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Abstract

This paper presents the Source-Free Domain
Adaptation shared task held within SemEval-
2021. The aim of the task was to explore adap-
tation of machine-learning models in the face
of data sharing constraints. Specifically, we
consider the scenario where annotations exist
for a domain but cannot be shared. Instead,
participants are provided with models trained
on that (source) data. Participants also receive
some labeled data from a new (development)
domain on which to explore domain adapta-
tion algorithms. Participants are then tested on
data representing a new (target) domain. We
explored this scenario with two different se-
mantic tasks: negation detection (a text classi-
fication task) and time expression recognition
(a sequence tagging task).

1 Introduction

Data sharing restrictions are common in NLP
datasets. For example, Twitter policies do not al-
low sharing of tweet text, though tweet IDs may
be shared. The situation is even more common
in clinical NLP, where patient health information
must be protected, and annotations over health text,
when released at all, often require the signing of
complex data use agreements.

The Source-Free Domain Adaptation shared task
presents a new framework that asks participants to
develop semantic annotation systems in the face
of data sharing constraints. A participant’s goal is
to develop an accurate system for a target domain
when annotations exist for a related domain but
cannot be distributed. Instead of annotated training
data, participants are given a model trained on the
annotations. Then, given unlabeled target domain
data, they are asked to make predictions. This is

a challenging setting, and much previous work on
domain adaptation does not apply, as it assumes
access to source data (Ganin et al., 2016; Ziser and
Reichart, 2017; Saito et al., 2017; Ruder and Plank,
2018), or assumes that labeled target domain data
is available (Daumé III, 2007; Xia et al., 2013; Kim
et al., 2016; Peng and Dredze, 2017).

Two different semantic tasks in English were cre-
ated to explore this framework: negation detection
and time expression recognition. These represent
two common types of classification tasks: negation
detection is typically formulated as predicting an
attribute of a word or span given its context, and
time expression recognition is typically formulated
as a named entity tagging problem. Both of these
tasks have previously been run as shared tasks, and
had at least two different domains of data available,
and we had access to experienced annotators for
both tasks, allowing us to annotate data in a new
domain.

Negation detection is the task of identifying
negation cues in text. This task has been widely
studied by previous work (Chapman et al., 2007,
2001; Harkema et al., 2009; Sohn et al., 2012) in-
cluding the development of a variety of datasets
(Uzuner et al., 2011; Mehrabi et al., 2015). How-
ever, there are still large performance losses in the
cross-domain setting (Wu et al., 2014).

For negation detection, we provided a “span-
in-context” classification model, fine-tuned on in-
stances of the SHARP Seed dataset of Mayo Clinic
clinical notes, which the organizers have access
to but cannot currently be distributed. (Models
were approved to be distributed, as the data is dei-
dentified.) In the SHARP data, clinical events are
marked with a boolean polarity indicator, with val-
ues of either asserted or negated. As development
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Source Collection Source Domain Instances Negated instances

train SHARP Seed Mayo Clinic clinical notes 10,259 902
dev i2b2 2010 Partners HealthCare clinical notes 5,545 1,115
test (unlabeled) MIMIC III Beth Israel ICU progress notes 622,703 -
test (labeled) MIMIC III Beth Israel ICU progress notes 9,580 958

Table 1: Size of the negation detection datasets. The train set is never distributed to the participants.

Source Collection Source Domain Documents Time entities

train THYME Mayo Clinic clinical notes 278 18,020
dev TimeBank News 99 2,231
test (unlabeled) - Food security 47 -
test (labeled) - Food security 17 1,900

Table 2: Size of the time expression recognition datasets. The train set is never distributed to the participants.

data, we used the i2b2 2010 Challenge Dataset, a
de-identified dataset of notes from Partners Health-
Care. The evaluation dataset for this task consisted
of de-identified intensive care unit progress notes
from the MIMIC III corpus (Johnson et al., 2016).

Time expression recognition has been a key com-
ponent of previous temporal language related com-
petitions, like TempEval 2010 (Pustejovsky and
Verhagen, 2009) and TempEval 2013 (UzZaman
et al., 2013). For this task, we followed the Compo-
sitional Annotation of Time Expressions (SCATE)
schema (Bethard and Parker, 2016) used in in Sem-
Eval 2018 Task 6 (Laparra et al., 2018). As in nega-
tion detection, previous works have also oberved
a significant performance degradation on domain
shift (Xu et al., 2019).

