
SemDeep-6

Proceedings of the 6th Workshop on Semantic Deep Learning
(SemDeep-6)

8 January, 2021
Online

c�2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-19-2

SemDeep-6

Welcome to the 6th Workshop on Semantic Deep Learning (SemDeep-6), held in conjunction with IJCAI
2020. As a series of workshops and a special issue, SemDeep has been aiming to bring together Semantic
Web and Deep Learning research as well as industrial communities. It seeks to offer a platform for joining
computational linguistics and formal approaches to represent information and knowledge, and thereby
opens the discussion for new and innovative application scenarios for neural and symbolic approaches to
NLP, such as neural-symbolic reasoning.

SemDeep-6 features a shared task on evaluating meaning representations, the WiC-TSV (Target Sense
Verification For Words In Context) challenge, based on a new multi-domain evaluation benchmark. The
main difference between WiC-TSV and common WSD task statement is that in WiC-TSV there is no
standard sense inventory that systems need to model in full. Each instance in the dataset is associated
with a target word and single sense, and therefore systems are not required to model all senses of the
target word, but rather only a single sense. The task is to decide if the target word is used in the target
sense or not, a binary classification task. Therefore, the task statement of WiC-TSV resembles the usage
of automatic tagging in enterprise settings.

In total, this workshop accepted four papers, two for SemDeep and two for WiC-TSV. The main trend,
as it has been the norm for previous SemDeep editions, has been the combination of neural-symbolic
approaches to language and knowlege management tasks. For instance, Chiarcos et al. (2021) discuss
methods for combining embeddings and lexicons, whereas Moreno et al. (2021) present a method for
relation extraction and Vandenbussche et al. explore the application of transformer models to Word Sense
Disambiguation. Finally, Moreno et al. (2021) also take advantage of language models for their participa-
tion to WiC-TSV. In addition, this SemDeep edition had the pleasure to have Michael Spranger as keynote
speaker, who gave an invited talk on Logic Tensor Network, as well as an invited talk by Mohammadshahi
and Henderson (2020) on their Findings of EMNLP paper on Graph-to-Graph Transformers.

We would like to thank the Program Committee members for their support of this event in form of re-
viewing and feedback, without whom we would not be able to ensure the overall quality of the workshop.

Dagmar Gromann, Luis Espinosa-Anke, Thierry Declerck, Anna Breit, Jose Camacho-Collados,
Mohammad Taher Pilehvar and Artem Revenko.

Co-organizers of SemDeep-6. January 2021

iii

Organisers:

Luis Espinosa-Anke, Cardiff University, UK
Dagmar Gromann, Technical University Dresden, Germany
Thierry Declerck, German Research Centre for Artificial Intelligence (DFKI GmbH), Germany
Anna Breit, Semantic Web Company, Austria
Jose Camacho-Collados, Cardiff University, UK
Mohammad Taher Pilehvar, Iran University of Science and Technology, Iran
Artem Revenko, Semantic Web Company, Austria

Program Committee:

Michael Cochez, RWTH University Aachen, Germany
Artur d’Avila Garcez, City, University of London, London UK
Pascal Hitzler, Kansas State University, Kansas, USA
Wei Hu, Nanjing University, China
John McCrae, Insight Centre for Data Analytics, Galway, Ireland
Rezaul Karim, Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin, Ger-
many
Jose Moreno, Universite Paul Sabatier, IRIT, Toulouse, France
Tommaso Pasini, Sapienza University of Rome, Rome, Italy
Alessandro Raganato, University of Helsinki, Helsinki, Finland
Simon Razniewksi, Max-Planck-Institute, Germany
Steven Schockaert, Cardiff University, United Kingdom
Michael Spranger, Sony Computer Science Laboratories Inc., Tokyo, Japan
Veronika Thost, IBM, Boston, USA
Arkaitz Zubiaga, University of Warwick, United Kingdom

Invited Speaker:

