
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 688–693
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

688

Stanford MLab at SemEval-2021 Task 1: Tree-Based Modelling of Lexical
Complexity Using Word Embeddings

Erik Rozi∗, Niveditha Iyer∗, Gordon Chi, Enok Choe, Kathy Lee,
Kevin Liu, Patrick Liu, Zander Lack, Jillian Tang†, and Ethan A. Chi†

Stanford University
{erikrozi, nivsiyer}@stanford.edu
{jiltang, ethanchi}@cs.stanford.edu

Abstract

This paper presents our system for the single-
and multi-word lexical complexity prediction
tasks of SemEval Task 1: Lexical Complex-
ity Prediction. Text comprehension depends
on the reader’s ability to understand the words
present in it; evaluating the lexical complex-
ity of such texts can enable readers to find
an appropriate text and systems to tailor a
text to an audience’s needs. We present our
model pipeline, which applies a combination
of embedding-based and manual features to
predict lexical complexity on the CompLex
English dataset using various tree-based and
linear models. Our method is ranked 27 / 54
on single-word prediction and 14 / 37 on multi-
word prediction.

1 Introduction

The rapid expansion of social media and other on-
line channels has made readable information avail-
able at an astounding rate. However, the accessi-
bility of this information is often limited by the
complexity of this information, especially among
readers with low literacy levels in the language of
the text and those with reading disabilities. Fur-
thermore, even to the average reader, specialized
jargon found in governmental documents and sci-
entific fields is often difficult to decipher.

Systems to guide these users may redirect read-
ers to more easily comprehensible sources, convert
the text to simpler wording, or provide additional
information about what difficult words mean. The
development of such systems is benefited by the
ability to evaluate the complexity of sections of the
text. While there is currently a large amount of
available text data, very little of it is labeled with
word complexity; automating the labelling process
would make much more data available to aid the

∗Co-first authors.
†Co-senior authors.

development of NLP systems in tasks such as text
simplification.

Multiple features of a word can affect lexical
complexity. In addition to a word’s frequency,
length and syllable count, the context in which
a word is found is likely to affect its understand-
ability. The additional factor of the reader’s profi-
ciency in a language makes this task complex as
many words have a highly variable complexity.

In this paper, we describe our model that predicts
single- and multi-word lexical complexity scores.

2 Background

2.1 Task Overview

All data was provided through SemEval Task 1
(Shardlow et al., 2021). Our dataset consists of an
augmented version of the CompLex Corpus (Shard-
low et al., 2020), which contains English sentences
from three genres of corpora: the Bible, Europarl,
and biomedical writing. From each sentence, both
single- and multi-word tokens were selected and
annotated by approximately 7 annotators. Each
token was annotated on complexity from a scale of
1-5, though for this competition, complexity was
normalized to a continuous scale between 0 and 1.

Token complexity can differ based on the com-
plexity of the token both with and without context.
For example, for one instance, the token river was
rated to have a complexity of 0.0, while jurispru-
dence had a complexity of around 0.672 for another
instance. However, token complexities can also
change based on the context from which it came
from. For example, the token wisdom was given a
complexity of 0.125 when it was associated in the
sentence “The rod of correction gives wisdom, but
a child left to himself causes shame to his mother.”
However, the same token was given a significantly
higher complexity score of 0.368 when associated
with the sentence “For in much wisdom is much



689

grief; and he who increases knowledge increases
sorrow.”

Given that GloVe embeddings (Pennington et al.,
2014) store semantic meaning of single words, we
chose to use GloVe embeddings to represent both
tokens and sentences. With this approach, we de-
termine that despite contextual variation, inherent
properties of the token itself are sufficient to ex-
plain much of the variance in lexical complexity.

2.2 Traditional Text Complexity Metrics

Many traditional metrics for calculating the com-
plexity of text predict with syllable to word count
ratios. For example, the Flesch-Kincaid Grade
Level Formula 1 (Kincaid et al., 1975) calculates
the complexity of a text with the formula

GL = 0.39
words

sentence
+ 11.8

syllables
word

− 15.59.

Other models based on the grade level of a text,
such as the Automated Readability Index and the
SMOG Index (Kincaid et al., 1975), also exist.
Our original hypothesis inferred that these indexes
would be good indicators to predict the complexity
of a token. However, through empirical analysis,
we found that these indicators provided no marginal
benefit compared to GloVe sentence embeddings
and simpler handcrafted features. As seen in Table
1, we found that the correlation coefficients of tra-
ditional complexity metrics to dataset complexity
values were low. To test this, we initially included
these traditional metrics in our feature space for the
following models. Our model reported an R score
of 0.63 with the Flesch-Kincaid Grade and SMOG
Index as additional features. We removed these
features after observing little benefit or worse loss
scores (in comparison to Table 2). This suggests
that word complexity in context may be embedded
in a deeper semantic level than simple word and
syllable lengths.

