can; b) 4 in context “press leaves”; c)
4 in context “box can”; and d) 2 in context “box
leaves”. The 216 probabilities are restricted by the
probabilites estimated in Section 6.3, which total
97 linear constrains considering the joint events of
the dichotomizations, individual margins (as the
ones in expression (1)), and that probabilities in a
distribution add to unity. These probabilities are
further restricted by the maximal probabilities com-
puted for the pairs of variables corresponding to the
same dichotomization of the same measurement.
These maximal probabilities are computed by tak-
ing the minimum of the two compared probabilities
as explained above, and they amount to 8 linear
constrains. In all, a total of 105 linear constrains
that the probabilities of the 216 events must satisfy,
and that can be represented in a 105× 216 matrix
of coefficients. Solving the set of linear equations
for this example showed that it was possible to
find such a global joint distribution. Whence, the
system is not contextual.

The systems in sections 6.1 and 6.2 can be shown
to be non-contextual within the CbD framework
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from a Bell inequality for certain signalling systems
which was proved in Kujala and Dzhafarov (2016).

8.1 Subject-verb v. Verb-object

Let us now return to the pairs of words introduced
in 5.4. The probability distributions for the models
adopt boxer/boxer adopts and throw pitcher/pitcher
throws, mined as in section 6, are depicted in
Figs. 12a and 12b, respectively.

Unlike the systems considered above, these two
are contextual within the CbD framework. This
can be shown using the Bell-type inequality proved
in Kujala and Dzhafarov (2016) and, using the re-
sults from Dzhafarov et al. (2020), we can measure
the degree of contextuality of each of these two
systems. The contextuality measure for the adopt-
boxer pair is 1/30 and the measure for the throw-
pitcher pair is 7/30. These measures indicate how
far from becoming non-contextual is each system.

Clearly, the system for the pair adopt-boxer
could easily become non-contextual if the corpora
search in the verb-object context had failed to find
a figurative meaning of adopt, together with the
fighter meaning of boxer for any occurrence of
the words “adopt boxer”. More generally, we
can assess how reliably contextual is this system
by means of parametric bootstrap. We find that
the probability with which we could find a non-
contextual system based on the distributions in
Fig. 12a is larger than .56.

The contextuality for the pair throw-pitcher is
much larger, and indeed the system would need
to exhibit many occurrences of meaning assign-
ments that contravene the general patterns exhib-
ited within each of the contexts. For example, the
system would be deemed non-contextual if the pro-
portion of times where throw took the literal mean-
ing together with an interpretation of pitcher as
a jug in the expression “throw pitcher” increased
from 1/10 to 1/3 while preserving the overall pro-
portions with which each of the words was inter-
preted with a given meaning (say, throw remains
interpreted literally 3/5 of the times). Analogously
to the previous computation, given the probabilities
estimated in Fig. 12b , the probability of finding
the system non-contextual is larger than .08.

9 Conclusions and Discussion

Undoubtedly, the context of ambiguous words
plays an important role in their disambiguation
process. The nature of this role, on the other hand,

is not properly understood and quantified. In this
work, we find ambiguous phrases that are possi-
bilistically (i.e. logically) contextual in the sheaf-
theoretic model, but show that their probabilistic
extensions become signalling. In the presence of
signalling, we analyse these examples in the CbD
framework and discover some of them are not CbD-
contextual. At the same time, however, we do find
examples that are CbD-contextual albeit signalling.
We then argue that the use of different contextuality
frameworks allows us to formally study the effect
of the context on choices of interpretation of am-
biguous phrases, paving the way for a systematic
study of general contextual influences in natural
language.

This study was restricted by the nature of the
types of meanings we considered and the size of
our corpora. Indeed, the observed frequencies of
phrases were not always consistent with our intu-
ition, and in some cases, meaningful phrases did
not appear in the corpus altogether. An example
was the word coach, which could either mean a
sports trainer or a type of bus. In the corpora we
considered, the latter meaning was in fact quite
rare. Our conjecture is that this is due to the fact
that the corpora we considered were both almost
exclusively based on British English, whereas, the
bus meaning of coach is mainly American. Re-
garding types of meaning, in order to facilitate our
manual search for occurrences of interpretations,
we restricted the domain of possible meanings and
did not consider figuratively metaphorical options.
An example is the verb boxing, which can also
mean labelling or ignoring the workings of, but we
only considered its putting in a box and fist fighting
meanings. In future work, we aim to overcome this
restrictions by widening our experimental data and
gather human judgement on degrees of likelihood
of each meaning combination. This will allow also
us to consider a wider range of grammatical rela-
tions in the contexts and also study the effects of
these structures on the disambiguation process as
well as allowing a more reliable estimation of the
probability distributions.
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Abstract
We propose a framework to model an oper-
ational conversational negation by applying
worldly context (prior knowledge) to logical
negation in compositional distributional se-
mantics. Given a word, our framework can cre-
ate its negation that is similar to how humans
perceive negation. The framework corrects
logical negation to weight meanings closer in
the entailment hierarchy more than meanings
further apart. The proposed framework is flex-
ible to accommodate different choices of logi-
cal negations, compositions, and worldly con-
text generation. In particular, we propose and
motivate a new logical negation using matrix
inverse.

We validate the sensibility of our conversa-
tional negation framework by performing ex-
periments, leveraging density matrices to en-
code graded entailment information. We con-
clude that the combination of subtraction nega-
tion (¬sub) and phaser in the basis of the
negated word yields the highest Pearson cor-
relation of 0.635 with human ratings.

1 Introduction

Negation is fundamental to every human language,
marking a key difference from how other animals
communicate (Horn, 1972). It enables us to express
denial, contradiction, and other uniquely human
aspects of language. As humans, we know that
negation has an operational interpretation: if we
know the meaning of A, we can infer the mean-
ing of not A, without needing to see or hear not A
explicitly in any context.

Formalizing an operational description of how
humans interpret negation in natural language is
a challenge of significance to the fields of linguis-
tics, epistemology, and psychology. Kruszewski
et al. (2016) notes that there is no straightforward
negation operation that, when applied to the dis-
tributional semantics vector of a word, derives a

negation of that word that captures our intuition.
This work proposes and experimentally validates
an operational framework for conversational nega-
tion in compositional distributional semantics.

In the field of distributional semantics, there have
been developments in capturing the purely logical
form of negation. Widdows and Peters (2003) intro-
duce the idea of computing negation by mapping
a vector to its orthogonal subspace; Lewis (2020)
analogously model their logical negation for den-
sity matrices. However, logical negation alone is
insufficient in expressing the nuances of negation
in human language. Consider the sentences:

a) This is not an apple;
this is an orange.

b) This is not an apple;
this is a paper.

Sentence a) is more plausible in real life than sen-
tence b). However, since apples and oranges share
a lot in common, their vector or density matrix en-
codings would most likely not be orthogonal. Con-
sequently, such a logical negation of apple would
more likely indicate a paper than an orange.

Blunsom et al. (2013) propose that the encoding
of a word should have a distinct “domain” and
“value”, and its negation should only affect the
“value”. In this way, not blue would still be in
the domain of color. However, they do not provide
any scalable way to generate such representation of
“domain” and “value” from a corpus. We argue that
this domain need not be encoded in the vector or
density matrix itself. Instead, we propose a method
to generate what we call worldly context directly
from the word and its relationships to other words,
computed a priori using worldly knowledge.

Furthermore, we want such conversational nega-
tion to generalize from words to sentences and to
entire texts. DisCoCat (Coecke et al., 2010) pro-
vides a method to compose the meaning of words
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to get the meaning of sentences and DisCoCirc (Co-
ecke, 2020) extends this to propagate knowledge
throughout the text. Therefore, we propose our
conversational negation in the DisCoCirc formal-
ism, putting our framework in a rich expanse of
grammatical types and sentence structures. Focus-
ing on the conversational negation of single words,
we leave the interaction of conversational negation
with grammatical structures for future work.

Section 2 introduces the necessary background.
Section 3 discusses the logical negation using sub-
traction from the identity matrix from Lewis (2020),
and proposes and justifies a second, new form of
logical negation using matrix inverse. Section 4
introduces methods for context creation based on
worldly knowledge. Section 5 presents the gen-
eral framework for performing conversational nega-
tion of a word by combining logical negation with
worldly context. Section 6 experimentally verifies
the proposed framework, comparing each combi-
nation of different logical negations, compositions,
bases, and worldly context generation. We end our
discussion with an overview of future work.

2 Background

2.1 Conversational negation

Kruszewski et al. (2016) point out a long tradition
in formal semantics, pragmatics and psycholinguis-
tics which has argued that negation—in human
conversation—is not simply a denial of informa-
tion; it also indicates the truth of an alternative
assertion. They call this alternative-licensing view
of negation conversational negation.

Another view on negation states that the effect
of negation is merely one of information denial
(Evans et al., 1996). However, Prado and Noveck
(2006) explain that even under this view, the search
for alternatives could happen as a secondary effort
for interpreting negation in the sentence.

The likelihood of different alternatives to a
negated word inherently admits a grading (Oaks-
ford, 2002; Kruszewski et al., 2016). For example,
something that is not a car is more likely to be a
bus than a pen. They argue that the most plausible
alternatives are the ones that are applicable across
many varied contexts; car can be replaced by bus
in many contexts, but it requires an unusual context
to sensibly replace car with pen.

elf

Alice

old

Figure 1: Graphical representation of meaning updat-
ing in DisCoCirc - read from top to bottom

2.2 Compositional semantics and DisCoCirc
Language comprehension depends on understand-
ing the meaning of words as well as understanding
how the words interact with each other in a sen-
tence. While the former is an understanding of the
definitions of words, the latter requires an under-
standing of grammar. Coecke et al. (2010) build
on this intuition to propose DisCoCat, a composi-
tional distributional model of meaning, making use
of the diagrammatic calculus originally introduced
for quantum computing (Abramsky and Coecke,
2004). In Coecke (2020), this model was extended
to DisCoCirc which generalized DisCoCat from
modeling individual sentences to entire texts. In
DisCoCirc, the two sentences

Alice is an elf.
Alice is old.

are viewed as two processes updating the state of
Alice, about whom, at the beginning of the text,
the reader knows nothing. Graphically this can be
displayed as shown in Figure 1. The wire labeled
by Alice represents the knowledge we have about
Alice at any point in time. It is first updated by the
fact that she is an elf and subsequently updated by
the fact that she is old. We use a black square to rep-
resent a general meaning-update operation, which
can be one of a variety of operators we discuss in
the next section. DisCoCirc allows for more gram-
matically complex sentence and text structures not
investigated in this work.

DisCoCirc allows for various ways of represent-
ing meaning such as vector spaces (Coecke et al.,
2010; Grefenstette and Sadrzadeh, 2011), concep-
tual spaces (Bolt et al., 2017), and density matrices
(Balkir et al., 2016; Lewis, 2019). A density matrix
is a complex matrix, which is equal to its own con-
jugate transpose (Hermitian) and has non-negative
eigenvalues (positive semidefinite). They can be
viewed as an extension of vector spaces to allow
for encoding lexical entailment structure (see Sec-
tion 2.4), a property for which they were selected
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as the model of meaning for this paper.

