
Proceedings of the 2021 Workshop on Semantic Spaces at the Intersection of NLP, Physics, and Cognitive Science, pages 66–75
June 16th, 2021. ©2021 Association for Computational Linguistics

66

Parsing Conjunctions in DisCoCirc

Tiffany Duneau
University of Oxford

fanny.duneau@cs.ox.ac.uk

Abstract

In distributional compositional models of
meaning logical words require special interpre-
tations, that specify the way in which other
words in the sentence interact with each other.
So far within the DisCoCat framework, con-
junctions have been implemented as merging
both conjuncts into a single output, however
in the new framework of DisCoCirc merging
between nouns is no longer possible. We pro-
vide an account of conjunction and an inter-
pretation for the word and that solves this,
and moreover ensures certain intuitively sim-
ilar sentences can be given the same interpre-
tations.

1 Introduction

The distributional semantics paradigm allows us to
model the meanings of words in terms of their sur-
rounding words, as well as the meaning of texts in
terms of their constituent words. Meanwhile com-
positional semantics considers how meaning can
arise from the grammatical form of a sentence. The
distributional compositional (DisCo-) approach to
modelling meaning introduced by Coecke et al.
(2010) allows the meaning of a sentence to be com-
puted as a function of both the distributional mean-
ing of the words involved, as well as its grammati-
cal form. Recent work by Lorenz et al. (2021) has
implemented the approach on quantum hardware,
and Kartsaklis and Sadrzadeh (2016); Lewis (2019)
have shown the classical model to perform well at
various natural language processing tasks.

However, there are certain words whose meaning
cannot be expressed as a function of their surround-
ing words - logical words like and, or and not, as
well as pronouns such as whom and that - since they
tend to appear in all contexts and thus render distri-
butional approaches to modelling them inadequate.
On the other hand, such words typically have an
impact on the way in which the other words in the

sentence interact, and thus take on a more syntactic
role, acting as an extension of the grammar. In this
paper, we shall focus in particular on the logical
connective and.

Previously, in the DisCo- formalisms conjunc-
tions have been interpreted as simply mixing the
conjuncts involved together to produce a single
entity of the appropriate type: as described in Kart-
saklis (2016), we can mix the adjectives red and
yellow together to make a new adjective that de-
scribes things that are both red and yellow. This
approach works less well however, when we at-
tempt to mix nouns; when we discuss a hat and
a scarf, we are not discussing a single hybrid ob-
ject that is both a hat and a scarf, but two objects,
one of which is a hat, the other of which is a scarf.
This difference suggests that there are two differ-
ent types of conjunctions at play. The DisCoCirc
framework allows us to express this difference -
in the introductory paper Coecke (2020), they are
denoted as linear and non-linear forms of and.

The non-linearity can be seen as arising from an
induced duplication:

1a Alice wears red and yellow socks.

b Alice wears red socks. Alice wears yellow
socks.

2a Alice wears a hat and a scarf.

b Alice wears a hat. Alice wears a scarf.

Sentence (1a) employs a linear form of and - in this
case both adjectives are applied to the socks which
then feeds into the rest of the sentence. We can
contrast this with the non-linear interpretation of
the same sentence in (1b), which does not seem to
convey the same meaning. On the other hand, (2a)
seems to carry the same meaning as (2b) which
exhibits the implicit duplication of wear induced
by the conjunction. This distinction was previously

67

lost as conjoined nouns were considered equivalent
to a single noun - this meant that any duplication
would have occurred at best implicitly.

Standard DisCo- approaches are often limited to
linear operations only, as they have standardly been
implemented using vector spaces and linear maps,
however certain phenomena seem to require non-
linear elements: in Lewis (2020), negation is mod-
elled as a (non-linear) projection of positive maps
onto their orthogonal subspaces, while (Wijnholds
and Sadrzadeh, 2019a) shows how modelling dupli-
cation explicitly improves performance in sentence
similarity and entailment tasks involving ellispsis
and anaphora. Wijnholds and Sadrzadeh (2019b)
describes how the duplication is introduced, by aug-
menting the basic pregroup based grammars with a
non-linear reduction rule.

