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Abstract
Social network platforms are generally used
to share positive, constructive, and insightful
content. However, in recent times, people of-
ten get exposed to objectionable content like
threat, identity attacks, hate speech, insults, ob-
scene texts, offensive remarks or bullying. Ex-
isting work on toxic speech detection focuses
on binary classification or on differentiating
toxic speech among a small set of categories.
This paper describes the system proposed by
team Cisco for SemEval-2021 Task 5: Toxic
Spans Detection, the first shared task focusing
on detecting the spans in the text that attribute
to its toxicity, in English language. We ap-
proach this problem primarily in two ways: a
sequence tagging approach and a dependency
parsing approach. In our sequence tagging ap-
proach we tag each token in a sentence under
a particular tagging scheme. Our best perform-
ing architecture in this approach also proved
to be our best performing architecture over-
all with an F1 score of 0.6922, thereby plac-
ing us 7th on the final evaluation phase leader-
board. We also explore a dependency parsing
approach where we extract spans from the in-
put sentence under the supervision of target
span boundaries and rank our spans using a
biaffine model. Finally, we also provide a de-
tailed analysis of our results and model perfor-
mance in our paper.

1 Introduction

It only takes one toxic comment to sour an online
discussion. The threat of abuse and harassment
online leads many people to stop expressing them-
selves and give up on seeking different opinions.
Toxic content is ubiquitous in social media plat-
forms like Twitter, Facebook, Reddit, the increase
of which is a major cultural threat and has already
lead to a crime against minorities (Williams et al.,
2020). Toxic text in online social media varies de-
pending on targeted groups (e.g. women, LGBT,

gay, African, immigrants) or the context (e.g. pro-
trump discussion or the metoo movement). Toxic
Text online has often been broadly classified by
researchers into different categories like hate, of-
fense, hostility, aggression, identity attacks, and
cyberbullying. Though the use of various terms for
equivalent tasks makes them incomparable at times
(Fortuna et al., 2020), toxic speech or spans in this
particular task, SemEval-2021 Task 5 (Pavlopoulos
et al., 2021), has been considered as a super-set of
all the above sub-types.

Figure 1: Toxic spans in sentences

While a lot of models have claimed to achieve
state-of-the-art results on various datasets, it has
been observed that most models fail to generalize
(Arango et al., 2019; Gröndahl et al., 2018). The
models tend to classify comments as toxic that have
a reference to certain commonly-attacked entities
(e.g. gay, black, Muslim, immigrants) without the
comment having any intention to be toxic (Dixon
et al., 2018; Borkan et al., 2019). A large vocabu-
lary of certain trigger terms leads to a biased pre-
diction by the models (Sap et al., 2019; Davidson
et al., 2017). Thus, it has become increasingly im-
portant in recent times to determine parts of the text
that attribute to the toxic nature of the sentence, for
both automated and semi-automated content mod-
eration on social media platforms, primarily for the
purpose of helping human moderators deal with
lengthy comments and also provide them attribu-
tions for better explainability on the toxic nature
of the post. This in turn would aid in better han-
dling of unintended bias in toxic text classification.
SemEval-2021 Task 5: Toxic Spans Detection fo-
cuses on exactly this problem of detecting toxic
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spans from sentences already classified as toxic on
a post-level.

In this paper, we approach the problem of mul-
tiple non-contiguous toxic span extraction from
texts both as a sequence tagging task and as a stan-
dard span extraction task resembling the generic
approach and architecture adopted for single-span
Reading Comprehension (RC) task. For our se-
quence tagging approach, we predict for each token,
whether it is a part of the span. For our second ap-
proach, we predict and compute a couple of scores
for each token, corresponding to whether that token
is the start or end of the span. In addition to this,
we deploy a biaffine model to score start and end in-
dices, thus adopting the methodology for multiple
non-contiguous span extraction.