2.3 Compositions for meaning update

We present four compositions for meaning update:

spider(A, B) := Us(A⊗ B)U †s (1)

- Us =
∑

i |i〉 〈ii| where {|i〉}i is B’s eigenbasis
- non-linear AND in Coecke (2020)

fuzz(A, B) :=
∑

i

xiPi ◦ A ◦ Pi (2)

- B =
∑

i xiPi
- in Coecke and Meichanetzidis (2020)
- Kmult in Lewis (2020)

phaser(A, B) := B
1
2 AB

1
2 (3)

- B =
∑

i x
2
iPi where B

1
2 =

∑
i xiPi

- in Coecke and Meichanetzidis (2020)
- Bmult in Lewis (2020)
- corresponds to quantum Bayesian update (van de

Wetering, 2018)

���diag(A, B) := dg(A) ◦ dg(B) (4)

- a Compr from De las Cuevas et al. (2020): lifts
verbs and adjectives to completely positive maps
matching their grammatical type

where A and B are density matrices, xi is a real
scalar between 0 and 1, Pi’s are projectors, and the
function dg sets all off-diagonal matrix elements to
0 giving a diagonal matrix.

Of the many Compr variants (De las Cuevas
et al., 2020), we only consider diag and mult (el-
ementwise matrix multiplication, which is an in-
stance of spider) as candidates for composition. All
other variants are scalar multiples of one input, the
identity wire, or a maximally mixed state; therefore
we do not consider them as they discard too much
information about the inputs.

For spider, fuzz, and phaser, choosing the basis
of the composition determines the basis the result-
ing density matrix takes on, and its meaning is
interpreted in (Coecke and Meichanetzidis, 2020).

2.4 Lexical entailment via hyponymies
A word wA is a hyponym of wB if wA is a type
of wB; then, wB is a hypernym of wA. For exam-
ple, dog is a hyponym of animal, and animal is a
hypernym of dog. Where there is a meaning rela-
tion between two words, there exists an entailment
relation between two sentences containing those
words. Measures to quantify these relations ought
to be graded, as one would expect some entailment
relations to be weaker than others. Furthermore,
such measures should be asymmetric (a bee is an
insect, but an insect is not necessarily a bee) and
pseudo-transitive (a t-shirt is a shirt, a shirt can be
formal, but a t-shirt is usually not formal).

One of the limitations of the vector space model
of NLP is that it does not admit a natural non-trivial
graded entailment structure (Balkir et al., 2016;
Coecke, 2020). Bankova et al. (2019) utilize the
richer setting of density matrices to define a mea-
sure called k-hyponymy, generalizing the Löwner
order to have a grading for positive operators, sat-
isfying the above three properties. They further
lift from entailment between words to between two
sentences of the same grammatical structure, using
compositional semantics, and prove a lower bound
on this entailment between sentences.

The k-hyponymy (khyp) between density matri-
ces A and B is the maximum k such that

A vk B⇐⇒ B− kA is a positive operator (5)

where k is between 0 (no entailment) and 1 (full
entailment).

Van de Wetering (2018) finds that the crisp
Löwner ordering (khyp = 1) is trivial when op-
erators are normalized to trace 1. On the other
hand, they enumerate highly desirable properties
of the Löwner order when normalized to highest
eigenvalue 1. In particular, the maximally mixed
state is the bottom element; all pure states are max-
imal; and the ordering is preserved under any lin-
ear trace-preserving isometry (including unitaries),
convex mixture, and the tensor product. In our ex-
periments, we leverage these ordering properties
following Lewis (2020)’s convention of normaliz-
ing operators to highest eigenvalue ≤ 1.

According to Bankova et al. (2019, Theorem 2),
when supp(A) ⊆ supp(B), khyp is given by 1/γ,
where γ is the maximum eigenvalue of B+A. Here
B+ denotes the Moore-Penrose inverse of B, which
we refer to in the next section as support inverse.
If supp(A) 6⊆ supp(B), khyp is 0. This means that
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khyp admits a grading, but is not robust to errors. In
our experiments, to circumvent this issue of almost
all of our calculated khyp being 0, we employ a
generalized form of khyp equivalent to as originally
defined in Bankova et al. (2019, Theorem 2), less
checking whether supp(A) ⊆ supp(B).

To propose more robust measures, Lewis (2019)
says A entails B with the error term E if there exists
a D such that:

A + D = B + E (6)

to define the following two entailment measures

kBA =

∑
i λi∑
i |λi|

=
Trace(D− E)
Trace(D + E)

(7)

kE = 1− ‖E‖‖A‖ (8)

where the λi’s are the eigenvalues of B − A. In
Equations 7 and 8, the error term E satisfying Equa-
tion 6 is constructed by taking the diagonalization
of B − A, setting all positive eigenvalues to zero,
and changing the sign of all negative eigenvalues.
kBA ranges from −1 to 1, and kE ranges from 0
to 1.

According to De las Cuevas et al. (2020), diag,
mult, and spider preserve crisp Löwner order:

A1 v B1,A2 v B2 ⇐⇒ A1 A2 v B1 B2

(9)
Fuzz and phaser do not satisfy Equation 9.

3 Logical negations

To construct conversational negation, we must first
define a key ingredient – logical negation, denoted
by ¬. The logical negation of a density matrix is a
unary function that yields another density matrix.

The most important property of a logical nega-
tion is that it must interact well with hyponymy.
Ideally, the interpretation of the contrapositive of
an entailment must be sensible:

A v B⇐⇒ ¬B v ¬A (10)

A weakened notion arises from allowing varying
degrees of entailment:

A vk B⇐⇒ ¬B vk′ ¬A (11)

where k = k′ in the ideal case.
Equation 11 necessitates any candidate of logical

negation to be order-reversing. However, van de

Wetering (2018) proved that all unitary operations
preserve Löwner order. Therefore, no quantum
gates can reverse Löwner order, and the search for
a logical negation compatible with quantum natural
language processing (Coecke et al., 2020) (origi-
nally formulated in the category of CPM(FHilb)
(Piedeleu et al., 2015)) remains an open question.

We now discuss two candidates for logical nega-
tion that have desirable properties and interaction
with the hyponymies presented in Section 2.4.

3.1 Subtraction from identity negation
Lewis (2020) introduces a candidate logical nega-
tion which preserves positivity of density matrix X:

¬subX := I− X (12)

In the case where X is a pure state, it maps X to the
subspace orthogonal to it, as the identity matrix I
is the sum of orthonormal projectors. This logical
negation satisfies Equation 10 for the crisp Löwner
order. It satisfies Equation 11 with k = k′ for kBA,
but not for khyp or kE.

3.2 Matrix inverse negation
We introduce a new candidate for logical negation,
the matrix inverse. This reverses Löwner order, i.e.
satisfies Equation 11 with k = k′ (see Corollary 1
in Appendix). It additionally satisfies Equation 11
with k = k′ for kBA if both density operators have
same eigenbases (see Theorem 2 in Appendix).

As the matrix inverse of a non-invertible matrix
is undefined, we define a logical negation from two
generalizations of the matrix inverse acting upon
the support and kernel subspaces, respectively.
Definition 1. For any density matrix X with spec-
tral decomposition X =

∑
i λi |i〉 〈i|,

¬suppX :=
∑

i

{
1
λi
|i〉 〈i| , if λi > 0

0, otherwise
(13)

Definition 1 is the Moore-Penrose generalized
matrix inverse and is equal to the matrix inverse
when the kernel is empty. It has the property
that Equation 11 with k = k′ is satisfied for khyp
when rank(A) = rank(B) (see Theorem 1 in Ap-
pendix). We call it the support inverse, to contrast
with what we call the kernel inverse:
Definition 2. For any non-invertible density matrix
X with spectral decomposition X =

∑
i λi |i〉 〈i|,

¬kerX :=
∑

i

{
1 |i〉 〈i| , if λi = 0

0, otherwise
(14)
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The kernel inverse is the limit of matrix regu-
larization by spectral filtering (i.e. setting all zero
eigenvalues to an infinitesimal positive eigenvalue),
then inverting the matrix and normalizing to highest
eigenvalue 1. Its application discards all informa-
tion about the eigenspectrum of the original matrix.
Therefore, applying the kernel inverse twice results
in a maximally mixed state over the support of
the original matrix. Operationally speaking, ¬ker
and ¬sub act upon the kernel of the original matrix
identically.

We can think conceptually of a negated word as
containing elements both “near” (in support) and
“far” (in kernel) from the original word. Therefore,
a logical negation should encompass nonzero val-
ues in the original matrix’s support and in its kernel;
it is up to conversational negation to then weight
the values in the logical negation according to their
contextual relevance.

On their own, neither the support inverse nor the
kernel inverse are sensible candidates for logical
negation. A convex mixture of the two, which we
call matrix inverse and denote with ¬inv, spans
both support and kernel of the original matrix.
In our experiments we weight support and kernel
equally, but other weightings could be considered,
for instance to take into account a noise floor or
enforce the naively unsatisfied property that twice
application is the identity operation.

When composing a density matrix X with ¬invX
or ¬suppX via spider, fuzz, or phaser, the resulting
density matrix has the desired property of being a
maximally mixed state on the support with zeroes
on the kernel (see Theorem 3 and Corollary 2 in
Appendix). In other words, this operation is the
fastest “quantum (Bayesian, in the case of phaser)
update” from a density matrix to the state encoding
no information other than partitioning support and
kernel subspaces. Interpreting composition as logi-
cal AND, this corresponds to the contradiction that
a proposition (restricted to the support subspace)
cannot simultaneously be true and not true.

3.3 Normalization

¬sub, ¬supp, and ¬inv preserve eigenvectors (up to
uniqueness for eigenvalues with multiplicity > 1).
We ignore normalization for logical negation be-
cause in our conversational negation framework,
which we introduce in Section 5, we can always
normalize to largest eigenvalue ≤ 1 after the com-
position operation.

apple fruit food entity

orange movie

Figure 2: Example of hyponymy structure as can be
found in entailment hierarchies

4 Context determination

Negation is intrinsically dependent on context.
Context can be derived from two sources: 1) knowl-
edge gained throughout the sentence or the text
(textual context), and 2) worldly knowledge from
experts or data such as a corpus (worldly context).
While textual context depends on the specific text
being analyzed, worldly context can be computed a
priori. In this section, we introduce worldly context
and propose two methods of computing it.

4.1 Worldly context

Worldly knowledge is a certain understanding of
the world that most users of a language intuitively
possess. We want to capture this worldly knowl-
edge to provide a context for negation that is not
explicit in the text. In this section, we propose two
methods of generating a worldly context: 1) knowl-
edge encoded in an entailment hierarchy such as
WordNet, and 2) generalizing the ideas of the first
method to context derivation from the entailment
information encoded in density matrices.

4.1.1 Context from an entailment hierarchy
We consider an entailment hierarchy for words that
leads to relations such as in Figure 2, where a di-
rected edge can be understood as a hyponym re-
lation. Such relational hierarchy can be obtained
from human curated database like WordNet (Fell-
baum, 1998) or using unsupervised methods such
as Hearst patterns (Hearst, 1992; Roller et al.,
2018).

We can use such a hierarchy of hyponyms to
generate worldly context, as words usually appear
in the implicit context of their hypernyms; for ex-
ample, apple is usually thought of as a fruit. Now,
to calculate the worldly context for the word ap-
ple, we take a weighted sum of the hypernyms of
apple, with more direct hypernyms such as fruit
weighted higher than more distant hypernyms such
as entity. This corresponds to the idea that when
we talk in the context of apple, we are more likely
to talk about an orange (hyponym of fruit) than a
movie (hyponym of entity). Hence, for a word w
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with hypernyms h1, . . . , hn ordered from closest
to furthest, we define the worldly context wcw as:

JwcwK :=
∑

i

piJhiK (15)

where pi ≥ pi+1 for all i.
For this approach, we assume that the density

matrix of the word is a mixture containing its hy-
ponyms; i.e. the density matrix of fruit is a mixture
of all fruits such as apple, orange and pears.