Here, we will also be introducing a non-linear
element, modifying word meanings. In particular,
this will allow us to model the duplication in sen-
tences like (1) and (2), such that the interpretation
of sentences we consider equivalent are the same
when expressed using the DisCoCirc framework.
We will first give a brief overview of this frame-
work, then introduce the required structures and
definitions for modelling and, finishing with some
examples.

2 Mathematical Background

We will give a brief overview of the mathemati-
cal background for the DisCo- approaches to mod-
elling meaning. For a detailed introduction to the
category theory see Heunen (2020), while Coecke
and Kissinger (2017); Selinger (2009) provide a
more diagrammatic treatment. Coecke et al. (2010);
Coecke (2020) introduce the DisCoCat and DisCo-
Circ frameworks respectively.

2.1 Compact Closed Categories

We will be encoding sentences as diagrams, in
which wires will carry meanings, and boxes will
represent processes that modify these meanings.
These diagrams are representations of structures
in a compact closed category; we will take the
convention of reading the diagrams from top to bot-
tom, and will sometimes add a direction to the wire
to indicate the presence of a dual. The diagrams
come with an associated calculus, framed as a set
of rewrite rules. Diagrams and the structures they
represent are equivalent if and only if there is a
valid way to rewrite one into the other.

We can use such diagrams to express syntactic
relations between the words of a sentence. In the
present case, this is what we are most interested
in, as conjunctions impart meaning mostly by im-
posing extra syntactic dependencies between other
words in the sentence. In order to get back a repre-
sentation of what the diagram means, however, we
also need to supply a way to interpret diagrams, of-
ten within a specific compact closed category. Stan-
dardly, this has been as linear maps between vector
spaces or relations between sets, though other cat-
egories have been used too (Bankova et al., 2016;
Bolt et al., 2017). Here, we will not be concerned
with the specific meanings, only the ways in which
the words are connected. As such, we can take
ourselves to be working in the category freely gen-
erated by a chosen set of types and boxes, along
with the required cups, caps and swaps that make
the category compact closed.

2.2 Monoids

Monoids encapsulate the idea of combining and
splitting objects, and so form a vital part of our
theory of meaning, and are particularly relevant to
the notion of conjunction.

Definition 1. A monoid (A, ,), is structure
over an object A that satisfies unitality (u) and
associativity (a) axioms:

= = (u) = (a)

Commutative monoids satisfy the additional condi-
tion (c):

= (c)

A comonoid structure (A, ,), is a vertically
flipped version of the monoid, satisfying the analo-
gously flipped axioms.

2.2.1 Spiders
Certain monoid-comonoid pairs satisfy additional
rules1, which allows us to write the dots all in the
same colour, as they may be interchanged. In par-
ticular, as associativity identifies all orders of com-
position, and we may write sequences of monoid

1Namely, when the comonoid is the dagger of the monoid
and they are special and Frobenius: Heunen (2020) chapter 5

68

or comonoid applications as a single dot with many
legs. These dots obey the ‘spider fusion’ rule:

(SF)

2.3 Pregroups
Having created all the above structure to encode
meaning, we now turn to grammar. A pregroup is
a group where we may have distinct left and right
inverses for each element. Extending this into pre-
group grammar in the style of Lambek (1968) and
Bar-Hillel (1953), we start with some generating
elements, or basic grammatical types: ‘s’ (sen-
tence) and ‘n’ (noun), along with a unit element I ,
and their respective left and right inverses. More
complex types are composed by stringing the ba-
sic types together via the multiplication operation:
transitive verbs such as loves and sits on are of
the form ‘−n s n−’, as they need a noun on either
side to form a sentence. The multiplication of the
pregroup is given by a partial order on the strings
generated by the basic types:

x · −x ≤ I x− · x ≤ I

I ≤ −x · x 1 ≤ x · x−

These equations correspond exactly to the cups and
caps within a compact closed category if we take
I to be the monoidal unit. Indeed the category
formed by taking the grammatical types as objects,
string concatenation as parallel composition, and
the reductions to define morphisms between objects
is compact closed. We can hence write grammatical
reductions out graphically. ‘Alice loves [the] cat’
has grammatical type ‘n −nsn− n’, and reduces
as follows:

