
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 205–210
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

205

NLP-IIS@UT at SemEval-2021 Task 4: Machine Reading Comprehension
using the Long Document Transformer

Hossein Basafa
College of ECE

University of Tehran
hbasafa@ut.ac.ir

Sajad Movahedi
College of ECE

University of Tehran
s.movahedi@ut.ac.ir

Ali Ebrahimi
College of ECE

University of Tehran
ali96ebrahimi@ut.ac.ir

Azadeh Shakery
College of ECE

University of Tehran
shakery@ut.ac.ir

Heshaam Faili
College of ECE

University of Tehran
hfaili@ut.ac.ir

Abstract
This paper presents a technical report of our
submission to the 4th task of SemEval-2021,
titled: Reading Comprehension of Abstract
Meaning. In this task, we want to predict
the correct answer based on a question given
a context. Usually, contexts are very lengthy
and require a large receptive field from the
model. Thus, common contextualized lan-
guage models like BERT miss fine representa-
tion and performance due to the limited capac-
ity of the input tokens. To tackle this problem,
we used the longformer model to better pro-
cess the sequences. Furthermore, we utilized
the method proposed in the longformer bench-
mark on wikihop dataset which improved the
accuracy on our task data from (23.01% and
22.95%) achieved by the baselines for subtask
1 and 2, respectively, to (70.30% and 64.38%).

1 Introduction

Reading comprehension is the ability to understand
a passage either by human or machine. One of the
great benchmarks to evaluate this ability is to try
to answer specific questions related to the passage
(Rajpurkar et al., 2016). Generally, this problem
can contain single or multiple documents as con-
text (containing relevant information needed to un-
derstand and answer the question), a question (a
sentence with at least one asking parameter), and
an answer (which is the parameter value of the
question).

In the Task of Reading Comprehension of Ab-
stract Meaning (ReCAM), we have one passage as
a context, one question and five candidate answers
(Zheng et al., 2021). The goal is to identify the
correct answer based on the context and the given
question. You can see a sample of the data in Table
1. For each instance of the data, there is a passage,
a question with a missing word that should be filled
based on the passage, and five candidate answers
to the question.

Passage ... observers have even named it af-
ter him, “Abenomics”. It is based on
three key pillars - the “three arrows”
of monetary policy, fiscal stimulus
and structural reforms in order to
ensure long-term sustainable growth
in the world’s third-largest economy.
In this weekend’s upper house elec-
tions ...

Question Abenomics: The @Placeholder and
the risks

Answer (A) chances (B) prospective (C)
security (D) objectives (E) threats

Table 1: An instance of the data.

The task divides into two subtasks: impercepti-
bility and non-specificity(Zheng et al., 2021).

• imperceptibility: this level of abstract words
refers to ideas and concepts that are distant
from immediate perception; such as culture,
economics, and politics.

• non-specificity: In contrast to concrete words,
this subtask includes more abstract words
which focus on a different type of definition;
for example, a concrete word like ‘cow‘ could
be interpreted as an ‘animal‘ which is con-
sidered as a more abstract word (Changizi,
2008).

The main challenges of this task are the abstract
meaning concept representation as well as the ma-
chine reading comprehension. This is the main
reason we have utilized contextualized language
representation models to tackle abstract meaning
representation problems.

In this paper, we use an end-to-end deep con-
textualized architecture to model this task. This
model is also capable of considering more than
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one passage as the context, and more than five
candidate answers. Since we use the long doc-
ument transformer model (Longformer (Beltagy
et al., 2020)), no limitation is considered in con-
text passage length. We have evaluated this model
both on subtask-1 and subtask-2 which resulted in
70% and 64% accuracy, respectively. Therefore,
we have about 40% improvement compared to the
baseline, which is a Gated Attention (GA) model
(Zheng et al., 2021).

The rest of the paper is as follows: Section 2
describes the related works and the background.
Section 3 includes the description of the proposed
method. Section 4 contains the evaluation metrics
used as well as a brief discussion, which is then fol-
lowed by a conclusion and future works in section
5.

2 Background and Related Works

Many approaches have been presented in the liter-
ature, from pipeline-based models to end-to-end
ones. Each module is also well-investigated from
rule-based models to deep learning ones. Despite
various configurations presented in the literature to
model this problem, most of the systems consist of
three modules(Baradaran et al., 2020):

• Language representation: this module is re-
sponsible to encode the inputs. Context, ques-
tion, and answer need to be represented as
numeric values for computational algorithms
to be usable on them. Dense vectorized rep-
resentations are the most popular methods,
which allow us to use the majority of machine
learning algorithms.