4.1.2 Context using entailment encoded in
the density matrices

As explained in Section 2.4, density matrix rep-
resentation of words can be used to encode the
information about entailment between words. Fur-
thermore, this entailment can be graded; for ex-
ample, fruit would entail dessert with a high de-
gree, but not necessarily by 1. Such graded entail-
ment is not captured in the human curated WordNet
database. Although there have been proposals to
extend WordNet (Boyd-Graber et al., 2006; Ahsaee
et al., 2014), such semantic networks are not yet
available.

We generalize the idea of entailment hierarchy
by considering a directed weighted graph where
each node is a word and the edges indicate how
much one word entails the other. Once we have the
density matrices for words generated from corpus
data, we can build this graph by calculating the
graded hyponymies (see Section 2.4) among the
words, thereby extracting the knowledge gained
from the corpus encoded in the density matrices,
without requiring human narration.

Consider words x and y where x vp y and y vq
x. In the ideal case, there are three possibilities:
1) x and y are not related (both p and q are small),
2) one is a type of the other (one of p and q is large),
or 3) they are very similar (both p and q are large).
Hence, we need to consider both p and q when we
generate the worldly context. To obtain the worldly
context for a wordw, we consider all nodes (words)
connected to w along with their weightings. If
p1, . . . , pn and q1, . . . , qn are the weights of the
edges from w to words h1, . . . , hn, then worldly
context wcw is given by

JwcwK :=
∑

i

f(pi, qi)JhiK (16)

where f is some function of weights pi and qi.

5 Conversational negation in DisCoCirc

5.1 A framework for conversational negation

In this section, we present a framework to obtain
conversational negation by composing logical nega-
tion with worldly context. As discussed in Sec-
tion 2.1, negation—when used in conversation—
can be viewed as not just a complement of the
original word, but as also suggesting an alternative
claim. Therefore, to obtain conversational negation,
we need to adapt the logical negation to take into
account the worldly context of the negated word.

In DisCoCirc (see Section 2.2), words are wires,
and sentences are processes that update meaning
of the words. Similarly, we view conversational
negation as a process that updates the meaning
of the words. We propose the general framework
for conversational negation by defining it to be
the logical negation of the word, updated through
composition with the worldly context evoked by
that word:

Conversational
negation

¬ (17)

The framework presented here is general; i.e.
it does not restrict the choice of logical negation,
worldly context or composition. The main steps of
conversational negation are:

1. Calculate the logical negation ¬(JwK).
2. Compute the worldly context JwcwK.
3. Update the meaning of ¬(JwK) by composing

with JwcwK to obtain ¬(JwK) JwcwK.
Further meaning updates can be applied to the out-
put of conversational negation using compositional
semantics as required from the structure of the text,
although we do not investigate this in the current
work.

5.2 See it in action

We present a toy example to develop intuition
of how meaning provided by worldly context
interacts with logical negation and composi-
tion to derive conversational negation. Suppose
{apple, orange, fig, movie} are pure states
forming an orthonormal basis (ONB). In practice
ONBs are far larger, but this example suffices to
illustrate how the conversational negation accounts
for which states are relevant. We take ¬sub as the
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choice of negation and spider in this ONB as the
choice of composition.

Now, consider the sentence:

This is not an apple.

Although in reality the worldly context of apple
encompasses more than just fruit, for ease of un-
derstanding, assume the worldly context of apple
is JwcappleK = JfruitK, given by

JfruitK = 1

2
JappleK + 1

3
JorangeK + 1

6
JfigK

Applying ¬sub(JappleK) = I− JappleK, we get

¬sub(JappleK) = JorangeK + JfigK + JmovieK

Finally, to obtain conversational negation, logi-
cal negation is endowed with meaning through the
application of worldly context.

¬sub(JappleK) JfruitK = 1

3
JorangeK + 1

6
JfigK

This conversational negation example not only
yields all fruits which are not apples, but also pre-
serves the proportions of the non-apple fruits.

6 Experiments

To validate the proposed framework, we perform
experiments on the data set of alternative plausibil-
ity ratings created by Kruszewski et al. (2016)1. In
their paper, Kruszewski et al. (2016) predict plausi-
bility scores for word pairs consisting of a negated
word and its alternative using various methods to
compare the similarity of the words. While achiev-
ing a high correlation with human intuition, they
do not provide an operation to model the outcome
of a conversational negation. Through the exper-
iments, we test whether our operational conver-
sational negation still has correlation with human
intuition.

6.1 Data

The Kruszewski et al. (2016) data set consists of
word pairs containing a noun to be negated and an
alternative noun, along with a plausibility rating.
We will denote the word pairs as (wN , wA). The
authors transform these word pairs into simple sen-
tences of the form: This is not a wN , it is a wA (e.g.
This is not a radio, it is a dad.). These sentences are

1The data set is available at http://marcobaroni.
org/PublicData/alternatives_dataset.zip

then rated by human participants on how plausible
they are to appear in a natural conversation.

To build these word pairs, Kruszewski et al.
(2016) randomly picked 50 common nouns as wN
and paired them with alternatives that have various
relations to wN . Then using a crowd-sourcing ser-
vice, they asked the human participants to judge
the plausibility of each sentence. The participants
were told to rate each sentence on a scale of 1 to 5.

6.2 Methodology
We build density matrices from 50 dimensional
GloVe (Pennington et al., 2014) vectors using the
method described in Lewis (2019). Then for each
word pair (wN , wA) in the data set, we use various
combinations of operations to perform conversa-
tional negation on the density matrix of wN and
calculate similarity with the density matrix of wA.

For conversational negation, we experiment with
different combinations of logical negations, com-
position operations and worldly context. We use
two types of logical negations: ¬sub and ¬inv. For
composition, we use spider, fuzz, phaser, mult and
diag. With spider, fuzz and phaser, we perform
experiments in two choices of basis: ‘w’, the basis
of ¬(JwN K), and ‘c’, the basis of JwcwN K. We use
worldly context generated from the WordNet entail-
ment hierarchy as per Section 4.1.1; we experiment
with different methods to calculate the weights pi
along the hypernym path.

To find plausibility ratings, we calculate hy-
ponymies khyp, kE and kBA, as well as trace similar-
ity (the density operator analog of cosine similarity
for vectors), between the density matrix of the con-
versational negation of wN and JwAK. Note that in
our experiments, unlike in the originally proposed
formulation of khyp, we generalize khyp to not be 0
when supp(A) 6⊆ supp(B), as described in Sec-
tion 2.4. We calculate entailment in both directions
for kE and khyp, which are asymmetric. The en-
tailment from wN to wA is denoted kE1 and khyp1
while the entailment from wA to wN is denoted
kE2 and khyp2. Finally, we calculate the Pearson
correlation between our plausibility ratings and the
mean human plausibility ratings from Kruszewski
et al. (2016).

6.3 Results
Our experiments revealed that the best conversa-
tional negation is obtained by choosing ¬sub with
phaser in the basis ‘w’. We achieve 0.635 correla-
tion of the trace similarity plausibility rating with
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Figure 3: Correlation of logical (left) and conversa-
tional negation (right) with mean human rating

Figure 4: Correlation of various conversational nega-
tions with mean plausibility ratings of human partici-
pants. Correlations above 0.4 are highlighted in green.

the human ratings, as shown in Figure 3 (right).

On the other hand, Figure 3 (left) shows trace
similarity of ¬sub without applying any context.
We observe that simply performing logical nega-
tion yields a negative correlation with human plau-
sibility ratings. This is because logical negation
gives us a density matrix furthest from the original
word, going against the observation of Kruszewski
et al. (2016) that an alternative to a negated word
appears in similar contexts to it. Figure 3 (right)
shows the results of combining this logical nega-
tion with worldly context to obtain meaning that
positively correlates with how humans think of
negation in conversation.

We tested many combinations for conversational
negation enumerated in Section 6.2. The correla-
tion between plausibility ratings for our conversa-
tional negation and the mean human plausibility
rating is shown in Figure 4. We left out mult and
diag from the table as they did not achieve any
correlation above 0.3. Now, we will explore each
variable of our experiments individually in the next
sections.

6.3.1 Logical negation
We tested ¬sub and ¬inv logical negations. We
found that the conversational negations built from
¬sub negation usually had a higher correlation with
human plausibility ratings, with the highest being
0.635 as shown in Figures 3 and 4. One exception
to this is when the ¬inv is combined with spider in
the basis ‘c’, for which we get the correlation of
0.455 for both trace similarity and kE2.

6.3.2 Composition
We investigated five kinds of composition opera-
tions: spider, fuzz, phaser, mult, and diag. We
found that the results using mult and diag do not
have any statistically significant correlation (<0.3)
with human plausibility rating. On the other hand,
phaser (in the basis ‘w’) has the highest correla-
tion. It performs well with both logical negations.
Plausibility ratings for phaser with ¬sub negation
measured using kE2 and trace similarity has corre-
lations of 0.602 and 0.635 respectively. Spider and
fuzz have statistically relevant correlation for a few
cases but never more than 0.5.

6.3.3 Basis
Spider, fuzz, and phaser necessitate a choice of
basis for applying the worldly context in the con-
versational negation. We can interpret this choice
as determining which input density matrix sets the
eigenbasis of the output, and which modifies the
other’s spectrum. We found that phaser paired
with the basis ‘w’ (the basis of the logically negated
word) performs better than the basis ‘c’ (the basis of
the worldly context) across both negations for most
plausibility metrics. This lines up with our intuition
that applying worldly context updates the eigen-
spectrum of ¬(JwN K), leveraging worldly knowl-
edge to increase/decrease the weights of more/less
contextually relevant values of the logical negation
of wN . However, a notable exception to this rea-
soning is our result that for spider paired with ¬inv,
basis ‘c’ has statistically significant correlations
with human ratings, while basis ‘w’ does not.

6.3.4 Worldly context
For these experiments, we create worldly context
based on the hypernym paths provided by WordNet.
As explained in Section 4.1.1, we need pi ≥ pi+1

in Equation 15 for the more direct hypernyms to
be more important than more distant hypernyms.
Hence, we tried multiple monotonically decreasing
functions for the weights {pi}i of the hypernyms.
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Figure 5: Correlation of results of different context
functions with human rating

For a word w with n hypernyms h1, ..., hn ordered
from closest to furthest, we define the following
functions to calculate pi.

polyx(i) := (n− i)x (18)

expx(i) := (1 +
x

10
)(n−i) (19)

hypx(i) := (n− i)x
2 kE(w, hi) (20)

Figure 5 shows on the y-axis the correlation of
the human rating with the plausibility rating (trace)
of our best conversational negation (phaser with
¬sub in the basis ‘w’) and the parameters of context
functions on the x-axis. We observe that all three
context functions achieve a maximal correlation
of 0.635, therefore being equally good. All func-
tions eventually drop in correlation as the value of
x increases, showing that having the context too
close to the word does not yield optimal results
either. One important observation is that at x = 0,
hypx(i) = kE(w, hi) still performs well with a
correlation of 0.581, despite not taking the Word-
Net hypernym distance into account. This is an
evidence for the potential of the context creation
based on density matrix entailment proposed in
Section 4.1.2.