2 Literature

Previous work on automated toxic text detection,
and its various sub-types, focuses on developing
classifiers that can flag toxic content with a high
degree of accuracy on datasets curated from vari-
ous social media platforms in English(Carta et al.,
2019; Saeed et al., 2018; Vaidya et al., 2020), other
foreign languages (Zhang et al., 2018; Mishra et al.,
2018; Qian et al., 2019; Davidson et al., 2017;
Kamal et al., 2021; Leite et al., 2020) including
code-switched text (Mathur et al., 2018a,b; Kapoor
et al., 2019) and multilingual text (Zampieri et al.,
2019). This topic has also evidenced a number of
workshops (Kumar et al., 2018) and competitions
(Zampieri et al., 2019, 2020; Basile et al., 2019;
Mandl et al., 2019).

Recent work shows transformer based architec-
tures like BERT (Devlin et al., 2019) have been
performing well on the task of offensive language
classification (Liu et al., 2019a; Safaya et al., 2020;
Dai et al., 2020). Transformer based architectures
have also produced state-of-the-art performance on
sequence tagging tasks like Named Entity Recog-
nition (NER) (Yamada et al., 2020; Devlin et al.,
2019; Yang et al., 2019) span extraction (Eberts and
Ulges, 2019; Joshi et al., 2020) and QA tasks (De-
vlin et al., 2019; Yang et al., 2019; Lan et al., 2020).
Multiple span extraction from texts has been ex-
plored both as a sequence tagging task (Patil et al.,
2020; Segal et al., 2019) and as span extraction as
in RC tasks(Hu et al., 2019; Yu et al., 2020).

Very recently HateXplain (Mathew et al., 2020)
proposed a benchmark dataset for explainable hate
speech detection using the concept of rationales.

Attempts have also been made to handle identity
bias in toxic text classification (Vaidya et al., 2020)
and also to make robust toxic text classifiers which
help adversaries not bypass toxic filters (Kurita
et al., 2019).

3 Methodology

For our sequence tagging approach, we explore
two tagging schemes. First, the well known BIO
tagging scheme, where B indicates the first token
of an output span, I indicates the subsequent tokens
and O denotes the tokens that are not part of the
output span. Additionally, we also try a simpler
IO tagging scheme, where words which are part of
a span are tagged as I or O otherwise. Formally,
given an input sentence x = (x1,...,xn), of length
n,and a tagging scheme with |S| tags (|S| = 3 for
BIO and |S| = 2 for IO), for each of n tokens the
probability for the tag of the i-th token is

pi = softmax(f(hi)) (1)

where p ∈ Rm×|S|, and f is parameterized func-
tion with |S| outputs.

Our other approach is based on the standard
single-span extraction architecture widely used for
RC Tasks. With this approach, we extract toxic
spans from sentences under the supervision of tar-
get span boundaries, but with an added biaffine
model for scoring the multiple toxic spans instead
of simply taking top k spans based on the start and
end probabilities, thus giving our model a global
view of the input. The main advantage of this ap-
proach is that the extractive search space can be
reduced linearly with the sentence length, which is
far less than the sequence tagging method. Given
an input sentence x = (x1,...,xn), of length n, we
predict a target list T = (t1,...,tm) where the number
of targets is m and each target ti is annotated with
its start position si, its end position ei and the class
that span belongs to (only one in our case, toxic).

However, to adapt to the problem of extracting
multiple spans from the sentence, instead of taking
the top k spans based on the start and end prob-
abilities, we apply a biaffine model (Dozat and
Manning, 2016) to score all the spans with the con-
straint si ≤ ei. Post this we rank all the spans in
descending order and choose every span as long it
does not clash with higher-ranked spans.



251

4 Dataset

The dataset provided to us by the organizers of the
workshop consisted of a random subset of 10,000
posts from the publicly available Civil Comments
Dataset, from a set of 30,000 posts originally an-
notated as toxic (or severely toxic) on post-level
annotations, manually annotated by 3 crowd-raters
per post for toxic spans. The final character offsets
were obtained by retaining the offsets with a proba-
bility of more than 50%, computed as a fraction of
raters who annotated the character offsets as toxic.
Basic statistics about the dataset can be found in
Table 1.