• Reasoning: this module is used to find demon-
strations of why the answer is assumed to
be valid. It can also be used as a limiter for
searchable context.

• Prediction: this module aims to generate, re-
trieve or select the correct answer based on
the task description.

Recent studies are provided as follows with re-
spect to these modules that the last two modules
have been merged. In the end, the longformer
model is presented as our mainstay in this paper.

2.1 Word and text representation
One of the most important problems in NLP is rep-
resentation learning. The earliest models for word

representation in the time of deep learning were the
models proposed in (Pennington et al., 2014) and
(Mikolov et al., 2013), which utilized the weights
learned for an auxiliary task (a simplified version
of the task of language modeling) for word repre-
sentation. Similarly, methods proposed in (Le and
Mikolov, 2014) and (Liu et al., 2015) utilized a sim-
ilar structure for sentence, paragraph, or document
representation learning.

While these methods were quite effective, it has
been shown that using neural language models as a
way of word representation results in much better,
and context-aware representations. In (Howard and
Ruder, 2018) it has been shown that fine-tuning
language models as sentence encoders result in a
significant performance improvement. At the same
time, (Peters et al., 2018) used language models
directly as word representations, which resulted in
significant improvements. In (Devlin et al., 2018)
a transformer model was trained for the task of
masked language models, which resulted in sig-
nificant improvements, surpassing human perfor-
mance in many NLP tasks. One of the shortcom-
ings of transformers is the lack of a memory mech-
anism, which results in (theoretically) lower recep-
tive field compared with LSTMs (Beltagy et al.,
2020) this shortcoming was addressed by improv-
ing the self attention mechanism in transformers
so that it would have a (theoretically) unbounded
receptive field. More details are presented later in
this section.

2.2 Natural language understanding
Natural language understanding (NLU) is an um-
brella term, referring to any tasks that require ma-
chine comprehension. Compared to other NLP
tasks, NLU requires the model to be able to under-
stand and reason about the data (Semaan, 2012).
While great progress has been made in this field by
using contextual word representation (Devlin et al.,
2018), it has been found that designing the model
itself must not be neglected (Zhu et al., 2018). On
the other hand, it has been shown that utilizing
a transfer learning setting to share knowledge be-
tween different NLU tasks results in better per-
formance with fewer data and fewer parameters
(Pilault et al., 2020), which proves a significant
similarity between these tasks.

2.3 The Longformer
Deep contextualized language models like
BERT(Devlin et al., 2019) have been well investi-
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gated in the literature and achieved state-of-the-art
results on various tasks. However, these models
suffer from performance limitations due to their
self-attention layer which results in quadratic space
and time complexity concerning the sequence
length. In contrast, this model removes the
self-attention layer from the base language models,
so the limitation resolves and the complexity scales
to linear. In order to increase the quality of the
model compared to basic models, they have added
a global attention layer to the model end which
significantly outperforms state-of-the-art models
on long document (passage) tasks and competitive
on normal documents. Also, this configuration
increases the performance on both normal and
lengthy inputs which makes it a good alternative
for tasks containing large inputs. This model
is also evaluated on a similar task on WikiHop
dataset(Welbl et al., 2018) and improved the results
in terms of accuracy(Beltagy et al., 2020).

3 Method

As mentioned in section 1, given a passage, a ques-
tion, and a set of answers to the question, the goal
is to predict the correct answer among the candi-
dates, which can be seen as a benchmark to evaluate
how well the model can comprehend the abstract
meaning. To do so, we considered an end-to-end
deep learning architecture based on the transformer
architecture.

Specifically, we used contextual word embed-
dings based on the transformer to better discover
and encode the information contained in the pas-
sage. In our model, both subtasks use the same ar-
chitecture as shown in figure 1, although we did not
experiment on the possibility of multi-task learning.
The word representation models are fine-tuned on
the data for better performance. The fine-tuning
procedure could allow us to extract additional, task-
related information which could result in better
accuracy in the evaluation phase.