6.3.5 Plausibility rating measures
On top of calculating the conversational negation,
the experiments call for comparing the results of
the conversational negation with wA to give plau-
sibility ratings. We compare the hyponymies kE,
khyp, and kBA, as well as trace similarity. The re-
sults show that trace similarity and kE2 interact
most sensibly with our conversational negation,
attaining 0.635 and 0.602 correlation with mean
human ratings respectively. For the asymmetric
measures kE and khyp, computing the entailment
from wA to the conversational negation of wN per-
formed better than the other direction. For all sim-

ilarity measures (except khyp1), ¬sub paired with
phaser in the basis ‘w’ performs the best.

7 Future work

The framework presented in this paper shows
promising results for conversational negation in
compositional distributional semantics. Given its
modular design, additional work should be done
exploring more kinds of logical negations, com-
positions and worldly contexts, as well as situa-
tions for which certain combinations are optimal.
Since creating worldly context—as presented in
this paper—is a new concept in the area of DisCo-
Circ, it leaves the most room for further exploration.
In particular, our framework does not handle how
to disambiguate different meanings of the same
word; for example, the worldly context of the word
apple should be different for the fruit apple versus
the technology company apple.

Our conversational negation framework cur-
rently does not model a different kind of nega-
tion where the suggested alternative is an antonym
rather than just any other word that appears in sim-
ilar contexts. For instance, the sentence Alice is
not happy suggests that Alice is sad—an antonym
of happy—rather than cheerful, even though cheer-
ful might appear in similar contexts as happy. We
would like to extend the conversational negation
framework to account for this.

We would like to implement the context gener-
ation method presented in Section 4.1.2 and test
on the current experimental setup.2 To further vali-
date the framework, more data sets should be col-
lected and evaluated on to explore, for each type
of relation between words, what construction of
conversational negation yields sensible plausibility
ratings.

For the conversational negation to be fully appli-
cable in the context of compositional distributional
semantics, further theoretical work is required to
generalize the model from negation of individual
nouns to negation of other grammatical classes and
complex sentences. Furthermore, we would like
to analyze the interplay between conversational
negation, textual context, and evolving meanings.
Lastly, the interaction of conversational negation
with logical connectives and quantifiers leaves open
questions to explore.

2The code is available upon request.
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A Proofs

A.1 Support inverse reverses k-hyponymy

Theorem 1. For two density matrices A and B,
k-hyponymy is reversed by support inverse when
rank(A) = rank(B):

A vk B⇐⇒ ¬suppB vk ¬suppA (21)

Proof. From (Baksalary et al., 1989), ¬supp re-
verses Löwner order when rank(A) = rank(B):

A v B⇐⇒ ¬suppB v ¬suppA (22)

Thus, letting “≥ 0” denote the operator is positive:

A vk B⇐⇒ B− kA ≥ 0 (23)

⇐⇒ (kA)−1 − B−1 ≥ 0 (24)

⇐⇒ 1

k
A−1 − B−1 ≥ 0 (25)

⇐⇒ A−1 − kB−1 ≥ 0 (26)

⇐⇒ B−1 vk A−1 (27)

using Equations 5 and 22 from Equation 23 to 24.

Corollary 1. For two invertible density matrices A
and B, k-hyponymy is reversed by matrix inverse:

A vk B⇐⇒ B−1 vk A−1 (28)

A.2 Matrix inverse reverses kBA in same
basis case

Theorem 2. For two density matrices A and B
with the same eigenbasis, kBA is reversed by matrix
inverse:

kBA(B−1,A−1) = kBA(A,B) (29)

Proof.

kBA(B−1,A−1) =

∑
i λ

i
A−1 − λiB−1

∑
i

∣∣∣λiA−1 − λiB−1

∣∣∣
(30)

=

∑
i

1
λiA
− 1

λiB∑
i

∣∣∣ 1
λiA
− 1

λiB

∣∣∣
(31)

=

∑
i λ

i
B − λiA∑

i

∣∣λiB − λiA
∣∣ (32)

= kBA(A,B) (33)

using Equation 13 from Equation 30 to 31.

A.3 Composing with ¬sub or ¬inv gives
maximally mixed support

Theorem 3. When composing a density matrix X
with ¬suppX via spider, fuzz, or phaser, the result-
ing density matrix has the desired property of being
a maximally mixed state on the support with zeroes
on the kernel.

Proof. ¬suppX and X have the same eigenbasis.
From Equation 13, all nonzero eigenvalues of
¬suppX are multiplicative inverses of the corre-
sponding eigenvalue of X.
We use definitions of spider, fuzz, and phaser from
Equations 1, 2, and 3. The summation indices are
over eigenvectors with nonzero eigenvalue.

spider(X, ¬suppX) (34)

= Us(X⊗ ¬suppX)U †s (35)

=
(∑

i

|i〉 〈ii|
)
(X⊗ ¬suppX)

(∑

j

|jj〉 〈j|
)

(36)

=
∑

i

|i〉 〈ii|
((
λ |i〉 〈i|

)
⊗
( 1
λi
|i〉 〈i|

))
|ii〉 〈i|

(37)

=
∑

i

|i〉 〈i| (38)

= Isupp (39)

fuzz(X, ¬suppX) =
∑

i

xiPi ◦ X ◦ Pi (40)

=
∑

i

1

λi
Pi

(∑

j

λiPi

)
Pi (41)

=
∑

i

Pi (42)

= Isupp (43)

phaser(X, ¬suppX) (44)

=
(∑

i

xiPi

)
◦ X ◦

(∑

i

xiPi

)
(45)

=
(∑

i

λi
− 1

2Pi

)(∑

j

λjPj

)(∑

k

λk
− 1

2Pk

)

(46)

=
∑

i

Pi (47)

= Isupp (48)
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Corollary 2. When composing a density matrix X
with ¬invX via spider, fuzz, or phaser, the resulting
density matrix has the desired property of being a
maximally mixed state on the support with zeroes
on the kernel.
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Abstract

In distributional compositional models of
meaning logical words require special interpre-
tations, that specify the way in which other
words in the sentence interact with each other.
So far within the DisCoCat framework, con-
junctions have been implemented as merging
both conjuncts into a single output, however
in the new framework of DisCoCirc merging
between nouns is no longer possible. We pro-
vide an account of conjunction and an inter-
pretation for the word and that solves this,
and moreover ensures certain intuitively sim-
ilar sentences can be given the same interpre-
tations.

1 Introduction

The distributional semantics paradigm allows us to
model the meanings of words in terms of their sur-
rounding words, as well as the meaning of texts in
terms of their constituent words. Meanwhile com-
positional semantics considers how meaning can
arise from the grammatical form of a sentence. The
distributional compositional (DisCo-) approach to
modelling meaning introduced by Coecke et al.
(2010) allows the meaning of a sentence to be com-
puted as a function of both the distributional mean-
ing of the words involved, as well as its grammati-
cal form. Recent work by Lorenz et al. (2021) has
implemented the approach on quantum hardware,
and Kartsaklis and Sadrzadeh (2016); Lewis (2019)
have shown the classical model to perform well at
various natural language processing tasks.

However, there are certain words whose meaning
cannot be expressed as a function of their surround-
ing words - logical words like and, or and not, as
well as pronouns such as whom and that - since they
tend to appear in all contexts and thus render distri-
butional approaches to modelling them inadequate.
On the other hand, such words typically have an
impact on the way in which the other words in the

sentence interact, and thus take on a more syntactic
role, acting as an extension of the grammar. In this
paper, we shall focus in particular on the logical
connective and.

Previously, in the DisCo- formalisms conjunc-
tions have been interpreted as simply mixing the
conjuncts involved together to produce a single
entity of the appropriate type: as described in Kart-
saklis (2016), we can mix the adjectives red and
yellow together to make a new adjective that de-
scribes things that are both red and yellow. This
approach works less well however, when we at-
tempt to mix nouns; when we discuss a hat and
a scarf, we are not discussing a single hybrid ob-
ject that is both a hat and a scarf, but two objects,
one of which is a hat, the other of which is a scarf.
This difference suggests that there are two differ-
ent types of conjunctions at play. The DisCoCirc
framework allows us to express this difference -
in the introductory paper Coecke (2020), they are
denoted as linear and non-linear forms of and.

The non-linearity can be seen as arising from an
induced duplication:

1a Alice wears red and yellow socks.

b Alice wears red socks. Alice wears yellow
socks.

2a Alice wears a hat and a scarf.

b Alice wears a hat. Alice wears a scarf.

Sentence (1a) employs a linear form of and - in this
case both adjectives are applied to the socks which
then feeds into the rest of the sentence. We can
contrast this with the non-linear interpretation of
the same sentence in (1b), which does not seem to
convey the same meaning. On the other hand, (2a)
seems to carry the same meaning as (2b) which
exhibits the implicit duplication of wear induced
by the conjunction. This distinction was previously
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lost as conjoined nouns were considered equivalent
to a single noun - this meant that any duplication
would have occurred at best implicitly.

Standard DisCo- approaches are often limited to
linear operations only, as they have standardly been
implemented using vector spaces and linear maps,
however certain phenomena seem to require non-
linear elements: in Lewis (2020), negation is mod-
elled as a (non-linear) projection of positive maps
onto their orthogonal subspaces, while (Wijnholds
and Sadrzadeh, 2019a) shows how modelling dupli-
cation explicitly improves performance in sentence
similarity and entailment tasks involving ellispsis
and anaphora. Wijnholds and Sadrzadeh (2019b)
describes how the duplication is introduced, by aug-
menting the basic pregroup based grammars with a
non-linear reduction rule.

Here, we will also be introducing a non-linear
element, modifying word meanings. In particular,
this will allow us to model the duplication in sen-
tences like (1) and (2), such that the interpretation
of sentences we consider equivalent are the same
when expressed using the DisCoCirc framework.
We will first give a brief overview of this frame-
work, then introduce the required structures and
definitions for modelling and, finishing with some
examples.

2 Mathematical Background

We will give a brief overview of the mathemati-
cal background for the DisCo- approaches to mod-
elling meaning. For a detailed introduction to the
category theory see Heunen (2020), while Coecke
and Kissinger (2017); Selinger (2009) provide a
more diagrammatic treatment. Coecke et al. (2010);
Coecke (2020) introduce the DisCoCat and DisCo-
Circ frameworks respectively.

2.1 Compact Closed Categories

We will be encoding sentences as diagrams, in
which wires will carry meanings, and boxes will
represent processes that modify these meanings.
These diagrams are representations of structures
in a compact closed category; we will take the
convention of reading the diagrams from top to bot-
tom, and will sometimes add a direction to the wire
to indicate the presence of a dual. The diagrams
come with an associated calculus, framed as a set
of rewrite rules. Diagrams and the structures they
represent are equivalent if and only if there is a
valid way to rewrite one into the other.

We can use such diagrams to express syntactic
relations between the words of a sentence. In the
present case, this is what we are most interested
in, as conjunctions impart meaning mostly by im-
posing extra syntactic dependencies between other
words in the sentence. In order to get back a repre-
sentation of what the diagram means, however, we
also need to supply a way to interpret diagrams, of-
ten within a specific compact closed category. Stan-
dardly, this has been as linear maps between vector
spaces or relations between sets, though other cat-
egories have been used too (Bankova et al., 2016;
Bolt et al., 2017). Here, we will not be concerned
with the specific meanings, only the ways in which
the words are connected. As such, we can take
ourselves to be working in the category freely gen-
erated by a chosen set of types and boxes, along
with the required cups, caps and swaps that make
the category compact closed.

2.2 Monoids

Monoids encapsulate the idea of combining and
splitting objects, and so form a vital part of our
theory of meaning, and are particularly relevant to
the notion of conjunction.

