
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 960–966
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

960

HLE-UPC at SemEval-2021 Task 5: Multi-Depth DistilBERT for Toxic
Spans Detection

Rafel Palliser-Sans and Albert Rial-Farràs
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Abstract

This paper presents our submission to
SemEval-2021 Task 5: Toxic Spans Detection.
The purpose of this task is to detect the spans
that make a text toxic, which is a complex
labour for several reasons. Firstly, because
of the intrinsic subjectivity of toxicity, and
secondly, due to toxicity not always coming
from single words like insults or offends, but
sometimes from whole expressions formed
by words that may not be toxic individually.
Following this idea of focusing on both single
words and multi-word expressions, we study
the impact of using a multi-depth DistilBERT
model, which uses embeddings from different
layers to estimate the final per-token toxicity.
Our quantitative results show that using
information from multiple depths boosts the
performance of the model. Finally, we also
analyze our best model qualitatively.

1 Introduction

SemEval-2021 Task 5: Toxic Spans Detection
(Pavlopoulos et al., 2021) consists in detecting
which spans make a text toxic. This is quite rele-
vant for nowadays lifestyle in which, aggravated
by the COVID-19 pandemic, online conversations
have become key to communicate with our family,
friends and job mates, or socialize through social
networks and streaming chats. Being able to mod-
erate all this digital content is crucial in order to
promote healthy online conversations and discus-
sions.

To tackle this problem, in HLE-UPC we have
used a BERT-based model with a fully-connected
layer on top to perform Named-Entity Recognition
and Classification (NERC), with the goal of tag-
ging each word as either toxic or not. Moreover,
we have studied and proved that the use of informa-
tion from different-depth layers enriches the final
classification.

Our contributions to Toxic Spans Detection are:

• The proposal of an ensemble of three different
multi-depth DistilBERTs, achieving an F1-
score of 68.54% and being ranked 14th out of
91 teams in the challenge, just 2.29% below
the best performing model.

• The study of multi-depth BERT-based models
in the task of Toxic Spans Detection, show-
ing an improvement on the performance com-
pared to non-multi-depth architectures.

• A qualitative analysis presenting some ethical
concerns regarding racial bias.

The source code for our model and pipeline
is available at https://github.com/rafelps/

HLE-UPC-SemEval-2021-ToxicSpansDetection.

2 Related work

Toxicity The task in which we are participating
is not the first one to focus on text toxicity. Without
going any farther, in last year’s edition of SemEval
we can find Task 12, also known as OffensEval
2020 (Zampieri et al., 2020), in which the goal was
to identify offensive language in multilingual social
media data. In the previous year’s competition,
SemEval 2019, Task 6 (Zampieri et al., 2019) was
also tackling the identification and categorization
of offensive language in social media.

Some of the models that solved these tasks in-
volve Convolutional Neural Networks (CNN) (Ma-
hata et al., 2019), Long Short Term Memory Net-
works (LSTM) (Pham-Hong and Chokshi, 2020)
or attention based models (Liu et al., 2019; Wiede-
mann et al., 2020) branched from the BERT family
(Devlin et al., 2019).

NERC All the mentioned models approach the
task as Sequence Classification, this is, encoding a
whole sentence and providing a unique prediction

https://github.com/rafelps/HLE-UPC-SemEval-2021-ToxicSpansDetection
https://github.com/rafelps/HLE-UPC-SemEval-2021-ToxicSpansDetection
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for it. Toxic Spans Detection, however, goes a step
further by asking participants to detect toxic spans,
the exact characters or words that make a text toxic.
For this reason, instead of modelling the task as
sentiment analysis or document/comment classi-
fication, it seems more natural to approach it as
token classification, generating an output for each
token. More specifically, this task could be seen
as a Named Entity Recognition and Classification
(NERC) task, in which the goal would be to output
the most probable sequence of labels (toxic or not)
given an input sentence.

In the field of NERC, we also find some interest-
ing models. The state-of-the-art today are attention-
based models, usually stemming from transformers
such as BERT (Devlin et al., 2019), which can be
easily converted into a token classifier by adding a
simple linear layer on top of the per-token output.
However, we can also find some other attention-
based models using CNNs (Baevski et al., 2019)
or even recurrent architectures such as Jiang et al.
(2019); Straková et al. (2019); Peters et al. (2018),
which mix BiLSTMs, CNNs or CRF layers.