Sentences Spans
Train 7939 10298
Dev 690 903
Test 2000 1850

Table 1: Number of sentences and spans

Additionally, we provide a quick look into the
length-wise distribution of spans across the train,
development, and test set in Table 2. As we observe,
the majority of the spans are just a single word in
length and mostly comprise of the most commonly
used cuss words in the English language. In our
Results Analysis section, we show how this metric
stands important for training and evaluating our
systems and for the future development of toxic
span extraction datasets.

Train Dev Test
1 7897 687 1650
2-4 1617 153 174
>=5 784 63 26

Table 2: Length-wise segregation of the number of non-
contiguous spans

5 Evaluation Metric

To evaluate the performance of our systems we
employ F1 as used by Da San Martino et al. (2019).
Let system A return a set St

A of character offsets,
for parts of the post found to be toxic. Let St

G be
the character offsets of the ground truth annotations
of post t. We calculate F1 score of St

A w.r.t St
G as

follows where |.| denotes set cardinality.

P t (A,G) =

∣∣St
A ∩ St

G

∣∣∣∣St
A

∣∣ (2)

Rt (A,G) =

∣∣St
A ∩ St

G

∣∣∣∣St
G

∣∣ (3)

F t
1 (A,G) =

2 · P t (A,G) ·Rt (A,G)

P t (A,G) + Rt (A,G)
(4)

If predicted span i.e St
A is empty for a post t then

we set Ft
1(A,G) = 1 if the gold truth i.e St

G is also
empty, else if St

G is empty and St
A is not empty

then we set Ft
1(A,G) = 0.

6 System Description

6.1 Sequence Tagging Approach
For our sequence tagging approach we employ
the commonly used BiLSTM-CRF architecture
(Huang et al., 2015) used predominately in many
sequence tagging problems, but with added contex-
tual word embeddings for each word using trans-
former and character-based word embeddings. We
experiment with a total of 5 transformer architec-
tures, namely BERT (Devlin et al., 2019), XLNet
(Yang et al., 2019), RoBERTa (Liu et al., 2019b),
ALBERT (Lan et al., 2020) and SpanBERT (Joshi
et al., 2020). For all of the above mentioned trans-
former architectures, the large variant of the trans-
former was used except ALBERT for which we
use its xlarge-v2 variant. First, the tokenized word
input is passed through the transformer architecture
and the output of the last 4 encoder layers is con-
catenated to obtain the final contextualized word
embedding ET for each word in the sentence. Ad-
ditionally, we also pass each character in a word
through a character-level BiLSTM network, to ob-
tain character-based word embeddings for the word
EC as used by Lample et al. (2016). Finally, both
these word embeddings, ET and EC, for each word
are concatenated and passed through a BiLSTM
layer followed by a CRF layer to obtain the best
probable tag for each word in the sentence.

6.2 Dependency Parsing Approach
For our dependency parsing approach, we employ
a similar approach as proposed by Yu et al. (2020),
using a biaffine classifier to score our spans post-
extraction. This methodology fits best to our pur-
pose of multiple toxic span extraction from sen-
tences compared to span extraction systems in gen-
eral RC tasks which are capable of extracting just
a single span from a sentence (Yang and Ishfaq).
For each word first we extract it’s BERT, FasText



252

Still a scumbag

Word
Embed.

Char
Embed.

Word
Embed.

Char
Embed.

Word
Embed.

Char
Embed.

|| || ||

BiLSTM BiLSTM BiLSTM

CRF
Layer

CRF
Layer

CRF
Layer

O O I

Figure 2: Sequence Tagger Model

and character-based word embeddings. We used
BERTLarge for all our experiments and used the
recipe followed by Kantor and Globerson (2019)
to extract contextual embeddings for each token.
After concatenating both the word embeddings and
character embeddings for each word, we feed the
output to a BiLSTM layer. We then apply two sep-
arate FFNNs to the output word representations x
to create different representations (hs / he) for the
start/end of the spans. These representations are
then passed through a biaffine model for scoring
all possible spans (si,ei), where si and ei are start
and end indices of the span, under the constraint
si ≤ ei (the start of the span is before its end) by
creating a l × l × c scoring tensor rm, where l is
the length of the sentence and c is the number of
NER categories + 1(for non-entity). We compute
the score for a span i by:

hs(i) = FFNNs (xsi) (5)

he(i) = FFNNe (xei) (6)

rm(i) =hs(i)
>Umhe(i)