To model this problem, let c = {c1, c2, ..., cI}
denote the passage as the context, where ci corre-
sponds to the ith token (word or subword, depend-
ing on the tokenization technique used) and I is
the number of tokens in the passage. Similarly,
the question is considered as q = {q1, q2, ..., qK}
where K denotes the length of the question, and
qk corresponds to the kth token of the question.
Each answer also denotes as ej which is only one
abstract word (j ∈ {1, 2, ..., 5}). Then we concate-

nate the question and the candidates as:

a = [q; e1; e2; ...; e5]. (1)

The size of this sequence is A = K + 5 as we
have only 5 candidates. Generally, this can be an
arbitrary length based on the dataset.

Note that we introduce special tokens to sepa-
rate the context, the question, and the candidates,
similar to (Beltagy et al., 2020). Specifically, we
introduce the tokens <s> and </s> for separating
the context, <q> and </q> for separating the the
question, and the tokens <ent> and </ent> for
separating the candidates from each other. In the
case of multiple passages, all passages are concate-
nated to form a single context. These tokens are
randomly initialized and fine-tuned.

We used the Longformer model introduced in
(Beltagy et al., 2020) as the pre-trained contex-
tual embedding model in our method. Since the
context could be too long, we split the context se-
quence to separate chunks. Each chunk length
is equal to maximum sequence length the model
could accept appending the sequence a; in fact,
model max length = len(chunk)+len(a). If cl

denote each chunk, this sequence could be showed
as:

b = [cl; a] (2)

where the full context is c = {c1, c2, ..., cL}, and
L is the last chunk. The size of this sequence is B
so B = L+A.

After feeding the input b to the Longformer
model, we apply a global attention only on a (con-
catenated question and answer candidates), and
the rest is the context. As the longformer model
utilizes a base model (like RoBERTa without the
self-attention layer, in our case), we denote this
as basemodel function that outputs the encoded
sequence of the input. If GAttn denotes the global
attention function, we have:

di = basemodel(b) (3)

gi = GAttn(di).1(i ∈ A) (4)

where di is the raw output vector for each input
token. The global attention function is applied if it
is a question or answer candidate token. Then, we
extract the outputs corresponding to the question
and the candidates tokens, i.e. we have:

hj = GAttn(a, cl) (5)
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Figure 1: The model architecture. The concatenated input vector will be encoded using the base model (like
RoBERTa without the self-attention layer, in our case). A global attention(Luong et al., 2015) will be applied to
the question and the candidate answers representations with respect to the passage as the context. The logit (score)
of each ent token will be calculated using a linear transformation function, then the prediction distribution over the
answer candidates (ent tokens) will be outputted using a softmax layer.

Finally, we obtain the logit of each candidate
(<ent> tokens) as xj (xj = hj if j correspond to
a candidate), average over different chunks, and
apply a linear transformation:

fj = vTxj (6)

where the vector v is trainable, and fj is the score
of each candidate. And the probability distribution
over the candidates will be calculated using a soft-
max layer on the logits. The predicted answer is
the argmax of the softmax output. we fine-tuned
the model using the cross-entropy loss.

4 Evaluation

Although we only participated in the second sub-
task, we will evaluate our model on both subtasks
here. We will explain our configurations for utiliz-
ing the model on the task as well as other baselines
which are the BERT-base as an alternative model
and the Gate-Attention (GA) as our task baseline.
Finally, a brief discussion will be done based on
the results.

4.1 Metrics

Popular metrics to evaluate these models are F1,
EM (Exact Match or accuracy), and MRR (Mean

Reciprocal Rank). As the precision and recall in
our task are equal, so F1 = Precision = Recall. Also,
F1 and EM are the same. And, the use of MRR is
optional, so the metrics used to evaluate the result
are the accuracy and the F1.

4.2 Baseline configuration

The baseline model (GA) is trained for 30 epochs,
each epoch containing 101 mini-batches. The train
batch size is set to 32. Dropout with the rate of
0.5 is also applied to the hidden states, and the
learning rate is set to 0.001. The dimensionality of
the GloVe embedding is 300, and the hidden size
is set to 128. Training and evaluation take about 2
hours on a single v100 GPU.