Definition 1. A monoid (A, , ), is structure
over an object A that satisfies unitality (u) and
associativity (a) axioms:

= = (u) = (a)

Commutative monoids satisfy the additional condi-
tion (c):

= (c)

A comonoid structure (A, , ), is a vertically
flipped version of the monoid, satisfying the analo-
gously flipped axioms.

2.2.1 Spiders
Certain monoid-comonoid pairs satisfy additional
rules1, which allows us to write the dots all in the
same colour, as they may be interchanged. In par-
ticular, as associativity identifies all orders of com-
position, and we may write sequences of monoid

1Namely, when the comonoid is the dagger of the monoid
and they are special and Frobenius: Heunen (2020) chapter 5
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or comonoid applications as a single dot with many
legs. These dots obey the ‘spider fusion’ rule:

(SF)

2.3 Pregroups
Having created all the above structure to encode
meaning, we now turn to grammar. A pregroup is
a group where we may have distinct left and right
inverses for each element. Extending this into pre-
group grammar in the style of Lambek (1968) and
Bar-Hillel (1953), we start with some generating
elements, or basic grammatical types: ‘s’ (sen-
tence) and ‘n’ (noun), along with a unit element I ,
and their respective left and right inverses. More
complex types are composed by stringing the ba-
sic types together via the multiplication operation:
transitive verbs such as loves and sits on are of
the form ‘−n s n−’, as they need a noun on either
side to form a sentence. The multiplication of the
pregroup is given by a partial order on the strings
generated by the basic types:

x · −x ≤ I x− · x ≤ I

I ≤ −x · x 1 ≤ x · x−

These equations correspond exactly to the cups and
caps within a compact closed category if we take
I to be the monoidal unit. Indeed the category
formed by taking the grammatical types as objects,
string concatenation as parallel composition, and
the reductions to define morphisms between objects
is compact closed. We can hence write grammatical
reductions out graphically. ‘Alice loves [the] cat’
has grammatical type ‘n −nsn− n’, and reduces
as follows:

Alice loves cat

If, as with this example there is a way to reduce
the grammatical type to a single sentence wire,
then the sentence is grammatical. Of note is that
there may sometimes be different ways in which
the same string can be reduced. These correspond

to different possible grammatical interpretations
of the sentence. In forming reductions, we are
not allowed to cross wires over each other, as this
would allow some non grammatical strings such
as ‘loves cat Alice’ to be reduced too, by swapping
word order as part of the reductions.

2.4 DisCoCat
DisCoCat is a distributional compositional
categorical model of meaning, that is formulated in
a compact closed category, introduced in Coecke
et al. (2010). The distributional aspect of the
model concerns word meaning, often encoded as
vectors. The easiest way of combining our words
into a sentence is to simply write them next to each
other:

However this fails to capture any meaningful gram-
matical relationship between the words, other than
perhaps word order. We hence add a grammatical
type to each of our wires, and allow the grammar
to mediate how the words compose to give the final
sentence meaning, linking the wires together using
cups and caps:

As mentionned above, there are some words for
which we hard code the meaning - logical words
like and and not (Kartsaklis, 2016), as well as rel-
ative pronouns like which and whom (Sadrzadeh
et al., 2013, 2016). In many of these cases the
‘copy’ spider has been used, which copies or
merges wires relative to a given basis. Importantly
however, this spider is a linear operation so cannot
truly duplicate anything.

Some words will also need to be assigned an
ambiguous grammatical type, if they can occur in
different contexts; the correct type to use can be
informed by considering the choice that allows the
surrounding sentence to be reduced into a sentence.

2.5 DisCoCirc
DisCoCat allows us to encode single sentences to
obtain a meaning vector describing the entire sen-
tence. Going one step further, DisCoCirc allows
us to compose multiple sentences together, and
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model the meaning of an entire text. This involves
shifting our perspective slightly, so that we are con-
sidering the way the meaning of words are altered
by a sentence, for example the way a character’s
name changes meaning as we read a novel and
learn more about them. Rather than having a single
sentence type, we hence move to taking our types
to be the dynamic objects, like The cat or Alice,
that feature in the sentences we are concerned with.
Each sentence is then still tied together in much
the same way as in DisCoCat - according to the
grammar - but the outgoing sentence type is now
a composite of the dynamic objects. The overall
sentence becomes a box that acts on these dynamic
objects, rather than just a state, allowing it to be
composed with other sentences. A sentence acts as
the identity on any object that is not involved in it.
For example, we can now encode ‘Alice loves the
cat. The cat hates the dog.’ as follows:

=

Since we are now composing sentences together,
we allow wires to cross freely between sentences,
though no extra crossings may occur in the gram-
matical reductions.

By encoding the meaning of texts in terms of
the meanings of the characters within them, we
sacrifice having a common space in which all texts
are encoded, and all the associated benefits for
sentence comparison. This remains an interesting
move to make if we are interested in making a
more involved analysis of the content of the texts
in question, as we can retain a rather detailed repre-
sentation of what is happening without needing to
squeeze everything down into a fixed space. This
has a particular impact for the modelling of and,
as it will require us to introduce a notion of dupli-
cation.

3 New structure

In addition to the basic structures presented above,
we shall make use of a few extra components in
order to model and.

3.1 Fine-graining of the n type
Much of the work done with DisCoCat and Dis-
CoCirc so far makes use of only n and s as gener-
ators for the grammar. In DisCoCirc, it becomes
necessary to break the usual n type down into two
different types, so that we can treat them differently
when encoding them. The distinction we need is
between singular (which we will keep as n) and
plural (denoted N ) nouns2. Singular nouns behave
just as we expect, since they contain exactly one
noun wire, whereas plural nouns are in fact a series
of singular nouns that have been packaged together.
Formally, this ‘packaging together’ occurs via the
monoidal tensor, and indeed the sentence type in
DisCoCirc corresponds to the plural noun type N .
We will still make use of the sentence type s, to
ensure that the grammar is not resolved differently,
and so that no grammatically incorrect sentences
are accepted as a result.

3.2 Merge box
In order to model and, we will need a notion of
merging. Previously (Kartsaklis, 2016), a spider
was used:

• Alice and Bob eat apples and drink.

=

However, the notion of merging a pair of boxes
is much more general than this particular choice.
Indeed, a series of methods for combining density
matrices has been surveyed in Cuevas et al. (2020);
Coecke and Meichanetzidis (2020). The basic form
of such a map is as follows:

Here we have taken some liberties in drawing the
diagram connections - concretely the wires coming

2In Lambek (1968), a different sort of plural noun is con-
sidered, typed n∗, which seems more aimed at dealing with
generic nouns (men; strawberries) rather than multiple copies
of n (two strawberries; men and women) as introduced here.
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out of the sides of the box should be considered as
coming out of the top or bottom (whichever is clos-
est), however we draw them differently to highlight
them as ‘intermediate’ wires, each of which is rep-
resenting a particular branch that will be merged.
Merging more than two wires together is defined
recursively in terms of a two way merge:

In order to obtain a useful merging operation, we
will restrict our attention to associative binary oper-
ations - semigroups - and in particular consider two
natural examples (where SPIDER corresponds to
Mult in Cuevas et al. (2020), and SEQ is sequential
composition.):

(SEQ) (SPIDER)

On top of being associative, these operations are
actually based on monoids - the copy spider and
‘pair of pants’ monoid respectively. This form is
most clear when we draw the merge with it’s wires
paired in a particular way:

We extend the merging to plural wires by merging
each component wire separately3:

3.3 Duplication 2-Morphism
The main ingredients that will help us formulate
conjunctions are a 2-morphism, or meta operation
which we will denote [//], along with a marker
morphism //, and colour typing morphisms `,a.

3The N typed wires have been drawn thicker to highlight
that they are actually a collection of wires. The bracketing or
gathering morphism should only be taken as a notational tool
that highlights which specific n wires contribute to the plural
N wire.

3.3.1 Wire colours
In order to control the ‘footprint’ of the [//] mor-
phism, we make use of certain extra typing annota-
tions, which we will represent using wire colours.
These annotations stack rather than mix - a red and
blue wire is not the same as a purple wire. We take
‘uncoloured’ wires to be black, with the colours
controlled by ‘start’ (`), and ‘stop’ (a) morphisms.

Commute Identity

As these colours have nothing to do with the mean-
ings carried by the wire, we can view them as liv-
ing in a separate sub-wire, conjoined to the main
meaning wire. Supposing that the compact closed
category Col admits colour morphisms like the
above, and that our main ‘semantic’ category is S,
we can define a new category of semantics with
colour annotations: S ×Col. This new category
will also be compact closed, inheriting the relevant
structure from the compact closure of both S and
Col, and can hence replace S as the category in
which we are expressing our meanings.

3.3.2 Marker morphism
Each time we want to duplicate a wire, we will in-
troduce a ‘marker’ morphism, //, to indicate where
the duplication should occur. Such a morphism
will have an associated colour, and type signature
to indicate how the wires are to be split by the
duplication operation. We will draw it as follows4:

The thick N or S type wires contain the series of
n wires to duplicate over, while the thin coloured
wire highlights the part of the diagram in need of
duplication, standing in for a given n wire.

3.3.3 The duplication 2-morphism
Informally, a 2-morphism is a morphism defined
between the morphisms (rather than objects) of a
category. Analogously, it can be viewed as specify-
ing an extra rewrite rule for our diagrams - the new
diagram obtained may not be strictly equal to the

4When expressing word states using // we will tend to
write it horizontally, whereas within a full DisCoCirc diagram
it will be more convenient to write the morphism vertically.
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previous one, as per the usual rewrite rules, how-
ever the 2-morphism defines a sense in which the
diagrams should be viewed as equivalent. In our
case, we will be introducing a 2-morphism that will
deal with duplication, as there is no corresponding
(1-)morphism in a compact closed category that
can do the job.

Definition 2. The 2-morphism [//] copies boxes
and introduces a mixing operation as follows:

Importantly, we apply [//] centered on a marker,
exclusively to the largest sub-diagram that has
wires coloured the same way as the marker. For
this to be well defined, we hence require that each
instance of // be uniquely coloured. The resulting
diagram applies the coloured sub-diagram to each
marked wire, merging any other wires together ac-
cording to a chosen merge operation.

If the underlying mixing operation is both
associative and commutative, the order in which
we apply the [//] is associative also (for a proof
see the appendix). In such a case, there will be a
unique normal form for the diagram that contains
no marker boxes.

A full expansion of the marker boxes in a dia-
gram renders any leftover colour annotations irrele-
vant to the meaning of the sentence. The final step
in computing the DisCoCirc diagram correspond-
ing to a given sentence involving such markers will
then be to apply a forgetful functor from S ×Col
into S, removing the now unnecessary colour sub-
wire.

4 Modelling and

Having set the scene, we are now equipped to start
modelling the word and. The first aspect to note, is
that and has a variable type, of the form −x x x−,
where x can stand for any (possibly composite)
grammatical type. The account we give will hence
be equally generic, though we proceed mostly via
example.

4.1 Looking inside the box

In the most basic case, conjoining two nouns is just
a case of packaging them next to each other:

• Jack and Jill.

Next, conjoining boxes is just a case of merging
them together. In some cases, the components we
want to merge may not involve the same nouns - in
order for the types to match we cannot merge them,
so must combine them into the outgoing sentence
wire directly. These extra nouns are drawn in black
below:

By varying the number of noun wires coming in or
out appropriately, we can use the above to construct
forms for adjectives (n n−), simple verbs (−n s),
transitive verbs (−n s n−), and di-transitive verbs
(−n s n− n−). Removing all the nouns results in
a sentence combiner that acts analogously to the
simple noun case. To illustrate, consider:

• Jill climbs hills and fetches water.