+ Wm (hs(i)⊕ he(i)) + bm
(7)

We finally assign each span a category y′ based
on

y′(i) = arg max rm(i) (8)

Post this, we rank each span that has a category
other than non-entity and consider all the spans for
our final prediction as long as it does not clash with
higher ranked spans with an additional constraint,

whereby, an entity containing or is inside an entity
ranked before it will not be selected.

FFNN_Start FFNN_End

Biaffine
Classifier

BERT, fastText & Char Embeddings

Bi-LSTM1 Bi-LSTM2 Bi-LSTMn

Figure 3: Biaffine Model

7 Experimental Setup

Data was originally provided to us in the form of
sentences and the corresponding character offsets
for the toxic spans of the sentence. Before con-
verting the character offsets to our required format
for our respective approaches, we apply some ba-
sic text pre-processing to all our sentences. First,
we normalize all the sentences by converting all
white-space characters to spaces. Second, we split
all punctuation characters from both sides of a
word and also break abbreviated words. These
pre-processing steps help improve the F1 score of
both our approaches as shown in Table 6. Post
these pre-processing steps, we formulate our tar-
gets for both our approaches. For our sequence tag-
ging approach, we tag each word in the sentence
with its corresponding tag based on the tagging
scheme we follow, BIO or IO. For our span extrac-
tion approach, we convert the sequence of character
offsets into its corresponding word-level start and
end indices for each span. In Fig. 4, we provide
a pictorial representation of the above mentioned
procedures we follow for data preparation for both
our approaches.

We use PyTorch1 Framework for building our
Deep Learning models along with the Transformer

1https://pytorch.org/



253

8 9 10 11 12 13 14

Such a scumbag.

Such a scumbag .

O O I O

Span

Text

Tokens

Sequence
Tagger
Target

s:2 e:2 Dependency
Parsing
Target

Figure 4: Data Preparation

implementations, pre-trained models and, specific
tokenizers in the HuggingFace2 library.

We mention the major hyperparameters of our
best-performing systems experimental setting for
our dependency parsing approach and span extrac-
tion approach in Tables 3 and 4 respectively.

Parameter Value
BiLSTM size 256
BiLSTM layer 1
BiLSTM dropout 0
Transformer size 1024
Transformer encoder layers last 4
Char BiLSTM Hidden Size 25
Char BiLSTM layers 1
Optimiser Adam
Learning rate [1e-3,1.56e-4]

Table 3: Major hyperparameters of Sequence Tagger
model

Parameter Value
BiLSTM size 200
BiLSTM layer 3
BiLSTM dropout 0.4
FFNN size 150
FFNN dropout 0.2
BERT size 1024
BERT encoder layers last 4
fastText embedding size 300
Char CNN size 50
Char CNN filter width [3,4,5]
Embeddings dropout 0.5
Optimiser Adam
Learning rate 1e-3

Table 4: Major hyperparameters of Dependancy Pars-
ing model

We train all our sequence tagging models with
2http://huggingface.co/

stochastic gradient descent in batched mode with a
batch size of 8. In the training phase, we keep all
layers in our model, including all the transformer
layers trainable. We start training our model at a
learning rate of 0.01, with a minimum threshold
limit of 0.0001, and half the learning rate after ev-
ery 4 consecutive epochs of no improvement in
the F1 score of the development set. We train our
model to a maximum of 100 epochs or 4 consec-
utive epochs of no improvement at our minimum
learning rate.

We train our our model for dependency parsing
approach with Adam optimizer in batched mode
with a batch size of 32 and a learning rate of 0.0001
for a maximum of 40,000 steps. With this approach
too, we keep all layers trainable in the training
phase except the BERT Transformer layers. Pre-
trained BERT and fastText embeddings were just
used to extract context-dependent and independent
embeddings respectively and BERT was not fine-
tuned in the training phase.