4.3 BERT configuration

We use the same configuration as our method ex-
cept for the global attention mechanism. In fact,
we consider the output vector of each chunk as our
final vector to be linearly transformed into single
logit, followed by a softmax layer using the cross-
entropy loss. Similarly, the logit is averaged over
different chunks, before applying the linear trans-
formation. Note that the maximum sequence length
here is bounded to 512 tokens, and the model in-
cludes the n2 attention mechanism. We use the
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Metrics Baseline(GA) BERT Our Method
Accuracy 23.01% 63.43% 70.30%
Macro Avg F1 22.83% 63.38% 70.23%
Weighted Avg F1 22.76% 63.40% 70.27%

Table 2: Subtask1 evaluation metrics on the test set

Metrics Baseline(GA) BERT Our Method
Accuracy 22.95% 58.76% 64.38%
Macro Avg F1 22.42% 58.72% 64.35%
Weighted Avg F1 22.45% 58.75% 64.40%

Table 3: Subtask-2 evaluation metrics on the test set

base version of the model and fine-tuned it on each
subtask.

4.4 Our method configuration

We used the same model introduced in section 3 for
both subtasks. The model was initialized using the
Longformer-base pre-training weights, then fine-
tuned in each of the subtasks. Due to the perfor-
mance issues, the model max sequence length is set
to 4096 tokens which are sufficient in our case. We
also used the RoBERTa-large tokenizer to tokenize
the input sequence as the Longformer model has
been trained on using this configuration. We used
a batch size of 32 and a maximum learning rate of
3e-5 using the Adam optimizer with beta2=0.98.
We then assumed the validation check interval to
250 which indicates the number of gradient updates
between checking validation loss. And a weight
decay of 0.01 has been considered to regularize the
model and avoid overfitting.

Our proposed model is trained for 15 epochs for
each task. Fine-tuning the model takes about six
hours, and inference takes about nine seconds for
each sample on a single V100 GPU.

4.5 Evaluation od Subtask 1

Subtask1 measures imperceptibility abstract level
of language understanding. This subtask includes
3227 training samples, 837 validation samples, and
2025 test samples. The size of the biggest sample
in terms of context length is about 2000 tokens. We
have achieved an accuracy of 70% on the valida-
tion set, which improves our baseline by about 40
percent. Table 2 showed the results of this subtask.

4.6 Evaluation on Subtask 2

Subtask2 measures the non-specificity level of ab-
stract meaning in reading comprehension. It in-

cludes 3318 training samples, 851 validation sam-
ples, and 2017 test samples. The best accuracy
on the validation set is 64%. Table 3 showed the
results of this subtask.

4.7 Discussion

We used two baselines to find out the effect of us-
ing a pre-trained model rather than a simple RNN
model. Although this task offers a higher level of
representation, using the pre-train models is help-
ful, and there is a higher chance of modeling such
abstract concepts.

The results on subtask2 are weaker than subtask1
in pre-trained models. This can be the consequence
of limited semantic representation for abstract word
which indicates the subtask2 includes more abstract
words in terms of abstract level; for example, the
word ’animal’ could be matched to any animal, like
’cat’ or ’dog’, but the word ’entity’ is hard to be
represented as it could be matched to a large num-
ber of words. And the model faces a limitation in
the knowledge representation. Another assumption
could be the data enrichment that these model has
been trained on. As most of the available texts
for training consist of concrete words, it is more
likely to leverage the language understanding to
less abstract words to achieve a better result.

Comparing our method which is based on long-
former model to usual language models like BERT
indicates a new insight in terms of passage length
and the attention mechanism. Popular language
models like BERT and RoBERTa use a n2 attention
which requires a large receptive field to represent
long passages. This results in the performance lim-
itation which bounds the input sequence up to 512
tokens. In contrast, the longformer global atten-
tion mechanism relaxes this limitation as we only
need to pay attention to a small factor of context
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and more focus on the local window. So the recep-
tive field will not overflow and saves the necessary
information to better represent the language.

We have analyzed the errors that mostly affect
our model performance. We think that the prob-
lem is the contextual representation of the language
modeling, which is not well-suited in our method
i.e. concatenating the context, question, and answer.
The main disadvantage of concatenating the candi-
date answers to each other is the missing fine con-
textual representation as the state-of-the-art models
consume the position embedding. Additionally, in-
correct candidates register additional noise to each
word representation as well as the placeholder in
the question.

5 Conclusion and Future works

We have shown how different approaches can be
leveraged to machine reading comprehension of
abstract meaning. We reformulated the longformer
model to learn abstract meaning as a new level of
semantic in machine reading comprehension. This
method can also be improved by taking advantage
of external knowledge and task-specific model ar-
chitectures that optimize the current baseline.
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