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Abstract

This paper describes team LCP-RIT’s sub-
mission to the SemEval-2021 Task 1: Lex-
ical Complexity Prediction (LCP). The task
organizers provided participants with an aug-
mented version of CompLex (Shardlow et al.,
2020), an English multi-domain dataset in
which words in context were annotated with
respect to their complexity using a five point
Likert scale. Our system uses logistic regres-
sion and a wide range of linguistic features
(e.g. psycholinguistic features, n-grams, word
frequency, POS tags) to predict the complexity
of single words in this dataset. We analyze the
impact of different linguistic features on the
classification performance and we evaluate the
results in terms of mean absolute error, mean
squared error, Pearson correlation, and Spear-
man correlation.

1 Introduction

Lexical complexity prediction (LCP) is the task of
predicting the complexity value of a target word
within a given text (Shardlow et al., 2020). Com-
plexity within LCP is used as a “synonym for diffi-
culty” (Malmasi and Zampieri, 2016)1. A complex
word is therefore a word that a target population
may find difficult to understand. Various LCP sys-
tems have been designed to identify words that
may be found to be complex for children (Kajiwara
et al., 2013), language learners (Malmasi et al.,
2016), or people suffering from a reading disability,
such as dyslexia (Rello et al., 2013). These sys-
tems have been utilized within assistive language
technologies, lexical simplification systems, and in
a variety of other applications.

LCP is related to complex word identification
(CWI) (Paetzold and Specia, 2016). CWI is mod-
eled as a binary classification task by assigning
each target word with a complex or non-complex

1The term “complex” within LCP is not necessarily related
to the terms simplex and complex used in morphology.

label. The shortcomings of modeling lexical com-
plexity using binary labels have been discussed in
previous work (Zampieri et al., 2017; Maddela and
Xu, 2018), motivating the organization of SemEval-
2021 Task 1: Lexical Complexity Prediction.2 LCP
models complexity in a continuum and the goal is
to predict a target word’s degree of complexity by
assigning it a value between 0 and 1. This value
may then correspond to one of the following la-
bels: very easy (0), easy (0-0.25), neutral (0.25-
0.5), difficult (0.5-0.75), or very difficult (0.75-1)
(Shardlow et al., 2020).

In this paper, we describe (in detail in Section 4)
the LCP-RIT entry to SemEval-2021 Task 1. We
approached LCP from a feature engineering per-
spective with a particular focus on the adoption
of psycholinguistic features, such as average age-
of-acquisition (AoA), familiarity, prevalence, con-
creteness, and arousal, alongside the use of prior
complexity labels. Our submitted system utilized
a combination of these linguistic features, which
we compared to a baseline model that only used
statistical features: word length, word frequency
and syllable count (Quijada and Medero, 2016;
Mukherjee et al., 2016). On our training dataset,
our submitted system achieved a mean absolute er-
ror (MAE) of 0.067, mean squared error (MSE) of
0.007, Person Correlation (R) score of 0.779, and
a Spearman Correlation (ρ) score of 0.724. This
surpassed our baseline model’s performance by a
MAE of 0.008, MSE of 0.003, as well as R and ρ
scores of 0.075 and 0.062 respectively.

2 Related Work

Before SemEval-2021 Task 1: LCP, two CWI
shared tasks were organized at one SemEval-2016
and the other at BEA-2018 (Paetzold and Specia,
2016; Yimam et al., 2018). While the first CWI
provided participants with an English dataset, the

2https://sites.google.com/view/
lcpsharedtask2021/home

https://sites.google.com/view/lcpsharedtask2021/home
https://sites.google.com/view/lcpsharedtask2021/home


549

second provided a multilingual dataset. The sys-
tems submitted to the English track of the second
shared task (Yimam et al., 2018) performed better
overall than the previous task (Paetzold and Specia,
2016), probably due to the properties of the two
datasets (Zampieri et al., 2017). State-of-the-art
neural net models and word embedding models
performed worse than conventional models such
as decision trees (DTs) and random forests (RFs)
(Yimam et al., 2018). Among the conventional
models, the use of statistical, character n-gram, and
psycholinguistic features was found to be highly
effective in improving CWI performance (Malmasi
et al., 2016; Zampieri et al., 2016; Paetzold and
Specia, 2016; Yimam et al., 2018).