For time expression recognition, we provided
a sequence tagging model, fine-tuned on de-
identified clinical notes from the Mayo Clinic,
which were available to the task organizers, but
are difficult to gain access to due to the complex
data use agreements necessary. (Models were ap-
proved to be distributed, as the data is deidentified.)
The development data was the annotated news por-
tion of the SemEval 2018 Task 6 data whose source
text is from the freely available TimeBank. For
evaluation, we used a set of annotated documents
extracted from food security warning systems.

The main impact of this task is to drive the NLP
community to address the serious challenges of
data sharing constraints by designing new domain
adaptation algorithms that allow source data and
target data to remain separate, rather than assuming
they can be shared freely with each other.

2 Data and Resources

In this section, we describe both negation detection
and time expression recognition tasks, the models
fine-tuned on a difficult-to-obtain set of annotated
data, the development data representing a new do-
main on which participants can explore their ap-
proaches for domain adaptation, and the test data
representing another new domain on which the
systems developed by participants are evaluated.
Details of the different data sets can be found in
Tables 1 and 2.

2.1 Negation detection
The negation detection track asks participants to
classify clinical event mentions (e.g., diseases,
symptoms, procedures, etc.) for whether they are
being negated by their context.

For example, the sentence:

(1) Has no diarrhea and no new lumps or
masses

has three relevant events (diarrhea, lumps, masses),
two cue words (both no), and all three entities are
negated. This task is important in the clinical do-
main because it is common for physicians to docu-
ment negated information encountered during the
clinical course, for example, when ruling out cer-
tain elements of a differential diagnosis.

This task can be treated as a “span-in-context”
classification problem, where the model jointly
considers both the event to be classified and its
surrounding context. For example, a typical
transformer-based encoding of this problem for
the diarrhea event in the example above looks like:
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(2) Has no <e> diarrhea </e> and no new
lumps or masses .

Pre-trained model Participants were provided
with a “span-in-context” classification model,
trained on the 10,259 instances (902 negated) in
the SHARP Seed dataset of de-identified clinical
notes from Mayo Clinic, which the organizers had
access to but cannot currently be distributed. In
the SHARP data, clinical events are marked with
a boolean polarity indicator, with values of either
ASSERTED or NEGATED.

Development data Participants could use as de-
velopment data the i2b2 2010 Challenge Dataset, a
de-identified dataset of notes from Partners Health-
Care, containing 5,545 entities labeled with an as-
sertion status in the set {ASSERTED, NEGATED,
UNCERTAIN, HYPOTHETICAL, CONDITIONAL,
FAMILYRELATED}. We provided scripts that ex-
tracted i2b2 entities and simplified the label set to
{NEGATED, NOTNEGATED}. Since the i2b2 2010
dataset consisted of notes from two sources, Part-
ners and MIMIC III, the latter of which overlaps
with our proposed test set, our script also filtered
the development instances to contain only those
from the Partners notes.

Test data During the testing period, participants
were provided with the raw text of 622,703 in-
stances drawn from the MIMIC III corpus1, which
contains manually de-identified progress notes for
patients from the intensive care unit of Beth Israel
Deaconess Medical Center, with entities of interest
already identified. From this, we manually anno-
tated 9,580 instances of which 958 were negated.

2.2 Time expression recognition
The time expression recognition track, which repre-
sents a sequence-tagging task, uses the fine-grained
time expression annotations that were a component
of SemEval 2018 Task 6 (Laparra et al., 2018). For
example:

(3) In

MONTH-OF-YEAR

January of

YEAR

2009 , she experi-
enced acute onset lower abdominal pain

NUMBER

four to five

PERIOD

hours

AFTER

after her meal.

This task can be treated as a sequence classification
problem, as in other named-entity tagging tasks.

1https://mimic.physionet.org/

Pre-trained model Participants were provided
with a sequence tagging model, trained on the
18,020 time expressions in the clinical portions of
the SemEval 2018 Task 6, that were available to the
task organizers, but are currently difficult to gain
access to due to the complex data use agreements.

Development data Participants could use as de-
velopment data the annotated news portion of the
SemEval 2018 Task 6 data. The source text is from
the freely available TimeBank2, and the 2,231 time
entity annotations were from the freely available
SCATE GitHub repository3.

Test data During the testing period, participants
were provided with the raw text of 47 reports drawn
from food security warning systems 4 and asked
to predict time expressions. From this, we used 17
documents that included 1,900 time entities, anno-
tated by two independent annotators and an adjudi-
cator.