Alice loves cat

If, as with this example there is a way to reduce
the grammatical type to a single sentence wire,
then the sentence is grammatical. Of note is that
there may sometimes be different ways in which
the same string can be reduced. These correspond

to different possible grammatical interpretations
of the sentence. In forming reductions, we are
not allowed to cross wires over each other, as this
would allow some non grammatical strings such
as ‘loves cat Alice’ to be reduced too, by swapping
word order as part of the reductions.

2.4 DisCoCat
DisCoCat is a distributional compositional
categorical model of meaning, that is formulated in
a compact closed category, introduced in Coecke
et al. (2010). The distributional aspect of the
model concerns word meaning, often encoded as
vectors. The easiest way of combining our words
into a sentence is to simply write them next to each
other:

However this fails to capture any meaningful gram-
matical relationship between the words, other than
perhaps word order. We hence add a grammatical
type to each of our wires, and allow the grammar
to mediate how the words compose to give the final
sentence meaning, linking the wires together using
cups and caps:

As mentionned above, there are some words for
which we hard code the meaning - logical words
like and and not (Kartsaklis, 2016), as well as rel-
ative pronouns like which and whom (Sadrzadeh
et al., 2013, 2016). In many of these cases the
‘copy’ spider has been used, which copies or
merges wires relative to a given basis. Importantly
however, this spider is a linear operation so cannot
truly duplicate anything.

Some words will also need to be assigned an
ambiguous grammatical type, if they can occur in
different contexts; the correct type to use can be
informed by considering the choice that allows the
surrounding sentence to be reduced into a sentence.

2.5 DisCoCirc
DisCoCat allows us to encode single sentences to
obtain a meaning vector describing the entire sen-
tence. Going one step further, DisCoCirc allows
us to compose multiple sentences together, and

69

model the meaning of an entire text. This involves
shifting our perspective slightly, so that we are con-
sidering the way the meaning of words are altered
by a sentence, for example the way a character’s
name changes meaning as we read a novel and
learn more about them. Rather than having a single
sentence type, we hence move to taking our types
to be the dynamic objects, like The cat or Alice,
that feature in the sentences we are concerned with.
Each sentence is then still tied together in much
the same way as in DisCoCat - according to the
grammar - but the outgoing sentence type is now
a composite of the dynamic objects. The overall
sentence becomes a box that acts on these dynamic
objects, rather than just a state, allowing it to be
composed with other sentences. A sentence acts as
the identity on any object that is not involved in it.
For example, we can now encode ‘Alice loves the
cat. The cat hates the dog.’ as follows:

=

Since we are now composing sentences together,
we allow wires to cross freely between sentences,
though no extra crossings may occur in the gram-
matical reductions.

By encoding the meaning of texts in terms of
the meanings of the characters within them, we
sacrifice having a common space in which all texts
are encoded, and all the associated benefits for
sentence comparison. This remains an interesting
move to make if we are interested in making a
more involved analysis of the content of the texts
in question, as we can retain a rather detailed repre-
sentation of what is happening without needing to
squeeze everything down into a fixed space. This
has a particular impact for the modelling of and,
as it will require us to introduce a notion of dupli-
cation.

3 New structure

In addition to the basic structures presented above,
we shall make use of a few extra components in
order to model and.

3.1 Fine-graining of the n type
Much of the work done with DisCoCat and Dis-
CoCirc so far makes use of only n and s as gener-
ators for the grammar. In DisCoCirc, it becomes
necessary to break the usual n type down into two
different types, so that we can treat them differently
when encoding them. The distinction we need is
between singular (which we will keep as n) and
plural (denoted N) nouns2. Singular nouns behave
just as we expect, since they contain exactly one
noun wire, whereas plural nouns are in fact a series
of singular nouns that have been packaged together.
Formally, this ‘packaging together’ occurs via the
monoidal tensor, and indeed the sentence type in
DisCoCirc corresponds to the plural noun type N .
We will still make use of the sentence type s, to
ensure that the grammar is not resolved differently,
and so that no grammatically incorrect sentences
are accepted as a result.