Model Pearson
Flesch-Kincaid Grade 0.07
Automated Readability Index 0.07
SMOG Index 0.03

Table 1: Pearson correlation between complexity met-
rics and true complexity values (single-word)

1https://github.com/shivam5992/textstat

3 System Overview

3.1 Single Word Complexity Score
3.1.1 Data Representation and Features
This system uses a combination of GloVe (Penning-
ton et al., 2014) word embeddings and hand-crafted
features as final features to predict complexity on.
Pre-trained GloVe embeddings with a dimension of
300 for both the single-word token and each word
in the context sentence were used. For the single-
word embeddings, PCA with a final dimension of
100 was applied. Since the context sentences con-
tained a variable number of words, we calculated
the component-wise mean of all the word-vector
representations in the context sentence. We found
that sentence features had low mutual information,
hence we decided to use a limited number of 10
PCA features to calculate the mean of the sentence
features. This mean representation is concatenated
with the GloVe embedding of the single-word to-
ken.

In other words, let t be the GloVe embedding
of the single-word token, and wi be the GloVe
embedding for word i in the context sentence, with
n words. We calculate the sentence representation
s to be

s =
∑n

i wi

n
,

leading to features r = [t, s] with a dimensionality
of 110 features.

On top of this representation, we include hand-
crafted features. Through manual tuning, we cre-
ated a set of manual features:

• NUMLETTERS: the number of letters in the
token

• NUMCAPITALS: the number of capital let-
ters in the token

• NUMSYLLABLES: the number of syllables
in the token

• NUMDIGITS: the number of digits in the to-
ken

• ISFIRSTCAPITAL: whether or not the first
letter is capitalized (implying it is a subject or
technical term)

• NUMSENTWORDS: the number of words in
the context sentence

• CORPUSTYPE: the type of corpus the sen-
tence is taken from

https://github.com/shivam5992/textstat


690

• POS: the part of speech of the token

• ISINNER: whether or not the token is in a
named entity

The ”POS” and ”IsInNER” features are obtained
from the Stanza NLP package (Qi et al., 2020).

Instead of relying on the frequencies of words in
the text we were analyzing, we found that a more
representative frequency metric could be obtained
by counting word occurrences in all Wikipedia arti-
cles. Hence we decided to use frequencies of word
as they appear in the English Wikipedia articles as
of February 2019.2 This feature was concatenated
with all of the other handcrafted features and GloVe
embeddings, leading to a final feature dimensional-
ity of 126.

3.1.2 Learning Models3

Because the system primarily treats the input dat-
apoints as sets of vectors and other numerical fea-
tures, most of the models used were regressors
made for data. As the baseline, we used linear re-
gression with the GloVe embeddings for only the
single-word token and obtained a baseline R of
0.7888 on the train set.

We explored the following machine learning
models:

• Ridge regression is a linear least squares
model with L2 regularization to reduce over-
fitting and variance. We use α = 0.00001 as
the regularization coefficient to prevent over-
fitting.

• Support Vector Regression is a Support Vec-
tor Machine for a regression task that toler-
ates errors within a certain degree ε. We use
ε = 0.02 as the distance within which no
penalty is associated, and C = 0.2 as a regu-
larization parameter to reduce overfitting.

• Decision Tree Regression creates a model as
a series of decision rules. As a baseline, we
created a decision tree with max depth = 6,
though other models use varying depths.

• AdaBoost Regression (Freund and Schapire,
1996) sequentially applies decision trees, with
each tree placing more weight on data that

2https://github.com/IlyaSemenov/
wikipedia-word-frequency

3All models were implemented using SKLearn (Pedregosa
et al., 2012) unless otherwise mentioned.

previous trees did not fit well to. We use De-
cisionTreeRegressors with max depth= 10 as
the base estimator, with a total of nestimators =
20 decision trees.

• XGBoost Regressor overcomes the ineffi-
ciency in gradient boosting of creating a sin-
gle decision tree at a time by parallelizing
tree building. We used max depth= 4 and
λ = 2000 as a regularization parameter. As λ
is responsible for L2 regularization of weights,
using a higher value would make the model
more conservative by encouraging smaller
weights.