3 Evaluation Metrics

Negation detection was evaluated using the
precision/recall/F1 of the negated class, as used
in most published work. Time expression
recognition was evaluated using the standard
precision/recall/F1 previously used for the entity-
finding portion of SemEval 2018 Task 6.

In both cases, the metrics are defined as:

P (S,H) =
|S ∩H|
|S|

R(S,H) =
|S ∩H|
|H|

F1(S,H) =
2 · P (S,H) ·R(S,H)

P (S,H) +R(S,H)

where S is the set of items predicted by a system
and H is the set of items manually annotated by
humans.

4 Baseline Systems

To provide a comparison benchmark, we proposed
two baselines for both negation detection and time
expression recognition:

2https://www.cs.york.ac.uk/
semeval-2013/task1/index.php%3Fid=data.
html

3https://github.com/bethard/
anafora-annotations

4Like the UN World Food Programme https://www.
wfp.org/ or the Famine Early Warning Systems Network
https://fews.net/.

https://mimic.physionet.org/
https://www.cs.york.ac.uk/semeval-2013/task1/index.php%3Fid=data.html
https://www.cs.york.ac.uk/semeval-2013/task1/index.php%3Fid=data.html
https://www.cs.york.ac.uk/semeval-2013/task1/index.php%3Fid=data.html
https://github.com/bethard/anafora-annotations
https://github.com/bethard/anafora-annotations
https://www.wfp.org/
https://www.wfp.org/
https://fews.net/
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source dev test

Sub-task System P R F1 P R F1 P R F1

Negation Src-Trained - - 0.820 0.851 0.818 0.834 0.917 0.516 0.660
Negation Dev-Tuned - - - - - - 0.908 0.611 0.730
Time Expression Src-Trained 0.967 0.968 0.968 0.775 0.768 0.771 0.849 0.746 0.794
Time Expression Dev-Tuned - - - - - - 0.827 0.782 0.804

Table 3: Performance of the baselines on the source domain, where Source-Trained (Src-Trained) was trained,
and the two target domains (dev and test). For Dev-Tuned, dev set was also used for training.

Source-Trained Models pre-trained on only the
source train data, i.e., the models that the or-
ganizers shared with the participants as ex-
plained in Section 2.

Dev-Tuned Models pre-trained on the source data
(i.e., Source-Trained) and then fine-tuned on
the labeled dev data.

All baselines were built on RoBERTa (Liu et al.,
2019) using the HuggingFace Transformers li-
brary.5

Table 3 shows the performance of the baselines
on negation detection and time expression recog-
nition respectively. In both cases, there is a big
drop in the performance of Source-Trained when
it is applied to out-of-domain datasets. Using the
development data to continue training the model
(Dev-Tuned) provides some improvement for both
tasks, but it is still far from in-domain performance.

5 Participating Systems

Since our goal was to see a set of experiments
as varied as possible, we did not impose any con-
straint on the approaches participants could submit,
including the use of any of the unlabeled or labeled
data provided. The task had 9 participants that sub-
mitted 20 unique runs in total, as shown in Table 4.
For each task, 2 submissions per team were al-
lowed. There were 5 participants and 8 submission
in negation detection, and 7 participants and 12
submissions in time expression recognition. Only
3 participants took part in both tasks.

5.1 Negation detection
BLCUFIGHT-1 tried a self-training method fixing
the top classifier so only the feature extractor was
updated. Then, they ran an ensemble of 3 models.
BLCUFIGHT-2 built an unlabeled dataset selecting

5https://github.com/huggingface/
transformers.

2,000 instances from the development set, 2,000
from the test set and 2,886 from the training set.
They used that unlabeled dataset progressively to
continue fine-tuning the distributed model (for 2
epochs) following a self-learning approach. They
additionally selected some negative prefixes and
negative words as rules. The final predictions were
obtained from an ensemble of 5 models.

UArizona-1 used the development data to con-
tinue fine-tuning the distributed model (for 10
epochs). Then, they randomly sampled 3,000 ex-
amples from unlabeled test data and performed 2
self-learning iterations, using a 0.95 threshold to
filter the pseudo training examples.

IITK-1 also adapted the model with pseudo la-
bels obtained from a sample of 25,000 instances
from the test data. They selected predictions
with low entropy as the pseudo training examples,
performed data-augmentation on the selected in-
stances, and used the resulting set to continue train-
ing the distributed model. IITK-2 applied an adap-
tive version of this approach by slowly increasing
the entropy threshold after each epoch and filtering
again the training instances.