3.2 Merge box
In order to model and, we will need a notion of
merging. Previously (Kartsaklis, 2016), a spider
was used:

• Alice and Bob eat apples and drink.

=

However, the notion of merging a pair of boxes
is much more general than this particular choice.
Indeed, a series of methods for combining density
matrices has been surveyed in Cuevas et al. (2020);
Coecke and Meichanetzidis (2020). The basic form
of such a map is as follows:

Here we have taken some liberties in drawing the
diagram connections - concretely the wires coming

2In Lambek (1968), a different sort of plural noun is con-
sidered, typed n∗, which seems more aimed at dealing with
generic nouns (men; strawberries) rather than multiple copies
of n (two strawberries; men and women) as introduced here.

70

out of the sides of the box should be considered as
coming out of the top or bottom (whichever is clos-
est), however we draw them differently to highlight
them as ‘intermediate’ wires, each of which is rep-
resenting a particular branch that will be merged.
Merging more than two wires together is defined
recursively in terms of a two way merge:

In order to obtain a useful merging operation, we
will restrict our attention to associative binary oper-
ations - semigroups - and in particular consider two
natural examples (where SPIDER corresponds to
Mult in Cuevas et al. (2020), and SEQ is sequential
composition.):

(SEQ) (SPIDER)

On top of being associative, these operations are
actually based on monoids - the copy spider and
‘pair of pants’ monoid respectively. This form is
most clear when we draw the merge with it’s wires
paired in a particular way:

We extend the merging to plural wires by merging
each component wire separately3:

3.3 Duplication 2-Morphism
The main ingredients that will help us formulate
conjunctions are a 2-morphism, or meta operation
which we will denote [//], along with a marker
morphism //, and colour typing morphisms `,a.

3The N typed wires have been drawn thicker to highlight
that they are actually a collection of wires. The bracketing or
gathering morphism should only be taken as a notational tool
that highlights which specific n wires contribute to the plural
N wire.

3.3.1 Wire colours
In order to control the ‘footprint’ of the [//] mor-
phism, we make use of certain extra typing annota-
tions, which we will represent using wire colours.
These annotations stack rather than mix - a red and
blue wire is not the same as a purple wire. We take
‘uncoloured’ wires to be black, with the colours
controlled by ‘start’ (`), and ‘stop’ (a) morphisms.

Commute Identity

As these colours have nothing to do with the mean-
ings carried by the wire, we can view them as liv-
ing in a separate sub-wire, conjoined to the main
meaning wire. Supposing that the compact closed
category Col admits colour morphisms like the
above, and that our main ‘semantic’ category is S,
we can define a new category of semantics with
colour annotations: S ×Col. This new category
will also be compact closed, inheriting the relevant
structure from the compact closure of both S and
Col, and can hence replace S as the category in
which we are expressing our meanings.

3.3.2 Marker morphism
Each time we want to duplicate a wire, we will in-
troduce a ‘marker’ morphism, //, to indicate where
the duplication should occur. Such a morphism
will have an associated colour, and type signature
to indicate how the wires are to be split by the
duplication operation. We will draw it as follows4:

The thick N or S type wires contain the series of
n wires to duplicate over, while the thin coloured
wire highlights the part of the diagram in need of
duplication, standing in for a given n wire.

3.3.3 The duplication 2-morphism
Informally, a 2-morphism is a morphism defined
between the morphisms (rather than objects) of a
category. Analogously, it can be viewed as specify-
ing an extra rewrite rule for our diagrams - the new
diagram obtained may not be strictly equal to the

4When expressing word states using // we will tend to
write it horizontally, whereas within a full DisCoCirc diagram
it will be more convenient to write the morphism vertically.