=
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Another important structure is prepositions,
typed −s −−n −n s n−. In this case, a specific
subject noun (in red), and an indirect object (in
light grey) are identified in advance, and are sub-
sequently passed to the two conjuncts to be mixed.
Again, we collect any extra nouns picked up along
the way and ensure they bypass the merging. Simi-
larly to above, we can also add or remove as many
light grey nouns as necessary to type match, fol-
lowing the schema given.

• Jack went up and down the hill.

=

The internal wirings for other types will largely
follow the same format, merging together wires
that are involved on both sides of the conjunct and
combining the rest into an outgoing N or s plural
noun.

4.2 Dealing with N

The way in which we are conjoining nouns is in-
troducing a new plural noun type N . In order for
our sentence parsings to keep working, we hence
need to introduce new forms for our other boxes
that include N where we would usually have n.
Bearing in mind that our goal is for the grammar
wirings to look the same, this means that we are
looking to convert N into n internally to the box in
question.

The intuition behind this split is that usually, the
action described by a box is not shared between the
parties involved - instead each character does the
given action independently. For example, consider
the following sentences:

1. Alice and Bob eat cucumber.

2. Alice eats cucumber. Bob eats cucumber.

3. Alice and Bob murder Charlie.

4. Alice murders Charlie. Bob murders Charlie.

In (1), Alice and Bob are not sharing the same
‘eating’, and the sentence seems equivalent to (2),
suggesting that the verb is simply duplicated to
accommodate the multiple subjects. On the other
hand, in (3), there is only one murder, so Alice
and Bob must be doing it together, suggesting that
in this case we cannot duplicate the single-subject
form. Indeed, (4) seems somewhat contradictory
- when we learn that Alice murders Charlie, we
assume that Charlie is then dead. Subsequently
learning that Bob murders Charlie too appears odd,
since as far as we are concerned there is no Charlie
left for Bob to kill. We can express this difference
with the following expansions of the verb boxes:

Generic verb Kill

4.3 Examples

Having established the theory, we can now illus-
trate how this works with some actual sentences.
First, consider the non-linear example given at the
start:

• Alice wears a hat and a scarf.
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=

In this case, the hat and scarf are first packaged into
a plural noun, which when fed into the verb wears
induces a duplication. Taking the merge operation
to be given by (SEQ), the final diagram obtained
is equivalent to that of ‘Alice wears a hat. Alice
wears a scarf ’.

• Alice wears red and yellow socks.

In this linear case, the key operation is the merge -
no duplication is necessary. The natural choice in
this case seems to be (SPIDER), which puts both
sides in parallel, suggesting that perhaps (SPIDER)
should be used within and boxes, whilst (SEQ)
should be the merge introduced by the duplication.

In taking the non-commutative (SEQ) as our
merge operation, however, we will sometimes need
to make an arbitrary choice about the order in
which we apply [//]. This problem notably occurs
with di-transitive verbs:

• Alice and Bob show Mary apples and pears.

In such cases, the various expansions are arguably
different, as they seem to introduce a temporal or-
dering on the events described, which is not present
when there is no common wire connecting the du-
plicates:

• Alice shows Mary apples. Alice shows Mary
pears. Bob shows Mary apples. Bob shows
Mary pears.

• Alice shows Mary apples. Bob shows Mary
apples. Alice shows Mary pears. Bob shows
Mary pears.

The solution would then either be to use a
commutative merge like (SPIDER), which would
result three different sentences; or to keep (SEQ),
but attribute the non-commutativity to the verb
show instead. In this case, it seems we should
model show like kill, suggesting a link between
whether an expansion of the verb is induced by
and, and whether the verb’s meaning is closely
linked to the relative time at which it occurs.

Next, we consider a slightly more involved sen-
tence which exhibits the way in which the plural
nouns are fed through the sentence:

• Jack and Jill went up the hill into the forest.

=

In this case, we can see that the plural noun is
fed into the sub-phrase in which it occurs via the
marker morphism, so that the sentence expands
into the same diagram that would be given by
‘Jack went up the hill into the forest. Jill went up
the hill into the forest’, as expected.

The duplication operation can also be used with
paired wires. In this case, the pairs will be fed
through the inner phrase together, rather than inde-
pendently. For example, consider:

• Alice and Bob each wear a scarf.
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=

In this case, we have provided a particular
interpretation of each that coordinates the subject
nouns with a copy of the object noun before being
fed through the marker morphism. This ensures
that Alice and Bob are wearing different copies of
the scarf, rather than both wearing the same scarf,
or both wearing both scarves. Taking advantage
of this distinction also seems like a promising
way to model words with similar effects, such as
respectively.

Finally, in the framework presented we can also
account for conjunctive ambiguity, which arises as
different ways of bracketing the conjuncts:

(Clumsy Jack) and Jill fell.

Clumsy (Jack and Jill) fell.

The ambiguity here is resolved by our choice of
where to place the plural N types. In the first case,
we assign clumsy a singular adjective type (n n−),
whereas in the second sentence it is plural (N N−).
Making sure to index the N types with the number
of wires they are encapsulating, the grammatical
ambiguity present can hence be isolated to the type
assignment rather than the parsing tree.

5 Related Work

The non-linearity introduced here has very
similar effects to the non-linearity Wijnholds and
Sadrzadeh (2019b) introduce to deal with ellipsis,
however arises rather differently. In particular, they
introduce the non-linearity to the grammar parsing,
effectively by allowing parts of the derivation to
freely be reused elsewhere. In this way, arbitrary
parts of the sentence can get copied over to a new

location. In contrast, the duplication introduced
here is via the words involved, such that the
duplication can only occur along the wires given
by the (linear) pregroup grammar. The duplication
also does not apply to wires themselves - only
boxes get copied, making this a strictly weaker
notion.

Though we have not discussed a particular
choice of meaning embedding, the approach relates
to work encoding logical words using vector-based
semantics. Within DisCoCirc, we are primarily
concerned with characters - treating the nouns in-
volved as individual entities. In some cases, how-
ever we might be interested in nouns as concepts,
for which conjunction does not seem to imply the
presence of multiple characters, but instead sug-
gests a merging of the component concepts. Aerts
(2009) discusses such concepts, in particular con-
sidering the so-called Guppy effect (Guppy is con-
sidered a good example of the concept pet fish de-
spite being a bad example of both fish and pet when
the concepts are considered separately). He sug-
gests representing the joint concept pet and fish as
a superposition in a Fock space to account for this:
|pet and fish〉 := (|pet〉 ⊗ |fish〉) ⊕ (|pet〉 + |fish〉)
In the account of conjunction given here, we effec-
tively split the two ways of combining concepts:
the tensor is used on ‘characters’, while everything
else is merged - potentially as a superposition.

6 Conclusion

In summary, we have provided an account of and
within the framework of DisCoCirc, that allows us
to generate diagrams capturing the intuitive mean-
ing of sentences that involve conjunctions. Due to
the non-linear nature of and, we associate it to a
diagram rewriting operation or 2-morphism, that
duplicates the relevant parts of our diagrams.

The treatment provided allows us to parse the
common usage of and, however there is more work
to be done when it comes to certain more complex
cases. In particular, there are many related words
that control how and whether to duplicate words,
such as respectively and each, as well as certain
phrases like three times which interact with dupli-
cation in more complex ways. Ellipsis is also a
closely related grammatical notion, and it would
be interesting to see if the duplication approach
explored here can provide a suitable solution.
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Abstract

Vector representations have become a central
element in semantic language modelling, lead-
ing to mathematical overlaps with many fields
including quantum theory. Compositionality is
a core goal for such representations: given rep-
resentations for ‘wet’ and ‘fish’, how should
the concept ‘wet fish’ be represented?

This position paper surveys this question from
two points of view. The first considers the
question of whether an explicit mathematical
representation can be successful using only
tools from within linear algebra, or whether
other mathematical tools are needed. The sec-
ond considers whether semantic vector compo-
sition should be explicitly described mathemat-
ically, or whether it can be a model-internal
side-effect of training a neural network.

A third and newer question is whether a com-
positional model can be implemented on a
quantum computer. Given the fundamentally
linear nature of quantum mechanics, we pro-
pose that these questions are related, and that
this survey may help to highlight candidate op-
erations for future quantum implementation.

1 Introduction

Semantic composition has been noted and studied
since ancient times, including questions on which
parts of language should be considered atomic, how
these are combined to make new meanings, and
how explicitly the process of combination can be
modelled.1

As vectors have come to play a central role in
semantic representation, these questions have nat-

1Early examples are given by Aristotle, such as (De Inter-
pretatione, Ch IV):

The word ‘human’ has meaning, but does not con-
stitute a proposition, either positive or negative.
It is only when other words are added that the
whole will form an affirmation or denial.

urally become asked of semantic vector models.
Early examples include the weighted summation of
term vectors into document vectors in information
retrieval (Salton et al. 1975) and the modelling of
variable-value bindings using the tensor product2

in artificial intelligence (Smolensky 1990). The
use of vectors in the context of natural language
processing grew from such roots, landmark papers
including the introduction of Latent Semantic Ana-
lyis (Deerwester et al. 1990), where the vectors are
created using singular value decomposition, and
Word Embeddings (Mikolov et al. 2013), where
the vectors are created by training a neural net to
predict masked tokens.

During the 20th century, logical semantics was
also developed, based very much upon the dis-
crete mathematical logic tradition of Boole (1854)
and Frege (1884) rather than the continuous vector
spaces that developed from the works of Hamilton
(1847) and Grassmann (1862). Thus, by the begin-
ning of this century, compositional semantics was
developed mathematically, provided frameworks
such as Montague semantics for connecting the
truth value of a sentence with its syntactic form,
but provided little insight on how the atomic parts
themselves should be represented. Good exam-
ples in this tradition can be found in Gamut (1991)
and Partee et al. (1993). In summary, by the year
2000, there were distributional language models
with vectors, symbolic models with composition,
but little in the way of distributional vector models
with composition.

2Familiarity with tensor products is assumed throughout
this paper. Readers familiar with the linear algebra of vectors
but not the multilinear algebra of tensors are encouraged to
read the introduction to tensors in Widdows et al. (2021, §5).
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2 Explicit Composition in Semantic
Vector Models

The most standard operations used for composi-
tion and comparison in vector model information
retrieval systems have, for many decades, been the
vector sum and cosine similarity (see Salton et al.
1975), and for an introduction, Widdows (2004,
Ch 5)). Cosine similarity is normally defined and
calculated in terms of the natural scalar product
induced by the coordinate system, i.e.,

cos(a, b) =
a · b√

(a · a)(b · b) .

While the scalar product is a linear operator be-
cause λa ·µb = λµ(a ·b), cosine similarity is delib-
erately designed so that cos(λa, µb) = cos(a, b),
so that normalizing or otherwise reweighting vec-
tors does not affect their similarity, which depends
only on the angle between them.

More sophisticated vector composition in AI was
introduced with cognitive models and connection-
ism. The work of Smolensky (1990) has already
been mentioned, and the holographic reduced rep-
resentations of Plate (2003) is another widely-cited
influence (discussed again below as part of Vector
Symbolic Architectures). While Smolensky’s work
is often considered to be AI rather than NLP, the
application to language was a key consideration:

Any connectionist model of natural lan-
guage processing must cope with the
questions of how linguistic structures
are represented in connectionist models.
(Smolensky 1990, §1.2)

The use of more varied mathematical operators
to model natural language operations with vectors
accelerated considerably during the first decade of
this century. In information retrieval, van Rijsber-
gen (2004) explored conditional implication and
Widdows (2003) developed the use of orthogonal
projection for negation in vector models.