Among the best performing systems in CWI
2018, Gooding and Kochmar (2018) used an en-
semble of classifiers. They found that during their
system’s development, the boosting classifier Ad-
aBoost, a random forest classifier, or a combina-
tion of both classifiers achieved the highest per-
formance. These systems used multiple features
such as the word’s grammatical category, Google
character n-gram frequency as well as a range of
psycholinguistic features (Gooding and Kochmar,
2018).

Of the remaining systems, Aroyehun et al.
(2018) and Hartmann and Borges dos Santos (2018)
utilized statistical features, such as word length and
number of syllables, psycholinguistic features such
as familiarity, age of acquisition, concreteness, and
imagery scores, and word n-grams. Hartmann and
Borges dos Santos (2018) compared the perfor-
mance of tree ensembles to a convolutional neural
network (CNN). They found that their tree ensem-
bles performed better than their CNN, especially
when the target expression contained more than
three words (Aroyehun et al., 2018).

3 Task and Dataset

The LCP shared task organizers provided partici-
pants with the CompLex corpus, an English multi-
domain dataset with sentences from the Bible, the
European Parliament proceedings, and a collection
of biomedical texts. A pool of annotators, using a
five point Likert scale, labeled the complexity of
single words and multi-word expressions in Com-
pLex (Shardlow et al., 2020).

Taking advantage of the annotation of single
words and multi-word expressions, the LCP shared
task was divided into two sub-tasks as follows:

• Sub-task 1: predicting the complexity score
for single words;

• Sub-task 2: predicting the complexity score
for multi-word expressions.

We chose to participate in sub-task 1. Sub-Task
1’s training dataset contained 7,662 instances with
its test dataset having 917 instances. 20% of the
training dataset was used to test our system’s perfor-
mance during development. Sub-Task 1 received
54 system submissions.

4 System Overview

4.1 Model
Taking inspiration from the CWI systems discussed
in Section 2, we adopted a random forest regres-
sor (RFR) to predict the complexity values of each
word within the test dataset. To achieve this, we
tested the impact a variety of linguistic features
have on LCP performance during our system’s de-
velopment. The RFR was taken from scikit-learn’s
ensemble module (Pedregosa et al., 2011). The
RFR used a maximum of 120 trees and 750 fea-
tures.

4.2 Features
We constructed a baseline RFR using the follow-
ing statistical features and character trigrams. We
then used psycholinguistic and additional features
to see whether its baseline performance could be
improved.

Statistical Features include word length, word
frequency and syllable count. Zipf’s Law implies
that words that appear less frequently within a text
are likely to be longer and therefore may be con-
sidered more complex than words that are more
frequent and shorter (Quijada and Medero, 2016).
In addition, words with a high number of syllables
are difficult to pronounce and are subsequently hard
to read (Mukherjee et al., 2016). As such, word
length, word frequency and syllable count were
considered to be good baseline statistical indicators
of a word’s complexity value.

Character N-grams include the use of charac-
ter bigram and trigram frequencies. These frequen-
cies were calculated by counting each bigram’s
and trigram’s presence in the target words provided
in Sub-Task 1’s training dataset. Experimentation
with bigrams and trigrams, along with a combi-
nation of both, found that the use of trigrams on
their own was superior. This together with their use
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within prior CWI systems justified their inclusion
within our baseline model (Yimam et al., 2018).

Psycholinguistic Features include average age
of acquisition (AoA), concreteness, familiarity,
prevalence and arousal. AoA is the age at which
a word’s meaning is first learned. Concreteness
refers to “the degree to which the concept denoted
by a word refers to a perceptible entity” (Brysbaert
et al., 2013). Familiarity and prevalence are some-
what similar. Familiarity is how well known the
word is to an individual and was obtained through
self-report (Gilhooly and Logie, 1980). Prevalence
was calculated in accordance to the percentage of
people who knew the word (Brysbaert et al., 2019).
Lastly, arousal is a measure of how active or passive
a word’s meaning is interpreted as being3. For in-
stance, the word “nervous” indicates more arousal
than “lazy” (Mohammad, 2018). As such, gram-
matical categories such as adjectives, verbs, and
adverbs may incite higher levels of arousal than
nouns.