71

previous one, as per the usual rewrite rules, how-
ever the 2-morphism defines a sense in which the
diagrams should be viewed as equivalent. In our
case, we will be introducing a 2-morphism that will
deal with duplication, as there is no corresponding
(1-)morphism in a compact closed category that
can do the job.

Definition 2. The 2-morphism [//] copies boxes
and introduces a mixing operation as follows:

Importantly, we apply [//] centered on a marker,
exclusively to the largest sub-diagram that has
wires coloured the same way as the marker. For
this to be well defined, we hence require that each
instance of // be uniquely coloured. The resulting
diagram applies the coloured sub-diagram to each
marked wire, merging any other wires together ac-
cording to a chosen merge operation.

If the underlying mixing operation is both
associative and commutative, the order in which
we apply the [//] is associative also (for a proof
see the appendix). In such a case, there will be a
unique normal form for the diagram that contains
no marker boxes.

A full expansion of the marker boxes in a dia-
gram renders any leftover colour annotations irrele-
vant to the meaning of the sentence. The final step
in computing the DisCoCirc diagram correspond-
ing to a given sentence involving such markers will
then be to apply a forgetful functor from S ×Col
into S, removing the now unnecessary colour sub-
wire.

4 Modelling and

Having set the scene, we are now equipped to start
modelling the word and. The first aspect to note, is
that and has a variable type, of the form −x x x−,
where x can stand for any (possibly composite)
grammatical type. The account we give will hence
be equally generic, though we proceed mostly via
example.

4.1 Looking inside the box

In the most basic case, conjoining two nouns is just
a case of packaging them next to each other:

• Jack and Jill.

Next, conjoining boxes is just a case of merging
them together. In some cases, the components we
want to merge may not involve the same nouns - in
order for the types to match we cannot merge them,
so must combine them into the outgoing sentence
wire directly. These extra nouns are drawn in black
below:

By varying the number of noun wires coming in or
out appropriately, we can use the above to construct
forms for adjectives (n n−), simple verbs (−n s),
transitive verbs (−n s n−), and di-transitive verbs
(−n s n− n−). Removing all the nouns results in
a sentence combiner that acts analogously to the
simple noun case. To illustrate, consider:

• Jill climbs hills and fetches water.

=

72

Another important structure is prepositions,
typed −s −−n −n s n−. In this case, a specific
subject noun (in red), and an indirect object (in
light grey) are identified in advance, and are sub-
sequently passed to the two conjuncts to be mixed.
Again, we collect any extra nouns picked up along
the way and ensure they bypass the merging. Simi-
larly to above, we can also add or remove as many
light grey nouns as necessary to type match, fol-
lowing the schema given.

• Jack went up and down the hill.

=

The internal wirings for other types will largely
follow the same format, merging together wires
that are involved on both sides of the conjunct and
combining the rest into an outgoing N or s plural
noun.

4.2 Dealing with N

The way in which we are conjoining nouns is in-
troducing a new plural noun type N . In order for
our sentence parsings to keep working, we hence
need to introduce new forms for our other boxes
that include N where we would usually have n.
Bearing in mind that our goal is for the grammar
wirings to look the same, this means that we are
looking to convert N into n internally to the box in
question.

The intuition behind this split is that usually, the
action described by a box is not shared between the
parties involved - instead each character does the
given action independently. For example, consider
the following sentences:

1. Alice and Bob eat cucumber.

2. Alice eats cucumber. Bob eats cucumber.

3. Alice and Bob murder Charlie.

4. Alice murders Charlie. Bob murders Charlie.

In (1), Alice and Bob are not sharing the same
‘eating’, and the sentence seems equivalent to (2),
suggesting that the verb is simply duplicated to
accommodate the multiple subjects. On the other
hand, in (3), there is only one murder, so Alice
and Bob must be doing it together, suggesting that
in this case we cannot duplicate the single-subject
form. Indeed, (4) seems somewhat contradictory
- when we learn that Alice murders Charlie, we
assume that Charlie is then dead. Subsequently
learning that Bob murders Charlie too appears odd,
since as far as we are concerned there is no Charlie
left for Bob to kill. We can express this difference
with the following expansions of the verb boxes:

Generic verb Kill

4.3 Examples

Having established the theory, we can now illus-
trate how this works with some actual sentences.
First, consider the non-linear example given at the
start:

• Alice wears a hat and a scarf.