Motivated partly by formal similarities with
quantum theory, Aerts & Czachor (2004) proposed
modelling a sentence w1, . . . , wn with a tensor
productw1⊗. . .⊗wn in the Fock space

⊕∞
k=1 V

⊗k
.

The authors noted that comparing the spaces V ⊗
k

and V ⊗
j

when k 6= j is a difficulty shared by other
frameworks, and of course the prospect of sum-
ming to k = ∞ is a mathematical notation that
motivates the search for a tractable implementation
proposal.

By the middle of the decade, Clark & Pulman
(2007) and Widdows (2008) proposed and experi-
mented with the use of tensor products for semantic
composition, and the parallelogram rule for rela-
tion extraction. Such methods were used to obtain
strong empirical results for (intransitive) verb-noun
composition by Mitchell & Lapata (2008) and for
adjective-noun composition by Baroni & Zampar-
elli (2010). One culmination of this line of research
is the survey by Baroni et al. (2014), who also ad-
dressed the problem of comparing tensors V ⊗

k

and V ⊗
j

when k 6= j. For example, if (as in Ba-
roni & Zamparelli 2010)), nouns are represented by
vectors and adjectives are represented by matrices,
then the space of matrices is isomorphic to V ⊗ V
which is not naturally comparable to V , and the
authors note (Baroni & Zamparelli 2010, §3.4):

As a result, Rome and Roman, Italy and
Italian cannot be declared similar, which
is counter-intuitive. Even more counter-
intuitively, Roman used as an adjective
would not be comparable to Roman used
as a noun. We think that the best way to
solve such apparent paradoxes is to look,
on a case-by-case basis, at the linguistic
structures involved, and to exploit them
to develop specific solutions.

Another approach is to use a full syntactic parse
of a sentence to construct vectors in a sentence
space S from nouns and verbs as constituents in
their respective spaces. This features prominently
in the model of Coecke et al. (2010), which has
become affectionately known as DisCoCat, from
‘Distributional Compositional Categorical’. The
mathematics is at the same time sophisticated but
intuitive: its formal structure relies on pregroup
grammars and morphisms between compact closed
categories, and intuitively, the information from
semantic word vectors flows through a network of
tensor products that parallels the syntactic bindings
and produces a single vector in the S space.

Various papers have demonstrated empirical
successes for the DisCoCat and related models.
Grefenstette & Sadrzadeh (2011) were among the
first, showing comparable and sometimes improved
results with those of Mitchell & Lapata (2008). By
2014, several tensor composition operations were
compared by Milajevs et al. (2014), and Sadrzadeh
et al. (2018) showed that word, phrase, and sen-
tence entailment can be modelled using vectors
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and density matrices. (The use of density matrices
to model probability distributions for entailment
was pioneered partly by van Rijsbergen (2004, p.
80) and will be discussed further in Section 4.) Fur-
ther mathematical tools used in DisCoCat research
include copying a vector v ∈ V into a tensor in
V ⊗ V where the coordinates of v become the di-
agonal entries in the matrix representation of the
corresponding tensor, and uncopying which takes
the diagonal elements of a matrix representing a
tensor in V ⊗ V and uses these as the coordinates
of a vector. With these additional operators, the
tensor algebra becomes more explicitly a Frobe-
nius algebra.3 These are used in DisCoCat models
by Sadrzadeh et al. (2014a,b) to represent relative
and then possessive pronoun attachments (for ex-
ample, representing the affect of the phrase “that
chased the mouse” as part of the phrase “The cat
that chased the mouse”). The method involves de-
tailed tracking of syntactic types and their bindings,
and certainly follows the suggestion from Baroni
& Zamparelli (2010) to look at linguistic structures
on a case-by-case basis.

There are practical concerns with tensor product
formalisms. The lack of any isomorphism between
V ⊗

k
and V ⊗

j
when k 6= j and dimV > 1 has

already been noted, along with the difficulty this
poses for comparing elements of each for similar-
ity. Also, there is an obvious computational scaling
problem: if V has dimension n, then V ⊗

k
has

dimension nk, which leads to exponential mem-
ory consumption with classical memory registers.
Taking the example of relative pronouns in the
DisCoCat models of Sadrzadeh et al. (2014a) —
these are represented as rank-4 tensors in spaces
such as N ⊗ S ⊗N ⊗N and variants thereof, and
if the basic noun space N and sentence space S
have dimension 300 (a relatively standard number
used e.g., by FastText vectors) then the relative pro-
nouns would have dimension 8.1 billion. If this
was represented densely and the coordinates are 4-
byte floating point numbers, then just representing
one pronoun would require over 30GB of memory,
which is intractable even by today’s cloud comput-
ing standards.

The development of Vector Symbolic Architec-
tures (VSAs) (Gayler 2004) was partly motivated
by these concerns. VSAs grew from the holo-
graphic reduced representations of Plate (2003): no-

3Named after Georg Frobenius (1849–1917), a group theo-
rist who contributed particularly to group representation theory.
See Kartsaklis (2015) for a thorough presentation.

table works in this intersection of cognitive science
and artificial intelligence include those of Eliasmith
(2013) and Kanerva (2009). At its core, a VSA is a
vector space with an addition operator and a scalar
product for computing similarity, along with a mul-
tiplication or binding operator (sometimes written
as ∗, or ⊗ like the tensor product) which takes a
product of two vectors and returns a new vector
that it typically not similar to either of its inputs, so
that (a ∗ b) ·a is small, but which is ‘approximately
reversible’ — so there is an approximate inverse
operator � where (a ∗ b) � b is close to a.4 The
term ‘binding’ was used partly for continuity with
the role-filler binding of Smolensky (1990).5

The VSA community has tended to avoid the
full tensor product, for the reasons given above.
In order to be directly comparable, it is desirable
that a ∗ b should be a vector in the space V . Plate
(2003) thoroughly explored the use of circular cor-
relation and circular convolution for these opera-
tions, which involves summing the elements of the
outer product matrix along diagonals. This works
as a method to map V ⊗ V back to V , though the
mapping is of course basis dependent. Partly to
optimize the binding operation to O(n) time, Plate
(2003, Ch 5) introduces circular vectors, whose
coordinates are unit complex numbers. There is
some stretching of terminology here, because the
circle group U(1) of unit complex numbers is not,
strictly speaking, a vector space. Circular vectors
are added by adding their rectangular coordinates
in a linear fashion, and then normalizing back to
the unit circle by discarding the magnitude, which
Plate notes is not an associative operation. Kanerva
(2009) departs perhaps even further from the vec-
tor space mainstream, using binary-valued vectors
throughout, with binding implemented as pairwise
exclusive OR (XOR).

VSA binding operations have been used for com-
position of semantic vector representations, both
during the training process to generate composite
vector representations of term or character n-grams,

4This also explains why it is tempting to reuse or abuse the
tensor product notation and use the symbol ⊗ for binding and
� for the inverse or release operator, as in Widdows & Cohen
(2015).

5The requirement that the binding a∗b be dissimilar to both
a and b makes the Frobenius uncopying of Kartsaklis (2015)
operator unsuitable for a VSA, because the coordinates of v∗w
are the products of the corresponding coordinates in v and w,
which typically makes the scalar product with either factor
quite large. This is however a rather shallow observation, and
the relationship between VSAs and Frobenius algebras may
be a fruitful topic to investigate more thoroughly.
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or semantic units such as predicate-argument pairs
or syntactic dependencies, that are then further as-
sembled to construct representations of larger units
(Jones & Mewhort 2007, Kachergis et al. 2011,
Cohen & Widdows 2017, Paullada et al. 2020);
and to compose larger units from pretrained seman-
tic vectors for downstream machine learning tasks
(Fishbein & Eliasmith 2008, Mower et al. 2016).
However, a concern with several of the standard
VSA binding operators for the representation of
sequences in particular is that they are commuta-
tive in nature: x ∗ y = y ∗ x. To address this
concern, permutations of vector coordinates have
been applied across a range of VSA implementa-
tions to break the commutative property of the bind-
ing operator, for example by permuting the second
vector in sequence such that −−→wet ∗ ∏(

−−→
fish) and−−→

fish ∗∏(
−−→
wet) result in different vectors (Kanerva

2009, Plate 2003, p. 121).

Thanks to their general nature and computational
simplicity, permutations have been used for sev-
eral other encoding and composition experiments.
The use of permutations to encode positional in-
formation into word vector representations was in-
troduced by Sahlgren et al. (2008). In this work
a permutation (coordinate shuffling) operator was
used to rearrange vector components during the
course of training, with a different random permu-
tation assigned to each sliding window position
such that a context vector would be encoded dif-
ferently depending upon its position relative to a
focus term of interest. A subsequent evaluation
of this method showed advantages in performance
over the BEAGLE model (Jones & Mewhort 2007),
which uses circular convolutions to compose repre-
sentations of word n-grams, on a range of intrinsic
evaluation tasks — however these advantages were
primarily attributable to the permutation-based ap-
proach’s ability to scale to a larger training corpus
(Recchia et al. 2015). Random permutations have
also been used to encode semantic relations (Co-
hen et al. 2009) and syntactic dependencies (Basile
et al. 2011) into distributional models.

In high-dimensional space, the application of
two different random permutations to the same vec-
tor has a high probability of producing vectors that
are close-to-orthogonal to one another (Sahlgren
et al. 2008). A more recent development has in-
volved deliberately constructing ‘graded’ permu-
tations by randomly permuting part of a parent
permutation (Cohen & Widdows 2018). When this

process is repeated iteratively, it results in a set of
permutations that when applied to the same vector
will produce a result with similarity to the parent
vector that decreases in an ordinal fashion. This
permits the encoding of proximity rather than posi-
tion, in such a way that words in proximal positions
within a sliding window will be similarly but not
identically encoded. The resulting proximity-based
encodings have shown advantages over comparable
encodings that are based on absolute position (at
word and sentence level) or are position-agnostic
(at word and character level) across a range of eval-
uations (Cohen & Widdows 2018, Schubert et al.
2020, Kelly et al. 2020).

Note that coordinate permutations are all Eu-
clidean transformations: odd permutations are re-
flections, and even permutations are rotations. Thus
all permutation operations are also linear.

This survey of explicit composition in semantic
vector models is not exhaustive, but gives some
idea of the range of linear and nonlinear operations.

3 Compositional Semantics in Neural
Networks

During the past decade, many of the most success-
ful and well-known advances in semantic vector
representations have been developed using neural
networks.6 In general, such networks are trained
with some objective function designed to maxi-
mize the probability of predicting a given word,
sentence, or group of characters in a given context.
Various related results such as those of Scarselli &
Tsoi (1998) are known to demonstrate that, given
enough computational resources and training data,
neural networks can be used to approximate any
example from large classes of functions. If these
target functions are nonlinear, this cannot be done
with a network of entirely linear operations, be-
cause the composition of two linear maps is an-
other linear map — “The hidden units should be
nonlinear because multiple layers of linear units
can only produce linear functions.” (Wichert 2020,
§13.5). Thus, part of the appeal of neural networks
is that they are not bound by linearity: though often
at considerable computational cost.