• LightGBM Regressor 4 (Ke et al., 2017) is a
framework that uses tree based learning algo-
rithms for gradient boosting. Our model uses
gain-based feature importance, with λ = 50
and nleaves = 40 and a minimum of 100 dat-
apoints per leaf. To avoid overfitting, we
regularize with path smoothing of 1, set a
maximum tree depth of 15, and trained using
DART boosting.

• Stacking We also tested a stack of estima-
tors with a final Ridge regressor to get an en-
semble of predictions and reduce overfitting.
We stacked five AdaBoost Regressors with
nestimators = 50, 100 estimators respectively,
each with a base estimator of a Decision Tree
Regressor with max depth varying between 5,
7, and 9. On top of this, we stacked two Sup-
port Vector Regressors with ε = 0.01, 0.001
and C = 0.1, 0.01 respectively. Finally, we
stacked three LightGBM Regressors, each
with 100, 50, and 10 leaves respectively. This
method was used with the theory that com-
bining multiple models would result in better
predictive power than one model alone.

• Bagging is an ensemble method involving
training copies of a base model on inde-
pendent random samples of the full dataset.
We used an LGBM with nleaves = 40,
reg lambda = 100, path smooth = 1,
max depth = 12, and feature fraction =
0.75 as our base model. We set nestimators =
10, max samples = 0.8, and max features =
0.75 in order to reduce variance of the deci-
sion tree.

4https://github.com/microsoft/LightGBM

https://github.com/IlyaSemenov/wikipedia-word-frequency
https://github.com/IlyaSemenov/wikipedia-word-frequency
https://github.com/microsoft/LightGBM


691

• BERT We also explore context-dependent
deep learning architectures: in particular, we
fine-tune the pre-trained BERT model (De-
vlin et al., 2019). We leverage the pre-trained
BERT neural network5 by tokenizing each
sentence, and providing the target word to
the model as a second sentence. With 2-3
fully connected layers added on top of the
pre-trained model, we fine-tuned this model
to generate a numerical complexity predic-
tion, by optimizing on the L2 Loss. All ex-
periments were implemented using SKLearn
(Pedregosa et al., 2012) and HuggingFace 6.

3.2 Multi-word Complexity Score

3.2.1 Data Representation and Features

Our multi-word data representation closely mir-
rored our single-word token representation. All
hand-crafted features were crafted in the same way
as the single word counterparts, except for the POS
and NER features which were not included. For ex-
ample, the feature NumLetters includes the num-
ber of letters from both words. The context sen-
tence embeddings were calculated with the same
methodology of applying PCA with dimension of
10 to the mean of the GloVe embeddings.

The key difference between the two models lies
in the representation of the multi-word tokens them-
selves. The data provided was consistent in that
each multi-word token consisted of two words.
Therefore, to represent these tokens, we concate-
nated the GloVe representation of each word in
the token, as well as the difference between both
GloVe vectors. From there, we applied PCA of
dimension 150 to this embedding, which was deter-
mined through experimentation, and concatenated
this with the other hand-crafted and context sen-
tence features mentioned previously.

More concretely, let t1, t2 be the GloVe embed-
dings of each word in the multi-word token. We
found the new representation of a multi-word token
m to be

m = [t1, t2, t1 − t2].

This was concatenated with sentence representation
s and handcrafted features for a final dimensionality
of 174 features.

5We use tokenizers and pre-trained models from the Hug-
gingFace transformers library: https://huggingface.co/
transformers/model doc/bert.html

6https://huggingface.com

3.2.2 Learning Models
Given the similarity of the multi-word representa-
tions versus the single-word representations (the
only difference being the addition of a second to-
ken’s GloVe embedding), we used the LightGBM
Regressor outlined in section 3.1.2, as this model
performed the best in the single word token set-
ting. This proved to be an effective way to predict
multi-word complexity.

4 Experimental Setup

The train and validation dataset splits provided
were used in our experimental setup. In addition,
we used K-fold validation to reduce overfitting. Us-
ing K-fold, we split the training set into k smaller
sets arbitrarily, train using k − 1 folds, and cross-
validate with the remaining fold in the train set.
This reduces leakage from the validation set into
the model so that we can accurately validate our
methods.

Task predictions were evaluated using Pearson
correlation, though Spearman correlation, mean
absolute error, mean squared error, and R-squared
were also reported. We compared the performance
of our own models using Pearson correlation to
keep one consistent evaluation metric.

5 Results

5.1 Single Word Results

From Table 2, LGBMRegressor performs the best
in terms of the Pearson metric. Therefore, we chose
this model as our final model for submission.