73

=

In this case, the hat and scarf are first packaged into
a plural noun, which when fed into the verb wears
induces a duplication. Taking the merge operation
to be given by (SEQ), the final diagram obtained
is equivalent to that of ‘Alice wears a hat. Alice
wears a scarf ’.

• Alice wears red and yellow socks.

In this linear case, the key operation is the merge -
no duplication is necessary. The natural choice in
this case seems to be (SPIDER), which puts both
sides in parallel, suggesting that perhaps (SPIDER)
should be used within and boxes, whilst (SEQ)
should be the merge introduced by the duplication.

In taking the non-commutative (SEQ) as our
merge operation, however, we will sometimes need
to make an arbitrary choice about the order in
which we apply [//]. This problem notably occurs
with di-transitive verbs:

• Alice and Bob show Mary apples and pears.

In such cases, the various expansions are arguably
different, as they seem to introduce a temporal or-
dering on the events described, which is not present
when there is no common wire connecting the du-
plicates:

• Alice shows Mary apples. Alice shows Mary
pears. Bob shows Mary apples. Bob shows
Mary pears.

• Alice shows Mary apples. Bob shows Mary
apples. Alice shows Mary pears. Bob shows
Mary pears.

The solution would then either be to use a
commutative merge like (SPIDER), which would
result three different sentences; or to keep (SEQ),
but attribute the non-commutativity to the verb
show instead. In this case, it seems we should
model show like kill, suggesting a link between
whether an expansion of the verb is induced by
and, and whether the verb’s meaning is closely
linked to the relative time at which it occurs.

Next, we consider a slightly more involved sen-
tence which exhibits the way in which the plural
nouns are fed through the sentence:

• Jack and Jill went up the hill into the forest.

=

In this case, we can see that the plural noun is
fed into the sub-phrase in which it occurs via the
marker morphism, so that the sentence expands
into the same diagram that would be given by
‘Jack went up the hill into the forest. Jill went up
the hill into the forest’, as expected.

The duplication operation can also be used with
paired wires. In this case, the pairs will be fed
through the inner phrase together, rather than inde-
pendently. For example, consider:

• Alice and Bob each wear a scarf.

74

=

In this case, we have provided a particular
interpretation of each that coordinates the subject
nouns with a copy of the object noun before being
fed through the marker morphism. This ensures
that Alice and Bob are wearing different copies of
the scarf, rather than both wearing the same scarf,
or both wearing both scarves. Taking advantage
of this distinction also seems like a promising
way to model words with similar effects, such as
respectively.

Finally, in the framework presented we can also
account for conjunctive ambiguity, which arises as
different ways of bracketing the conjuncts:

(Clumsy Jack) and Jill fell.

Clumsy (Jack and Jill) fell.

The ambiguity here is resolved by our choice of
where to place the plural N types. In the first case,
we assign clumsy a singular adjective type (n n−),
whereas in the second sentence it is plural (N N−).
Making sure to index the N types with the number
of wires they are encapsulating, the grammatical
ambiguity present can hence be isolated to the type
assignment rather than the parsing tree.

5 Related Work

The non-linearity introduced here has very
similar effects to the non-linearity Wijnholds and
Sadrzadeh (2019b) introduce to deal with ellipsis,
however arises rather differently. In particular, they
introduce the non-linearity to the grammar parsing,
effectively by allowing parts of the derivation to
freely be reused elsewhere. In this way, arbitrary
parts of the sentence can get copied over to a new

location. In contrast, the duplication introduced
here is via the words involved, such that the
duplication can only occur along the wires given
by the (linear) pregroup grammar. The duplication
also does not apply to wires themselves - only
boxes get copied, making this a strictly weaker
notion.