MedAI-1 and MedAI-2 followed a self-learning
strategy preceded by a negation-aware pre-training
process. For the latter, they built a dataset applying
some heuristics on the test data. First, they manu-
ally collected a dictionary including negation cues,
such as “not”, “no”, “no longer”. Second, they
selected the nouns within a 3 token window around
occurrences of the negation cues. Finally, they
labeled the cue-noun pairs as negated instances.

Observations: Self-learning was the most
widely applied technique (6 out of 8 submissions).
3 submissions extended this with heuristics, 2
submissions extended it with data augmentation,
and 2 applied it with a model ensemble. Only
2 submissions leveraged the development set
of which only 1 used the labeled data. All the

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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submission task dev data test data annotation other main technique

BLCUFIGHT-1 neg. No No No No sf-train + ens
BLCUFIGHT-2 neg. Unlabeled Yes No No sf-learn + heur + ens
UArizona-1 neg. Labeled Yes No No sf-learn
IITK-1 neg. No Yes No No sf-learn + dt-augm
IITK-2 neg. No Yes No No sf-learn + dt-augm
MedAI-1 neg. No Yes Heuristics No neg-train + sf-learn
MedAI-2 neg. No Yes Heuristics No neg-train + sf-learn
Boom-1† neg. - - - - -
BLCUFIGHT-1 time Unlabeled Yes No No teach + sf-learn + heur + ens
BLCUFIGHT-2 time Unlabeled Yes No No teach + sf-learn + heur
Self-Adapter-1 time No Yes No No sf-learn
Self-Adapter-2 time No Yes No No sf-learn
PTST-UoM-1 time Labeled Yes No No sf-learn
YNU-HPCC-1 time Labeled No No No train in dev + ens
YNU-HPCC-2 time Labeled No No No train in dev + ens
UArizona-1 time No Yes Manual Yes act-learn + dt-augm
UArizona-2 time No Yes Manual Yes act-learn + dt-augm
KISNLP-1 time Labeled No No No train in dev + dt-augm
KISNLP-2 time Labeled No No No train in dev + dt-augm
Boom-1† time - - - - -
†We did not receive feedback for these submissions.

Table 4: Some details on the tasks submissions. For each submission, the table reflects the task (neg. stands
for negation) where it participates, if it uses the unlabeled or labeled development data (dev data), if it uses the
unlabeled test data, if participants carried out some manual or heuristics-based annotation, if other source of
data is used and the main techniques applied. List of abbreviations in the main technique column: act-learn
for active learning, dt-augm for data augmentation, ens for ensemble, heur for heuristics, neg-train for negation-
aware pre-training, sf-learn for self learning, sf-train for self training, teach for mean teacher.

submissions but one used the unlabeled test data
to produce a training set for the target domain,
either in the form of pseudo-labeled instances (5
submissions) or by heuristic-driven annotation (2
submissions). No submissions used additional
resources.

5.2 Time expression recognition

BLCUFIGHT-1 and BLCUFIGHT-2 proposed an
unsupervised mean-teacher framework that updates
the model in a self-learning manner. Additionally,
they used a set of string-matching heuristics de-
rived from the development set, e.g., “spring” or
“summer” for Season-Of -Year, and “decades” for
Period. BLCUFIGHT-1 ensembled 2 models for a
better robustness.

Self-Adapter-1 and Self-Adapter-2 generated
pseudo training examples by running the provided
model on the test documents and selecting the sen-
tences where the highest words’ entropy was lower
than 0.1. In Self-Adapter-1, they combined the

predictions of both a fixed version and a trainable
version of the model. Self-Adapter-2 used only the
trainable model. In both submissions, the trainable
model was updated by applying 3 iterations of the
sloughing trick, i.e., training the model iteratively
with the pseudo-labels obtained by the model of
the previous iteration.

PTST-UoM-1, also following a self-training ap-
proach, built, for each unlabeled input sentence, a
chart containing high probability label sequences
produced by the distributed model and applied it as
a supervision signal. They used the labeled devel-
opment data for tuning some of the hyperparame-
ters.

UArizona-1 combined active learning and data
augmentation. They ran 5 iterations of the follow-
ing steps: 1) predict the unlabeled test data and then
select 32 sentences with high entropy calculated as
the sum of the entropy of all tokens in the sentence;
2) manually label time entities in the 32 sentences;
3) for each manually labeled time entity, generate
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5 additional training examples using 5 new words
with same entity type; 4) train the model on the
resulting dataset. The same method was used by
UArizona-2, but, in this case, they fixed some errors
in the manual annotations.