We found that transforming the word frequencies
to a logarithmic scale did not improve results across
the models we tested. This is expected because
tree-based regressors (Adaboost, LGBM, XGB)
are invariant to monotonic scaling. Our results on
the task evaluation metrics are shown in Table ??.

We suspect Ensemble Stacking overgeneralized
and did not perform effectively as a result, though
other stacking methods could perform better. Sur-
prisingly, the contextual deep learning approach
of BERT did not perform well on the task, only
approaching similar performance to the baseline
linear regression on GloVe embeddings.

Though we scored 27th place out of 54 teams
overall in the Pearson metric for single-words, the
top score was only 0.03 points higher than our own
evaluation score. We suspect that different methods
of stacking regressors and using complex decision

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.com


692

Model Pearson
Linear Regression 0.7888
BERT 0.7892
Ridge 0.7829
SVR 0.7945
DecisionTreeRegressor 0.7083
AdaBoost Regressor 0.7976
Ensemble Stacking 0.7578
XGBRegressor 0.7884
BaggingRegressor 0.8018
LGBMRegressor 0.8056

Table 2: Experimental results (single-word)

Metric Score Ranking
Pearson 0.7533 (27)
Spearman 0.7044 (34)
MAE 0.0653 (25)
MSE 0.0071 (29)
R2 0.5615 (26)

Table 3: Evaluation results (single-word)

trees would have created a model that predicts well
with the CompLex dataset. However, whether this
type of model will generalize to future datasets is a
subject of investigation.

5.2 Multi-word Expressions Results

We note that our multi-word expression Pearson
metric, as shown in Table ??, performs better than
our single word Pearson, and ranks 14th out of 37
teams. This is most likely because averaging the
GloVe representations of the two tokens allows for
more data points to be represented in the decision
tree model.

6 Conclusion

In this paper we describe tree-based modelling of
words in context to predict lexical complexity. We
find that lexical complexity is already embedded in

Metric Score Ranking
Pearson 0.8280 (14)
Spearman 0.8124 (18)
MAE 0.0711 (24)
MSE 0.0080 (24)
R2 0.6671 (14)

Table 4: Evaluation results (multi-word)

GloVe representations of words and that complex
architectures provide some increase in predictive
performance.

For future work, we suggest taking additional
contextual features into account, such as the prox-
imity of each neighboring word. We also suggest
looking into newer transformer models to represent
contextual embeddings.

As larger bodies of text become widely available
to wide audiences for public consumption, we are
hopeful that such systems will help readers identify
suitable texts for their reading level and help build
systems that can tailor text to varied reading levels,
allowing for greater accessibility.

Acknowledgments

This research effort would not have been possible
without the support of Stanford ACMLab. The
authors thank Matthew Shardlow, Richard Evans,
Gustavo Henrique Paetzold and Marcos Zampieri
for organizing SemEval 2021 Task 1: Lexical Com-
plexity Prediction. We also thank Yasmine Mitchell
for helpful discussions.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yoav Freund and Robert E. Schapire. 1996. Exper-
iments with a new boosting algorithm. In Pro-
ceedings of the Thirteenth International Conference
on International Conference on Machine Learning,
ICML’96, page 148–156, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Informa-
tion Processing Systems, volume 30. Curran Asso-
ciates, Inc.

J. Peter Kincaid, Robert P. Jr. Fishburne, Richard L.
Rogers, and Brad S. Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel. Institute for Simulation and
Training.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://stars.library.ucf.edu/istlibrary/56
https://stars.library.ucf.edu/istlibrary/56
https://stars.library.ucf.edu/istlibrary/56
https://stars.library.ucf.edu/istlibrary/56


693

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2012.
Scikit-learn: Machine learning in python. CoRR,
abs/1201.0490.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Matthew Shardlow, Michael Cooper, and Marcos
Zampieri. 2020. CompLex — a new corpus for lexi-
cal complexity prediction from Likert Scale data. In
Proceedings of the 1st Workshop on Tools and Re-
sources to Empower People with REAding DIfficul-
ties (READI), pages 57–62, Marseille, France. Euro-
pean Language Resources Association.

Matthew Shardlow, Richard Evans, Gustavo Paetzold,
and Marcos Zampieri. 2021. Semeval-2021 task 1:
Lexical complexity prediction. In Proceedings of
the 14th International Workshop on Semantic Evalu-
ation (SemEval-2021).

http://arxiv.org/abs/1201.0490
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://www.aclweb.org/anthology/2020.readi-1.9
https://www.aclweb.org/anthology/2020.readi-1.9