Though we have not discussed a particular
choice of meaning embedding, the approach relates
to work encoding logical words using vector-based
semantics. Within DisCoCirc, we are primarily
concerned with characters - treating the nouns in-
volved as individual entities. In some cases, how-
ever we might be interested in nouns as concepts,
for which conjunction does not seem to imply the
presence of multiple characters, but instead sug-
gests a merging of the component concepts. Aerts
(2009) discusses such concepts, in particular con-
sidering the so-called Guppy effect (Guppy is con-
sidered a good example of the concept pet fish de-
spite being a bad example of both fish and pet when
the concepts are considered separately). He sug-
gests representing the joint concept pet and fish as
a superposition in a Fock space to account for this:
|pet and fish〉 := (|pet〉 ⊗ |fish〉) ⊕ (|pet〉 + |fish〉)
In the account of conjunction given here, we effec-
tively split the two ways of combining concepts:
the tensor is used on ‘characters’, while everything
else is merged - potentially as a superposition.

6 Conclusion

In summary, we have provided an account of and
within the framework of DisCoCirc, that allows us
to generate diagrams capturing the intuitive mean-
ing of sentences that involve conjunctions. Due to
the non-linear nature of and, we associate it to a
diagram rewriting operation or 2-morphism, that
duplicates the relevant parts of our diagrams.

The treatment provided allows us to parse the
common usage of and, however there is more work
to be done when it comes to certain more complex
cases. In particular, there are many related words
that control how and whether to duplicate words,
such as respectively and each, as well as certain
phrases like three times which interact with dupli-
cation in more complex ways. Ellipsis is also a
closely related grammatical notion, and it would
be interesting to see if the duplication approach
explored here can provide a suitable solution.

75

References
Diederik Aerts. 2009. Quantum Structure in Cognition.

Journal of Mathematical Psychology, 53(5):314–
348. ArXiv: 0805.3850.

Desislava Bankova, Bob Coecke, Martha Lewis,
and Daniel Marsden. 2016. Graded Entail-
ment for Compositional Distributional Semantics.
arXiv:1601.04908 [quant-ph]. ArXiv: 1601.04908.

Yehoshua Bar-Hillel. 1953. A Quasi-Arithmetical
Notation for Syntactic Description. Language,
29(1):47.

Joe Bolt, Bob Coecke, Fabrizio Genovese, Martha
Lewis, Dan Marsden, and Robin Piedeleu. 2017.
Interacting Conceptual Spaces I : Grammatical
Composition of Concepts. arXiv:1703.08314 [cs].
ArXiv: 1703.08314.

Bob Coecke. 2020. The Mathematics of Text Structure.
arXiv:1904.03478 [quant-ph]. ArXiv: 1904.03478.

Bob Coecke and Aleks Kissinger. 2017. Picturing
Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge
University Press, Cambridge.

Bob Coecke and Konstantinos Meichanetzidis.
2020. Meaning updating of density matrices.
arXiv:2001.00862 [quant-ph]. ArXiv: 2001.00862.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen
Clark. 2010. Mathematical Foundations for a
Compositional Distributional Model of Meaning.
arXiv:1003.4394 [cs, math]. ArXiv: 1003.4394.

Gemma De las Cuevas, Andreas Klingler, Martha
Lewis, and Tim Netzer. 2020. Cats climb entails
mammals move: preserving hyponymy in compo-
sitional distributional semantics. arXiv:2005.14134
[cs, math]. ArXiv: 2005.14134.

Christiaan Johan Marie Heunen. 2020. Categories
for quantum theory: an introduction [electronic re-
source], first edition. edition. Oxford graduate texts
in mathematics. University Press, Oxford.

Dimitri Kartsaklis. 2016. Coordination in Categori-
cal Compositional Distributional Semantics. Elec-
tronic Proceedings in Theoretical Computer Science,
221:29–38. ArXiv: 1606.01515.

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2016.
Distributional Inclusion Hypothesis for Tensor-
based Composition. arXiv:1610.04416 [cs]. ArXiv:
1610.04416.