Michael Spranger, Sony Computer Science Laboratories

iv

Invited Talk

Michael Spranger: Logic Tensor Network - A next generation framework for Neural-Symbolic
Computing

Artificial Intelligence has long been characterized by various approaches to intelligence. Some researchers
have focussed on symbolic reasoning, while others have had important successes using learning from
data. While state-of-the-art learning from data typically use sub-symbolic distributed representations,
reasoning is normally useful at a higher level of abstraction with the use of a first-order logic language
for knowledge representation. However, this dichotomy may actually be detrimental to progress in the
field. Consequently, there has been a growing interest in neural-symbolic integration. In the talk I will
present Logic Tensor Networks (LTN) a recently revised neural-symbolic formalism that supports learn-
ing and reasoning through the introduction of a many-valued, end-to-end differentiable first-order logic,
called Real Logic. The talk will introduce LTN using examples that combine learning and reasoning in
areas as diverse as: data clustering, multi-label classification, relational learning, logical reasoning, query
answering, semi-supervised learning, regression and learning of embeddings.

v

Table of Contents

CTLR@WiC-TSV: Target Sense Verification using Marked Inputs andPre-trained Models 1
Jose Moreno, Elvys Linhares Pontes and Gaël Dias

Word Sense Disambiguation with Transformer Models . 7
Pierre-Yves Vandenbussche, Tony Scerri and Ron Daniel Jr.

Embeddings for the Lexicon: Modelling and Representation . 13
Christian Chiarcos, Thierry Declerck and Maxim Ionov

Relation Classification via Relation Validation . 20
Jose Moreno, Antoine Doucet and Brigitte Grau

vi

CTLR@WiC-TSV: Target Sense Verification using Marked Inputs and
Pre-trained Models

Jose G. Moreno
University of Toulouse

IRIT, UMR 5505 CNRS
F-31000, Toulouse, France

jose.moreno@irit.fr

Elvys Linhares Pontes
University of La Rochelle

L3i
F-17000, La Rochelle, France

elvys.linhares pontes@univ-lr.fr

Gaël Dias
University of Caen

GREYC, UMR 6072 CNRS
F-14000, Caen, France
gael.dias@unicaen.fr

Abstract

This paper describes the CTRL participation
in the Target Sense Verification of the Words
in Context challenge (WiC-TSV) at SemDeep-
6. Our strategy is based on a simplistic an-
notation scheme of the target words to later
be classified by well-known pre-trained neu-
ral models. In particular, the marker allows
to include position information to help models
to correctly identify the word to disambiguate.
Results on the challenge show that our strategy
outperforms other participants (+11, 4 Accu-
racy points) and strong baselines (+1, 7 Accu-
racy points).

1 Introduction

This paper describes the CTLR1 participation at
the Word in Context challenge on the Target Sense
Verification (WiC-TSV) task at SemDeep-6. In
this challenge, given a target word w within its
context participants are asked to solve a binary task
organised in three sub-tasks:

• Sub-task 1 consists in predicting if the target
word matches with a given definition,

• Sub-task 2 consists in predicting if the target
word matches with a given set of hypernyms,
and

• Sub-task 3 consists in predicting if the target
word matches with a given couple definition
and set of hypernyms.

Our system is based on a masked neural lan-
guage model with position information for Word
Sense Disambiguation (WSD). Neural language
models are recent and powerful resources useful
for multiple Natural Language Processing (NLP)
tasks (Devlin et al., 2018). However, little effort

1University of Caen Normandie, University of Toulouse,
and University of La Rochelle team.

has been made to perform tasks, where positions
represent meaningful information. Regarding this
line of research, Baldini Soares et al. (2019) in-
clude markers into the learning inputs for the task
of relation classification and Boualili et al. (2020)
into an information retrieval model. In both cases,
the tokens allow the model to carefully identify the
targets and to make an informed prediction. Be-
sides these works, we are not aware of any other
text-based tasks that have been tackled with this
kind of information included into the models. To
cover this gap, we propose to use markers to deal
with target sense verification task.