3 Data and Methodology

3.1 Data Description
For this task, the organizers provide us with the
Toxic Spans Detection (TSD) dataset, also pre-
sented in Pavlopoulos et al. (2021), containing
phrases and comments that may contain toxic spans.
Together with each comment, there is the set of in-
dices of the characters that are considered toxic.

The TSD dataset is split into three subsets: trial,
train and test sets with approximately 700, 8000
and 2000 comments respectively. All the models
presented in this work have been trained exclu-
sively on the TSD training set, while the trial set
has been used to validate our systems. Finally, the
test set has served to evaluate the performance of
our final models using the available limited submis-
sions for the competition.

The TSD dataset contains very diverse com-
ments. Some of them seem quite simple, but others
may be ambiguous, require context knowledge or
an understanding of tone, which makes the task
extremely challenging. There are also some words
that have been written in an ingenious way, to avoid
naı̈ve toxic detectors, or that are bleeped or cen-
sored. Following we present a couple of examples,
where toxic characters are underlined:

• This is a stupid example, so thank you for

nothing a!@#!@.

• I bet you can’t wait to see him behind bars.

3.2 Data Cleaning
With a simple data exploration, it can be seen
that approximately 90% of the toxic spans exactly
match with word boundaries, but in the remaining
cases we find strange cases such as the following
ones:

1. You are an idiot: There is a whitespace as a
toxic span boundary.

2. You are an idiot: A random singleton charac-
ter is marked as toxic.

3. You are an idiot: “Y” is not marked as toxic
but “ou” is.

The majority of these inconsistencies are already
known by the organizers of the task and other par-
ticipants. However, they should still be tackled
to provide the best data possible to our models.
For this reason, we have cleaned the data using
three simple steps and following the idea of tox-
icity coming from complete words but not from
single characters. For each group of consecutive
annotated toxic offsets:

1. Iteratively remove the first or last toxic offset
if it belongs to a whitespace. This solves the
first type of inconsistencies.

2. Remove the toxic offset if it is a singleton: a
single consecutive character marked as toxic.
This helps in the second type of strange cases.

3. Iteratively left-expand the range of toxic off-
sets if the previous character is alphanumeric
(so it belongs to the same word). Same for
right-expansion. This solves the third prob-
lem by including the offsets of the whole word
as toxic whenever more than one character is
marked as so.1

After cleaning the data, almost the totality of the
annotations matches word boundaries. On one side
this confirms our hypothesis that toxicity comes
from words or expressions but not from characters.
On the other side, this enables a word by word
analysis in a consistent and robust manner. Nev-
ertheless, the task remains challenging given the
subjectivity of the annotations.

1The opposite strategy, discarding words if not all their
characters were marked as toxic was also studied but rejected
as performed poorer.
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3.3 Preprocessing

Once data is cleaned and before feeding it to the
models, we lower case the text and tokenize it using
WordPiece (Wu et al., 2016), the tokenizer used by
BERT-based models, which splits text into (usu-
ally) sub-word units. Each of these units has its
associated token embedding at the first layer of the
respective models.

In this step, we also use the information of the
already-cleaned toxic offsets to create a per-token
binary label regarding its toxicity.

3.4 Models

LSTM Long Short-Term Memory was intro-
duced in 1991 by Hochreiter and Schmidhuber
(1997) as an extension of recurrent neural networks
(RNNs), providing them with the ability to capture
and memorize long-term dependencies and there-
fore help prevent the vanishing/exploding problems
(Bengio et al., 1994; Pascanu et al., 2013).

We use an LSTM tagger as our baseline model
to determine the lower bound performance that we
should compare with. We use it as a first approach
to solve the task, even though we know that the
sentences of the dataset might be too long for the
network to memorize and capture all long-term
dependencies and the entire sentence context. As
input for this model, we use pre-trained word em-
beddings from GloVe (Pennington et al., 2014).

Attention-based models In 2018, Google Re-
search released Bidirectional Encoder Representa-
tion from Transformer (BERT) (Devlin et al., 2019)
which achieved many state-of-the-art results on dif-
ferent NLP tasks. This success led to the creation
of a lot of new models and improvements based
on the BERT architecture: DistilBERT, RoBERTa,
ALBERT, ... This architecture uses the same multi-
head transformer structure presented by Vaswani
et al. (2017), which is basically composed of sev-
eral stacked Transformer blocks/encoders, includ-
ing self-attention and feed-forward modules. These
help the model obtain richer word representations
by finding correlations with other tokens in the
sentence.