KISNLP-1 and KISNLP-2 used the development
labeled data as a fine-tuning resource, which was
complemented by a data augmentation process.
They did not use the unlabeled test data, nor any
other resource.

YNU-HPCC-1 and YNU-HPCC-2 also used the
labeled portion of the development set. They fine-
tuned 4 popular transformer-based pre-trained mod-
els: RoBERTa, BERT (Devlin et al., 2019), Distil-
BERt (Sanh et al., 2020) and ALBERT (Lan et al.,
2020). The final prediction was given by hard vot-
ing strategy, integrating the results of the 4 models
along with Source-Trained.

Observations: Self-learning (5 submissions)
and data augmentation (4 submissions) were the
most commonly followed approaches. 2 submis-
sions extended a self-learning technique with man-
ually created heuristics. Only 3 submissions pro-
posed ensemble methods. In this task, the devel-
opment set was more frequently exploited and 4
submissions made use of the labeled data to con-
tinue fine-tuning the provided model. The test set
was manually annotated by 2 submissions that fol-
lowed an active learning approach, along with some
additional resources. 4 submissions did not use the
unlabeled test data.

6 Evaluation Results

Tables 5 and 6 shows the performance of the sys-
tems described in Section 5 on negation detection
and time expression recognition. For comparison,
the tables also include the performance of the base-
lines described in Section 4.

6.1 Negation detection

As shown in Table 5, 7 out of 8 submissions on
negation detection outperform Source-Trained but
only 4 performed better than Dev-Tuned.

The best results were obtained by MedAI-1 and
MedAI-2, achieving 16.2 and 9.2 percentage points
of F1 more than Source-Trained and Dev-Tuned,
respectively. These model had a large recall im-
provement (14.5 points more than Source-Trained
and 24.0 more than Dev-Tuned) at the expense of
a slight degradation in precision.

System P R F1

MedAI-1† 0.902 0.756 0.822
MedAI-2† 0.902 0.756 0.822
UArizona-1+† 0.880 0.680 0.767
BLCUFIGHT-2∗† 0.913 0.616 0.736
IITK-2† 0.876 0.624 0.729
Boom-1 0.929 0.597 0.727
IITK-1† 0.939 0.566 0.706
BLCUFIGHT-1 0.528 0.639 0.578
Dev-Tuned 0.908 0.611 0.730
Source-Trained 0.917 0.516 0.660

Table 5: Official results (ranked by F1) on negation de-
tection. Superscripts indicate that the submission used:
∗unlabeled dev, +labeled dev or †unlabeled test data

IITK-1 and Boom-1 outperform both baselines
in terms of precision but obtain a worse recall than
Dev-Tuned.

The 3 best submissions on this task (MedAI-1,
MedAI-2 and UArizona-1) make use of some kind
of labeled data. In the case of MedAI-1 and MedAI-
2, this data belongs to the target test domain, which
could explain the good results of these 2 submis-
sions. BLCUFIGHT-2, the next best performing
system and the only other one that outperforms
both baselines, also applies some manual supervi-
sion in the form of hand-crafted rules.

In general, self-learning proved to be an effec-
tive technique for negation detection, especially
in terms of recall, while data-augmentation also
shows recall improvements in some cases. As
usual, ensemble models are helpful. Including
some manual supervision drove the largest gains.

6.2 Time expression recognition

Table 6 shows that for time expression recogni-
tion, 9 out of 12 submissions outperformed Source-
Trained and only 3 obtained a better performance
than Dev-Tuned. The gains were generally smaller
than on negation detection, with the best mod-
els being only 2.1 percentage points of F1 above
Source-Trained and 1.1 percentage points above
Dev-Tuned.

As in negation detection, the best performing sys-
tem (BLCUFIGHT-1) utilizes some form of manual
supervision. In this case, they apply a set of manu-
ally created string matching heuristics in combina-
tion with a self-learning approach that is boosted
by a model ensemble.