The skip gram with negative sampling method
was introduced by Mikolov et al. (2013), imple-

6An introduction to this huge topic is beyond the scope of
this paper. Unfamiliar readers are encouraged to start with a
general survey such as that of Géron (2019), Chapter 16 being
particularly relevant to the discussion here.
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mentations including the word2vec7 package from
Google and the FastText package from Facebook.8

The objective function is analyzed more thoroughly
by Goldberg & Levy (2014), and takes the form:

∑

(w,c)∈D
log σ(−→w · −→c ) +

∑

(w,¬c)∈D′
log σ(−−→w · −→¬c)

Herew is a word, c is a context feature (such as a
nearby word), D represents observed term/context
pairs in the document collection, D′ represents ran-
domly drawn counterexamples, and −→w and −→c are
word and context vectors (input and output weights
of the network, respectively). σ is the sigmoid func-
tion, 1

1+e−x . The mathematical structure here is in
the family of logistic and softmax functions — the
interaction between the word and context vectors
involves exponential / logarithmic concepts, not
just linear operations.

There have been efforts to incorporate syntac-
tic information explicitly in the training process
of neural network models. In the specific case of
adjectives, Maillard & Clark (2015) use the skip
gram technique to create matrices for adjectives fol-
lowing the pattern of Baroni & Zamparelli (2010)
discussed in Section 2. The most recent culmina-
tion of this work is its adaptation to cover a much
more comprehensive collection of categorial types
by Wijnholds et al. (2020). Another early exam-
ple comes from Socher et al. 2012, who train a
Recursive Neural Network where each node in a
syntactic parse tree becomes represented by a ma-
trix that operates on a pair of inputs. Research on
tree-structured LSTMs (see inter alia Tai et al. 2015,
Maillard et al. 2019) leverages syntactic parse trees
in the input and composes its hidden state using
an arbitrary number of child nodes, as represented
in the syntax tree. Syntax-BERT (Bai et al. 2021)
uses syntactic parses to generate masks that reflect
different aspects of tree structure (parent, child, sib-
ling). KERMIT (Zanzotto et al. 2020) uses compo-
sitional structure explicitly by embedding syntactic
subtrees in the representation space. In both cases,
the use of explicit compositional syntactic structure
leads to a boost in performance on various semantic
tasks.

In KERMIT, the embedding of trees and (re-
cursively) their subtrees follows a well-developed
line of research on representing discrete structures

7https://pypi.org/project/word2vec/
8https://fasttext.cc/

as vectors, in particular combining circular con-
volution and permutations to introduce shuffled
circular convolution (Ferrone & Zanzotto 2014).
Even when combined in a recursive sum over con-
stituents called a Distributed Tree Kernel operation,
this is still a sum of linear inputs, so this form of
composition is still linear throughout. In such meth-
ods, the result may be a collection of related linear
operators representing explicit syntactic bindings,
but the training method is typically not linear due
to the activation functions.

What these neural net methods and the models
described in the previous section have in common
is that they encode some explicit compositional
structure: a weighted sum of word or character
n-grams, a role / value binding, or a relationship
in a grammatical parse tree. This raises the ques-
tion: can neural language models go beyond the
bag-of-words drawbacks and encode more order-
dependent language structures without using tradi-
tional logical compositional machinery?

A recent and comprehensive survey of this topic
is provided by Hupkes et al. (2020). This work
provides a valuable survey of the field to date, and
conducts experiments with compositional behav-
ior on artificial datasets designed to demonstrate
various aspects of compositionality, such as produc-
tivity (can larger unseen sequences be produced?)
and substitutivity (are outputs the same when syn-
onymous tokens are switched?). This systematic
approach to breaking compositionality into many
tasks is a useful guide in itself.

Since then, attention-based networks were devel-
oped and have come to the forefront of the field
(Vaswani et al. 2017). The attention mechanism is
designed to learn when pairs of inputs depend cru-
cially on one another, a capability that has demon-
strably improved machine translation by making
sure that the translated output represents all of the
given input even when their word-orders do not cor-
respond exactly. The ‘scaled dot-product attention’
used by Vaswani et al. (2017) for computing the at-
tention between a pair of constituents uses softmax
normalization, another nonlinear operation.

The use of attention mechanisms has led to rapid
advances in the field, including the contextualized
BERT (Devlin et al. 2018) and ELMo (Peters et al.
2018) models. For example, the ELMo model re-
ports good results on traditional NLP tasks includ-
ing question answering, coreference resolution, se-
mantic role labelling, and part-of-speech tagging,
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and the authors speculate that this success is due
to the model’s different neural-network layers im-
plicitly representing several different kinds of lin-
guistic structure. This idea is further investigated
by Hewitt & Manning (2019) and Jawahar et al.
(2019), who probe BERT and ELMo models to
find evidence that syntactic structure is implicitly
encoded in their vector representations. The survey
and experiments of Hupkes et al. (2020) evaluate
three such neural networks on a range of tasks re-
lated to composition, concluding that each network
has strengths and weaknesses, that the results are a
stepping stone rather than an endpoint, and that de-
veloping consensus around how such tasks should
be designed, tested and shared is a crucial task in
itself.

At the time of writing, such systems are contribu-
tors to answering a very open research question: do
neural networks need extra linguistic information in
their input to properly work with language, or can
they actually recover such information as a byprod-
uct of training on raw text input? For example, a
DisCoCat model requires parsed sentences as input
— so if another system performed as well without
requiring grammatical sentences as input and the
support of a distinct parsing component in the im-
plementation pipeline, that would be preferable in
most production applications. (Running a parser
is a requirement than today can often be satisfied,
albeit with an implementational and computational
cost. Requiring users to type only grammatical in-
put is a requirement that cannot typically be met at
all.) At the same time, does performance on the cur-
rent NLP tasks used for evaluation directly indicate
semantic composition at play? If the performance
of a model without linguistic information in the
input is up to par, would the internal operations of
such an implicit model be largely inscrutable, or
can we describe the way meaningful units are com-
posed into larger meaningful structures explicitly?

Tensor networks are one of the possible mathe-
matical answers to this question, and continue to
build upon Smolensky’s introduction of tensors to
AI. For example McCoy et al. (2020) present evi-
dence that the sequence-composition effects of Re-
current Neural Networks (RNNs) can be approxi-
mated by Tensor Product Decomposition Networks,
at least in cases where using this structure provides
measurable benefits over bag-of-words models. It
has also been shown that Tensor Product Networks
can be used to construct an attention mechanism

from which grammatical structure can be recov-
ered by unbinding role-filler tensor compositions
(Huang et al. 2019).

While there are many more networks that could
be examined in a survey like this, those described
in this section illustrate that neural networks have
been used to improve results with many NLP tasks,
and the training of such networks often crucially de-
pends on nonlinear operations on vectors. Further-
more, while tensor networks have been developed
as a proposed family of techniques for understand-
ing and exploiting compositional structures more
explicitly, in some of the most state-of-the-art mod-
els, relationships between such operations to more
traditional semantic composition are often absent
or at least not well-understood.

4 Operators from Quantum Models

Mathematical correspondences between vector
models for semantics and quantum theory have
been recognized for some years (van Rijsbergen
2004), and are surveyed by Widdows et al. (2021).
The advent of practical quantum computing makes
these correspondences especially interesting, and
constructs from quantum theory have been used
increasingly deliberately in NLP. In quantum com-
puting, tensor products no longer incur quadratic
costs: instead, the tensor product A ⊗ B is the
natural mathematical representation of the physical
state that arises when systems in statesA andB are
allowed to interact. Heightened interest in quantum
computing and quantum structures in general has
led to specific semantic contributions already.

Mathematically, there is a historic relationship
between linearity and quantum mechanics: the prin-
ciple of superposition guarantees that for any state
A, the vector cA corresponds to the same physical
state for any complex number c (Dirac 1930, §5).9

Hence the question of whether a compositional op-
erator is linear or not is particularly relevant when
we consider the practicality of implementation on
a quantum computer.10

Many developments have followed from the Dis-

9This itself could lead to a mathematical discussion — the
magnitude of a state vector in quantum mechanics is ignored,
just like cosine similarity ignores the scale factors of the scalar
product, and its resilience to scale factors makes the cosine
similarity technically not a linear operator.

10The dependence of quantum computing on linearity
should not go unquestioned — for example, the use of quan-
tum harmonic oscillators rather than qubits has been proposed
as a way to incorporate nonlinearity into quantum hardware
by Goto (2016).
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CoCat framework, whose mathematical structure
is closely related to quantum mechanics through
category theory (Coecke et al. 2017). As of 2021,
the tensor network components of two DisCoCat
models have even been implemented successfully
on a quantum computer (Lorenz et al. 2021), and
there are proposals for how to implement the syn-
tactic parse on quantum hardware as well (Wiebe
et al. 2019, Bausch et al. 2021). Of particular se-
mantic and mathematical interest, topics such as hy-
ponymy (Bankova et al. 2019) and negation (Lewis
2020) have been investigated, using density matri-
ces and positive operator-valued measures, which
are mathematical generalizations of state vectors
and projection operators that enable the theory to
describe systems that are not in ‘pure’ states. Den-
sity matrices have also been used to model sentence
entailment (Sadrzadeh et al. 2018) and recently lex-
ical ambiguity (Meyer & Lewis 2020).

A comprehensive presentation of the use of den-
sity matrices to model joint probability distribu-
tions is given by Bradley (2020). This work de-
liberately takes a quantum probability framework
and applies it to language modelling, by way of
the lattice structures of Formal Concept Analysis
(Ganter & Wille 1999). This work uses the par-
tial trace of density operators (which are tensors
in V ⊗ V ) to project tensors in V ⊗ V to vectors
in V . This is analogous to summing the rows or
columns of a two-variable joint distribution to get
a single-variable marginal distribution. This cap-
tures interference and overlap between the initial
concepts, and in a framework such as DisCoCat,
this might be used to model transitive verb-noun
composition (as in Grefenstette & Sadrzadeh 2011,
Sadrzadeh et al. 2018, and others).

Another mathematical development is the quan-
tum Procrustes alignment method of Lloyd et al.
(2020), where Procrustes alignment refers to the
challenge of mapping one vector space into another
preserving relationships as closely as possible. Pro-
crustes techniques have been used to align multi-
lingual FastText word vectors (Joulin et al. 2018),
and it is possible that one day these methods may
be combined to give faster and more noise-tolerant
multilingual concept alignment.

This again is not a complete survey, but we hope
it demonstrates that the interplay between quantum
theory, semantic vector composition, and practical
implementation has much to offer, and that work
in this area is accelerating.

5 Summary, Conclusion, and Future
Work

This paper has surveyed vector composition tech-
niques used for aspects of semantic composition
in explicit linguistic models, neural networks, and
quantum models, while acknowledging that these
areas overlap. The operations considered are gath-
ered and summarized in Table 1.

Some of the most successful neural network
models to date have used operations that are nonlin-
ear and implicit. Though models such as BERT and
ELMo have performed exceptionally well on sev-
eral benchmark tasks, they are famously difficult to
explain and computationally expensive. Therefore,
scientific researchers and commercial user-facing
enterprises have good reason to be impressed, but
still to seek alternatives that are clearer and cheaper.
At the same time, progress in quantum computing
raises the possibility that the practical cost of differ-
ent mathematical operations may be considerably
revised over the coming year. For example, if the
expense of tensor products becomes linear rather
than quadratic, tensor networks may find a position
at the forefront of ‘neural quantum computing’.

In addition, there is emerging evidence that such
models can be augmented by approaches that draw
on structured semantic knowledge (Michalopoulos
et al. 2020, Colon-Hernandez et al. 2021), suggest-
ing the combination of implicit and explicit ap-
proaches to semantic composition as a fruitful area
for future methodological research. We hope that
this approach of surveying and comparing the se-
mantic, mathematical and computational elements
of various vector operations will serve as a guide
to territory yet to be explored at the intersection of
compositional operators and vector representations
of language.
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