Average AoA was calculated by averaging
the AoAs provided in the Living Word Vocab-
ulary Dataset (Dale and O’Rourke, 1981) with
an updated version of this dataset (Brysbaert and
Biemiller, 2017). Both datasets consisted of AoA
values for 44,000 English word meanings. Con-
creteness, familiarity and arousal values were taken
from the MRC Psycholinguistic Database (Wilson,
1988) as well as three newer datasets each con-
taining 37,058, 61,858 and 20,000 English words
(Brysbaert et al., 2013, 2019; Mohammad, 2018).

Additional Features include part-of-speech
(POS) tags as well as prior complexity labels. POS
tags were generated by using the Python Natural
Language Toolkit (Bird et al., 2009). Prior com-
plexity labels were taken from the previous CWI
shared tasks (Paetzold and Specia, 2016; Yimam
et al., 2018) and the Word Complexity Lexicon
(Maddela and Xu, 2018). A combined dataset was
then created that contained a total of 26,088 En-
glish words each with a binary complexity value.

5 Evaluation

5.1 Features

To determine the effect each feature had on our
baseline model’s performance, we used the fol-

3The terms “active” and “passive” do not refer to the use
of active or passive voice but rather the emotional or physi-
cal intensity associated with a word’s meaning (Mohammad,
2018).

lowing scores: mean absolute error (MAE), mean
squared error (MSE), Pearson Correlation (R) and
Spearman Correlation (ρ). Table 1 depicts each fea-
ture’s performance on the training dataset. These
criteria have also been used in the SemEval LCP
test set evaluation.

Average AoA decreased the baseline model’s
MAE and MSE by 0.004 and 0.001 respectively.
It likewise increased its R and ρ scores by 0.039.
This generated the second highest R and ρ scores
of 0.743 and 0.701 respectively. Average AoA is
therefore a useful feature for LCP.

Brysbaert et al.’s prevalence and concreteness
(Brysbaert et al., 2013, 2019) were also seen to
improve the baseline model’s performance with
prevalence being the most notable. Prevalence de-
creased baseline MAE and MSE scores by 0.005
and 0.002 respectively. It also surpassed baseline
R by 0.054 and ρ by 0.047, yielding the highest
increases among all features. Concreteness (Brys-
baert et al., 2013) also caused a slight increase
in the baseline model’s scores, being greater than
that caused by MRC concreteness. Concreteness
values (Brysbaert et al., 2013) increased the base-
line model’s R and ρ scores by 0.032 and 0.024
respectively, whereas the MRC concreteness val-
ues resulted in a slightly less impressive increase
of 0.019 in both its R and ρ scores. However, there
was little-to-no difference in MAE and MSE pro-
duced by either set of concreteness values.

Performance
Features R ρ MAE MSE
Baseline Features 0.704 0.662 0.075 0.010
Average AoAs 0.743 0.701 0.071 0.009
Prevalence 0.758 0.709 0.070 0.008
MRC Familiarity 0.727 0.687 0.073 0.009
Concreteness 0.736 0.686 0.072 0.009
MRC Concreteness 0.723 0.681 0.073 0.009
Arousal 0.722 0.676 0.074 0.009
POS Tags 0.701 0.663 0.075 0.010
Complexity Labels 0.727 0.686 0.072 0.009

Table 1: Feature performance on training dataset. The
baseline model uses the statistical features and charac-
ter trigrams. Best results in bold.

Two possible conclusions can be drawn: 1). The
difference in the calculation of prevalence versus
that of familiarity likely causes prevalence to be a
greater indicator of word complexity4, and 2). The

4Prevalence being the percentage of people who. know the
word (Brysbaert et al., 2019). Familiarity being a self-reported
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superior coverage of Brysbeart et al.’s prevalence
(2018) and concreteness (2013) datasets (Brysbaert
et al., 2019, 2013): being 52.62% and 57.51% re-
spectively, compared to that of the MRC Psycholin-
guistic Database (Wilson, 1988): being 23.44%,
suggests that there now exists larger and more up-
to-date psycholinguistic datasets that are more use-
ful for LCP feature engineering.

Arousal has never before been used for LCP or
CWI. Due to its ability to differentiate grammatical
categories, such as nouns and verbs, along with its
ability to signify a word’s intensity, we had spec-
ulated that arousal would be able to help predict
a word’s complexity. Arousal was found to have
no significant effect on the baseline model’s perfor-
mance. Nevertheless, once added to our submitted
system, it slightly decreased its MSE by 0.001 and
increased its R and ρ scores by 0.002 and 0.001
respectively.