Joachim Lambek. 1968. The Mathematics of Sentence
Structure. Journal of Symbolic Logic, 33(4):627–
628.

Martha Lewis. 2019. Modelling hyponymy for DisCo-
Cat.

Martha Lewis. 2020. Towards logical nega-
tion for compositional distributional semantics.
arXiv:2005.04929 [cs, math]. ArXiv: 2005.04929.

Robin Lorenz, Anna Pearson, Konstantinos Me-
ichanetzidis, Dimitri Kartsaklis, and Bob Coecke.
2021. QNLP in Practice: Running Composi-
tional Models of Meaning on a Quantum Computer.
arXiv:2102.12846 [quant-ph]. ArXiv: 2102.12846.

Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Co-
ecke. 2013. The Frobenius anatomy of word mean-
ings I: subject and object relative pronouns. Jour-
nal of Logic and Computation, 23(6):1293–1317.
ArXiv: 1404.5278.

Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Co-
ecke. 2016. The Frobenius anatomy of word mean-
ings II: possessive relative pronouns. Journal of
Logic and Computation, 26(2):785–815. ArXiv:
1406.4690.

Peter Selinger. 2009. A survey of graphical languages
for monoidal categories. arXiv:0908.3347 [math].
ArXiv: 0908.3347.

Gijs Wijnholds and Mehrnoosh Sadrzadeh. 2019a.
Evaluating Composition Models for Verb Phrase El-
liptical Sentence Embeddings. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 261–271, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Gijs Wijnholds and Mehrnoosh Sadrzadeh. 2019b.
A Type-Driven Vector Semantics for Ellipsis with
Anaphora Using Lambek Calculus with Limited
Contraction. Journal of Logic, Language and Infor-
mation, 28(2):331–358.

https://doi.org/10.1016/j.jmp.2009.04.005
http://arxiv.org/abs/1601.04908
http://arxiv.org/abs/1601.04908
https://doi.org/10.2307/410452
https://doi.org/10.2307/410452
http://arxiv.org/abs/1703.08314
http://arxiv.org/abs/1703.08314
http://arxiv.org/abs/1904.03478
https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
http://arxiv.org/abs/2001.00862
http://arxiv.org/abs/1003.4394
http://arxiv.org/abs/1003.4394
http://arxiv.org/abs/2005.14134
http://arxiv.org/abs/2005.14134
http://arxiv.org/abs/2005.14134
https://ezproxy-prd.bodleian.ox.ac.uk/login?url=https://dx.doi.org/10.1093/oso/9780198739623.001.0001
https://ezproxy-prd.bodleian.ox.ac.uk/login?url=https://dx.doi.org/10.1093/oso/9780198739623.001.0001
https://ezproxy-prd.bodleian.ox.ac.uk/login?url=https://dx.doi.org/10.1093/oso/9780198739623.001.0001
https://doi.org/10.4204/EPTCS.221.4
https://doi.org/10.4204/EPTCS.221.4
http://arxiv.org/abs/1610.04416
http://arxiv.org/abs/1610.04416
https://doi.org/10.2307/2271418
https://doi.org/10.2307/2271418
https://www.cs.ox.ac.uk/ACT2019/preproceedings/Martha%20Lewis.pdf
https://www.cs.ox.ac.uk/ACT2019/preproceedings/Martha%20Lewis.pdf
http://arxiv.org/abs/2005.04929
http://arxiv.org/abs/2005.04929
http://arxiv.org/abs/2102.12846
http://arxiv.org/abs/2102.12846
https://doi.org/10.1093/logcom/ext044
https://doi.org/10.1093/logcom/ext044
https://doi.org/10.1093/logcom/exu027
https://doi.org/10.1093/logcom/exu027
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.18653/v1/N19-1023
https://doi.org/10.18653/v1/N19-1023
https://doi.org/10.1007/s10849-019-09293-4
https://doi.org/10.1007/s10849-019-09293-4
https://doi.org/10.1007/s10849-019-09293-4