For our task, we use two BERT-based models,
BERT and DistilBERT, with a token classification
head –a linear layer on top of the hidden state out-
put of the last Transformer encoder–. These mod-
els are pre-trained on huge corpus from different
sources and fine-tuned for our downstream task.

Multi-depth models Based on the previously
presented BERT-like models, we implement a mod-
ification that consists in feeding the classification
layer an augmented embedding for each token.
This augmented embedding is formed by concate-
nating the hidden outputs of different Transformer
blocks, instead of using the last output directly as
done in common models for token classification.
The empirical results show that using embeddings
from different layers provides better representa-
tions and boosts the model’s performance.

3.5 Postprocessing
Once a model outputs its predictions, we loop
through them and, for those tokens predicted as
toxic, we take their offsets and add them to the
final set of toxic spans for that sentence.

Additionally, we add a postprocessing step to in-
crease the correctness of our predictions regarding
white characters. These are not returned as tokens
by the tokenizer but occupy a character offset. For
this reason, for each pair of consecutive tokens pre-
dicted as toxic, we also include to the final set the
offsets of any white characters in between.

4 Results

All the results presented in this section have been
calculated using the official metric, the F1-score on
the predicted toxic offsets. For detailed information
please refer to Pavlopoulos et al. (2021).

4.1 Model Comparison
In Table 1 we report the results for the best config-
uration of each of our models both in the official
trial and test sets. In these results, we can first note
that all the models clearly outperform our baseline.
Moreover, using the information of multiple lay-
ers is proved to be beneficial for this task, as it
improves each of the respective base models, by
0.64% - 1.42%. Finally, note that although BERT
is larger and more powerful than DistilBERT, it
performs poorer in the test set. This might be due
to the fact that we select our hyperparameters based
on the F1-score on the trial set, which is relatively
small and may not be representative of the test
data. For this reason, our submitted model is a
multi-depth DistilBERT, as it provides better gen-
eralization within this task and data.

4.2 Layer Selection
In this study, we have trained a multi-depth Distil-
BERT using the outputs of different layers or trans-
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Model F1-score (trial) F1-score (test)
LSTM (baseline) 61.36% 62.06%
DistilBERT 69.04% 67.43%
BERT 69.22% 66.45%
Multi-depth DistilBERT 69.68% 68.22%
Multi-depth BERT 70.01% 67.87%

Table 1: Performance comparison for various architectures in the official trial (used as validation) and test sets.

former blocks to study its impact on the model’s
performance.

Table 2 shows the results for different experi-
ments in which we have concatenated the outputs
of the last N layers of DistilBERT before feeding
these enlarged hidden states to the fully connected
layer that performs classification.

Results show that performance can be improved
by adding different block’s outputs, but can also
degrade when using too many. For DistilBERT,
which has 6 transformer blocks, the sweet spot
seems to be using the last 3 layers. Using all 6
also provides good results, which may imply that
the first layer’s output is also quite informative for
this task in which words themselves already help
predicting their toxicity.

Last N layers F1-score (trial)
1 69.04%
2 69.48%
3 69.68%
4 69.11%
5 68.94%
6 69.48%

Table 2: Performance comparison for multi-depth
DistilBERT in the trial set using the concatenation of
the last N layer’s outputs for the final classification.

4.3 Ablation Study

In these experiments, we took apart one compo-
nent of our system at a time to see its effect on
the system’s performance. The main components
of our method are presented in Section 3, and de-
tails about our implementation can be found in
Appendix A.

Table 3 shows the results for this study, in which
we can easily see that all components work towards
the performance of our model. Apart from the
multi-depth component, which has already been
studied, Dropout has been key for our giant model
to generalize and prevent overfitting the small data.

Using Label Smoothing has also helped, letting
the model adapt to the intrinsic subjectivity of the
annotations.

Regarding data preparation, it can be seen that
the cleaning step has been crucial for the good
performance of our system, supporting the known
quote “Garbage in, garbage out”. Finally, our sim-
ple postprocessing stage has also provided some
tenths to the final performance.

Model F1-score (trial)
Multi-depth DistilBERT 69.68%
(ours) – Multi-depth 69.04%
(ours) – Dropout 68.25%
(ours) – Label Smoothing 69.17%
(ours) – Data Cleaning 66.44%
(ours) – Postprocessing 69.38%

Table 3: Ablation study on the system’s components.
‘–’ means leaving that component out. Results for the
official trial set.