In this task, the use of the labeled development
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System P R F1

BLCUFIGHT-1∗† 0.847 0.785 0.815
Self-Adapter-1† 0.873 0.757 0.811
BLCUFIGHT-2∗† 0.834 0.787 0.810
YNU-HPCC-2+ 0.817 0.791 0.803
Self-Adapter-2† 0.839 0.760 0.797
PTST-UoM-1+† 0.901 0.713 0.796
UArizona-1† 0.786 0.804 0.795
UArizona-2† 0.783 0.807 0.795
Boom-1 0.869 0.732 0.795
KISNLP-1+ 0.810 0.777 0.793
KISNLP-2+ 0.798 0.764 0.781
YNU-HPCC-1+ 0.872 0.655 0.748
Dev-Tuned 0.827 0.782 0.804
Source-Trained 0.849 0.746 0.794

Table 6: Official results (ranked by F1) on time expres-
sion recognition. Superscripts indicate that the submis-
sion used: ∗unlabeled dev, +labeled dev or †unlabeled
test data

set is more frequent. 5 of the submissions made use
of this data, but none obtained better results than
Dev-Tuned, although YNU-HPCC-2 got a close F1

score. In the case of PTST-UoM-1, this explained
by the fact that they only consulted this set to fine-
tune the hyperparameters of their model, although
this strategy was enough to obtain the best preci-
sion among all systems. The approach of KISNLP-
1 and KISNLP-1 is the same as Dev-Tuned but
combined with some data-augmentation, resulting
in a drop in performance. This may be caused by
only using the development set to perform the aug-
mentation since, after all, it belongs to a different
domain than the test documents. YNU-HPCC-2
is the only submission, along with YNU-HPCC-1,
that utilized other pre-trained transformers, in an
ensemble mode, besides the model provided.

UArizona-1 and UArizona-2 are the only sub-
missions that tried an active learning strategy. The
approach performed slightly better than Source-
Trained but worse than Dev-Tuned. This contrasts
with the best performing model on negation detec-
tion that also implemented a manual annotation
process on test data, but it is explained by the much
more complex annotation scheme of time expres-
sions. UArizona-2 obtains the best recall on the
task.

Self-Adapter-1 is the only submission that out-
performs Dev-Tuned without using any kind of
manual supervision. The only difference with re-

spect to Self-Adapter-2, that did not perform as
well, is that the original model trained on the source
domain is consulted to produce pseudo-examples
in every iteration of their self-learning technique.
This seems to counteract a possible degradation of
the predictions caused by updating the model with
pseudo-labels.

7 Future directions

Self-learning and data augmentation were the most
frequently used techniques. Some systems, in-
cluding the best performing ones, incorporated
some kind of manual supervision in the form of
active-learning, hand-crafted heuristics or semi-
automatically building a training set. This suggests
that future work on source-free domain adaptation
will focus on acquiring data instances for the tar-
get domain either automatically or manually, and
use such data to continue fine-tuning the source-
domain model.

Any new approaches will have to address some
fundamental challenges. Errors in the generation of
pseudo-labels propagate in successive self-learning
iterations degrading the performance. Continual
fine-tuning on data from a new domain can lead
to catastrophic forgetting, especially if the data is
restricted to certain instances like those drawn from
high-confident predictions of the source model.
Manually supervised approaches, such as active
learning, do not necessarily solve these problems
due to the complexity of some annotation schemes,
like in time expressions recognition, and the re-
duced number of labels that this methods can yield.

Some of the experiments carried out during this
task have approached these issues and should be
taken as an starting point for future research.

8 Conclusion

In this paper, we have described the Source-
Free Domain Adaptation shared task held within
SemEval-2021. In this task, participants were
asked to adapt a given model to a target domain
when the access to both labeled and unlabeled
source data is restricted. In contrast to previous
tasks on domain adaptation, participants were only
provided with a trained model and the target unla-
beled data. Systems were evaluated on two tasks,
negation detection and time expression recognition,
that are paradigmatic examples of two common
types of machine-learning problems in natural lan-
guage processing: text classification and sequence
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labeling.
9 participants took part in the challenge with 20

different systems. In negation detection, 8 submis-
sions were received from 5 participants while 7
participants submitted 12 runs for time expression
recognition. 3 participants presented approaches
for both tasks. 7 out of 8 submissions for negation
detection and 9 out of 12 submissions for time
expression recognition outperformed the model
trained on the source domain. Compared to the
same model fine-tuned on the development data, 4
systems in negation detection and 3 in time expres-
sion recognition showed a better performance.

This is the first time that such a framework is for-
mally designed and aims to draw the community’s
attention to a challenging problem that seriously
affects the deployment of NLP models to real-life
scenarios, like health institutions.

The scripts and the code of the baselines, along
with the development and test data, can be obtained
from the task’s GitHub repository.6 The trained
models are available in the HuggingFace model hub
for both negation detection7 and time expression
recognition.8 The CodaLab9 leader-board of the of
the post-evaluation phase will continue to accept
submissions indefinitely.
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