POS tags was the worst performing feature as
POS tags had little affect on improving our model’s
performance. It achieved the same MAE and MSE
values as our baseline model: 0.075 and 0.01 re-
spectively. Regarding R score, only a slight in-
crease of 0.001 was observed. POS tags was the
only feature that saw a decrease in our model’s ρ
score, worsening its performance by 0.003. This
suggests that a word’s grammatical category may
not impact its degree of complexity. This is also
supported by Arousal’s lack of improved perfor-
mance.

Given that prior complexity labels are directly
related to complexity prediction, it was believed
that they would be the most influential in improv-
ing overall performance. Instead, AoA, prevalence
and concreteness were all found to be more bene-
ficial with higher or identical MAE, MSE, ρ, and
R scores. Complexity labels only saw a slight de-
crease in MAE and MSE by 0.003 and 0.001 re-
spectively and a slight increase in ρ and R scores
by 0.023 and 0.024 respectively. The binary na-
ture of prior CWI datasets is likely responsible for
this phenomenon, as binary 0 or 1 complexity val-
ues are not well suited for a regression-based task,
such as LCP. This would have resulted in the same
problem faced by previous CWI systems: the mis-
classification of words on the decision boundary.

measure of an individual’s awareness of the word (Gilhooly
and Logie, 1980).

5.2 Models
The results for the three models on the training
dataset are presented in Table 2. This is then fol-
lowed by a short description of each model as well
as our performance on the test dataset.

Performance
Model R ρ MAE MSE
Model 1 0.772 0.717 0.068 0.008
Model 2 0.777 0.724 0.067 0.008
LCP-RIT 0.779 0.724 0.067 0.007

Table 2: Model performance on training dataset.

Model 1 - Top 3 Features: Adding the top 3 fea-
tures of average AoA, prevalence and concreteness
to our baseline model reduced its MAE and MSE
by 0.007 and 0.002 respectively and increased its
R score by 0.068 and its ρ score by 0.055. It at-
tained a new MAE of 0.068 which was noticeably
better than our baseline model’s previous MAE of
0.075. This goes to the show that inclusion of psy-
cholinguistic features has a positive impact on the
performance of an LCP system.

Model 2 - Top 5 Features: A small improve-
ment was seen after adding the fourth and fifth
best performing features to Model 1, namely, MRC
familiarity and prior complexity labels. Model 2
increased Model 1’s R and ρ scores by 0.005 and
0.007. However, it failed to improve Model 1’s
MAE or MSE. This small increase in performance
was due to the prior top 3 features of average AoA,
prevalence and concreteness already having cap-
tured those instances caught by MRC familiarity
and prior complexity labels. This further proves the
redundancy of the MRC Psycholinguistic Database
(Wilson, 1988) as well as binary complexity labels
for LCP feature engineering.

LCP-RIT: Our final model submitted to the offi-
cial evaluation used the psycholinguistic features of
average AoA, prevalence, concreteness and arousal
together with our baseline model’s features of word
length, syllable count, word frequency and char-
acter trigrams to predict the lexical complexity of
single words. On the training dataset of SemEval-
2021 Task 1: LCP, we achieved a MAE of 0.067,
MSE of 0.007, R score of 0.779, and ρ score 0.724.
We performed less well on the single word test
dataset with an MAE and MSE of 0.072 and 0.009
respectively and ρ and R scores of 0.709 and 0.653
respectively. This reduced performance may be
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indicative of our submitted system being overfit on
our training dataset.

6 Conclusion

We carried out multiple experiments evaluating
the impact of linguistics features in LCP using the
CompLex dataset for English. We have shown that
several psycholinguistic features help with LCP.
Average AoA, prevalence and concreteness were
all found to be beneficial, whereas MRC famil-
iarly, MRC concreteness and prior complexity la-
bels were proven to be redundant. We would like to
explore other features described in Shardlow et al.
(2021). In terms of performance, we believe that
the multiple features we tested allowed us to get
close to the maximum performance for this dataset
using regression. A possible alternative for better
performance is to test state-of-the-art transformer
models. Furthermore, we are interested in looking
at the performance of these features for LCP in
languages other than English and for multilingual
datasets.
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