The training was performed on 1 NVIDIA Titan
X GPU. Our code is available on Github3.

8 Results

In Table 5 we present F1 scores for all our systems
trained for both our sequence tagging and span
extraction approaches. For our sequence tagging
approach, we divide our results according to the
transformer architecture and tagging scheme used
for that experiment.

Model Scheme Test Dev
XLNet IO 0.6922 0.6945
XLNet BIO 0.6653 0.6683
spanBERT IO 0.6777 0.6744
spanBERT BIO 0.6887 0.6730
RoBERTa IO 0.6647 0.6967
RoBERTa BIO 0.6849 0.6789
BERT IO 0.6830 0.6814
BERT BIO 0.6852 0.6815
ALBERT IO 0.6621 0.6702
ALBERT BIO 0.6679 0.6431
Biaffine - 0.6731 0.6627

Table 5: Test and Dev Results of different models on
various tagging scheme

Our best performing architecture proved to be
the sequence tagging system with XLnet trans-

3https://github.com/Sreyan88/SemEval-2021-Toxic-
Spans-Detection
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former trained with IO tagging scheme. Addi-
tionally, in Table 6 we show how the LSTM and
CRF over the transformer architecture , and our pre-
processing step mentioned in Section 7 affect the
performance of our best performing architecture.

F1 ∆

Our Model 0.6922 -
- LSTM 0.6912 0.0010

- CRF 0.6850 0.0072
- Pre-processing 0.6759 0.1630

Table 6: Impact of LSTM, CRF and pre-processing on
learning

9 Results Analysis

9.1 Length vs Performance

We wanted to understand how the performance of
the system varied with varying lengths of spans. Ta-
ble 7 summarizes the performance of our best per-
forming systems on all approaches experimented
by us, on the test dataset spans, divided into 3 sets
according to their length in terms of the number of
words that help to make the span.

Model Span length F1
1 0.6546

Seq. Tagger (IO) 2-4 0.1750
>=5 0.0596
1 0.6588

Seq. Tagger (BIO) 2-4 0.1524
>=5 0.09198
1 0.6486

Dependency Parsing 2-4 0.0514
>=5 0.0

Table 7: Span Length vs. Performance

9.2 Learning context

Majority of single word spans in the dataset are
the most commonly used cuss words or abusive
words in the English language, i.e., words that can
be directly classified as toxic and are not context-
dependant, e.g. ”stupid”,”idiot” etc., with spans
longer than a single word having a lesser ratio of
such words. We acknowledge the fact that an AI-
based system should be able to do much more, like
learning the context behind which a word is used,
than just detect common English cuss words from a
sentence, which can be otherwise done by a simple

Figure 5: Toxicity classification of the word ”black” in
toxic and non-toxic context

dictionary search. The deteriorating performance
of the model with an increase in span length makes
us dig deeper into our test set results to find out
if our model is being able to detect context-based
toxic spans from sentences. We follow a two step
procedure to analyze this. First, we calculate our
model performance on single-word spans consist-
ing of just the top 25 most commonly occurring
context-independent cuss words4. Table 8 shows
an analysis of these results. Second, we take the
word ”black” and analyze two sentences in our test
where the word black was mentioned in a toxic and
non-toxic context. Fig. 5 shows how our model
indeed tags the latter black as toxic and the former
one as non-toxic.

Single Word Cuss Spans Others
0.6894 0.1736

Table 8: F1 score of context independent cuss words

10 Conclusion

In this paper, we present our approach to SemEval-
2021 Task 5: Toxic Spans Detection. Our best
submission gave us an F1 score of 0.6922, plac-
ing us 7th on the Evaluation Phase Leaderboard.
Future work includes independently incorporating
both post level and sentence level context for de-
termining the toxicity of a word, and also collating
a dataset with toxic spans comprising of a healthy
mixture of simple cuss words (which can always be
attributed as toxic independant of the context) and
words for which the toxicity of the word depends
on the context in which it appears, thereby mak-
ing better systems towards contextual toxic span
detection.

4List of cuss words used for analysis can be found in our
GitHub repository
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