4.4 Ensemble

Given the results we obtained with single models,
we found it interesting to mix some of them to
see if they were focusing on different parts of data
and could improve the predictions while working
together.

Following this idea, we created a simple
majority-voting ensemble using the multi-depth
models with “last N layers” for N = 1, 3, 6; this is,
a base DistilBERT, a model that concatenates the
output of the last 3 transformer blocks and another
one that uses all 6 layers of DistilBERT.

The final result for this ensemble is 69.34% in
the trial set –used as validation– and 68.54% in the
test set, our best submission. Note that although
being worse than our best single model in the trial
set, it has better generalization skills and boosts the
performance in the unseen test set.
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4.5 Qualitative
Apart from the quantitative analysis done before,
we analyze in a qualitative manner the performance
and behaviour of our best model, to see how well
detects offensive and toxic words and in which
cases it fails.

Below we present some examples of sentences
in the dataset together with their ground truth
spans and the detection done by the model. The
ground truth toxic words appear underlined while
the prediction is shown in red.

Correct predictions We observe how our sys-
tem is highly capable of identifying toxic and of-
fensive words, both when they appear alone and in
multi-word expressions.

• Billy, are you a complete idiot, being thick
headed or just not reading what people...

• People insist on being dumb. No other expla-
nation.

• Could you please kill yourself?

Wrong predictions However, our system also
fails in some challenging comments. As seen below
with the word “poorly”, our method misses some
words marked as toxic which are not very offensive
or disrespectful but can become toxic due to the
context.

• People don’t buy that poorly built Russian
houses...

In other cases, our system identifies toxicity
when it is not annotated, although under our per-
spective the prediction seems correct. This could
be due to the ambiguity of the task or inconsisten-
cies in the annotations. An example of it is the
expression “freaking donkeys”:

• These freaking donkeys all need to be re-
moved from office. I’m so sick and tired of...

Finally, our model fails to detect connectors such
as “of” and “and” in between toxic words. In the
dataset there are several annotation philosophies:
some annotations tend to mark entire expressions
as toxic and some others are more word-oriented,
excluding connectors between words.

• Are these some of those Russian
pieces of crap that they seem to be building
all over Alaska.

Ethical concerns While doing the qualitative
analysis we found several examples indicating that
there could be racial bias in the predictions of our
model, and although it is beyond the scope of the
challenge, we found important to pay attention to
it. For this reason, we took some examples from
the trial set containing comments about races and
changed the words referring to races or origin by
others. Below we show an example. The first com-
ment belongs to the competition dataset, while the
other is a modification of it, with words “black”
changed for “white” and vice versa, and “Mexican”
changed for “American”.

• Black folks built this nation and got lynching
for the work. Heck, white folks can be so
mean that when they lost their slaves they in-
vited illegal Mexican immigrants to do the
work black slaves use to do.

• White folks built this nation and got lynching
for the work. Heck, black folks can be so
mean that when they lost their slaves they in-
vited illegal American immigrants to do the
work black slaves use to do.

We observe that in both cases the system identi-
fies the word “black” as toxic, but not “white”, even
when these non-toxic adjectives are the only differ-
ence between them. Furthermore, the system only
identifies “immigrants” as toxic when appearing
next to “Mexican” but not with “American”.

This undesired discrimination happens because
there are lots of racist comments in the dataset,
which are obviously annotated as toxic. Given that
it seems there are more comments against some
specific ethnic groups than others, the system as-
sociates certain racial references with racism and
thus with toxicity.

This is a problem that comes from the data, in-
cluding the one used in the pre-training phase of
BERT models. However, there are several de-bias
techniques in the literature (Manzini et al., 2019;
Sun et al., 2019; Liang et al., 2020) that could be
applied to our model to alleviate it.

5 Conclusion

In this work, we have presented a solution for the
SemEval-2021 Task 5: Toxic Spans Detection com-
petition, which is a challenging task due to the sub-
jectivity of toxicity and the requirement of context
knowledge.
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During the development of our solution, a multi-
depth DistilBERT model, we have proved the
power of pre-trained models and transfer learning
to a downstream task with limited data, at the same
time that we have demonstrated the benefits of com-
bining the outputs of multiple BERT models’ layers
for token classification.

With an F1-score of 68.54% the presented model
ranks 14 out of 91 participating teams in the com-
petition and, although it presents some racial bias
that could be corrected, from the qualitative results
we conclude that it has a very good performance,
hence being able to be used in real-life applications.
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2https://pytorch.org/
3https://huggingface.co/transformers/
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