The remainder of this paper presents a brief back-
ground knowledge in Section 2. Details of our strat-
egy, including input modification and prediction
mixing is presented in Section 3. Then, unoffi-
cial and official results are presented in Section 4.
Finally, conclusions are drawn in Section 5.

2 Background

NLP research has recently been boosted by new
ways to use neural networks. Two main groups
of neural networks can be distinguished2 on NLP
based on the training model and feature modifica-
tion.

• First, classical neural networks usually use
pre-trained embeddings as input and mod-
els learn their own weights during training
time. Those weights are calculated directly
on the target task and integration of new fea-
tures or resources is intuitive. As an example,
please refer to the Figure 1(a) which depicts
the model from Zeng et al. (2014) for rela-
tion classification. Note that this model uses

2We are aware that our classification is arguable. Although
this is not an established classification in the field, it seems
important for us to make a difference between them as this
work tries to introduce well-established concepts from the first
group into the second one.

1

(a)

(b)

(c)

Figure 1: Representation examples for the relation classification problem proposed by Zeng et al. (2014) (a) and
Baldini Soares et al. (2019) (b and c).

the positional features (PF in the figure) that
enrich the word embeddings (WF in the fig-
ure) to better represent the target words in the
sentence. In this first group, models tend to
use few parameters because embeddings are
not fine-tuned. This characteristic does not
dramatically impact the model performances.

• The second group of models deals with neu-
ral language models3 such as BERT (Devlin
et al., 2018). The main difference, w.r.t. the
first group, is that the weights of the models
are not calculated during the training step of
the target task. Instead, they are pre-calculated
in an elegant but expensive fashion by using
generic tasks that deal with strong initialised
models. Then, these models are fine-tuned to
adapt their weights to the target task.4 Fig-
ure 1(b) depicts the model from Devlin et al.
(2018) for the sentence classification based on
BERT. Within the context of neural language
models, adding extra features like PF demands
re-train of the full model, which is highly ex-
pensive and eventually prohibitive. Similarly,
re-train is needed if one opt for adding ex-
ternal information as made for recent works
such as KNOW+E+E (Peters et al., 2019) or
SenseBERT (Levine et al., 2019).

We propose an alternative to mix the best of both
worlds by including extra tokens into the input in

3Some subcategories may exist.
4We can image a combination of both, but models that use

BERT as embeddings and do not fine-tune BERT weights may
be classified in the first group.

order to improve prediction without re-training it.
To do so, we base our strategy on the introduc-
tion of signals to the neural language models as
depicted in Figure 1(c) and done by Baldini Soares
et al. (2019). Note that in this case the input is
modified by introducing extra tokens ([E1], [/E1],
[E2], and [/E2] are added based on target words
(Baldini Soares et al., 2019)) that help the system
to point out the target words. In this work, we mark
the target word by modifying the sentence in order
to improve performance of BERT for the task of
target sense verification.

3 Target Sense Verification

3.1 Problem definition

Given a first sentence with a known target word, a
second sentence with a definition, and a set of hy-
pernyms, the target sense verification task consists
in defining whether or not the target word in the
first sentence corresponds to the definition or/and
the set of hypernyms. Note that two sub-problems
may be set if only the second sentence or the hyper-
nyms are used. These sub-problems are presented
as sub-tasks in the WiC-TSV challenge.

3.2 CTLR method

We implemented a target sense verification sys-
tem as a simplified version5 of the architecture
proposed by Baldini Soares et al. (2019), namely
BERTEM . It is based on BERT (Devlin et al.,
2018), where an extra layer is added to make the

5We used the EntityMarkers[CLS] version.

2

classification of the sentence representation, i.e.
classification is performed using as input the [CLS]
token. As reported by Baldini Soares et al. (2019),
an important component is the use of mark symbols
to identify the entities to classify. In our case, we
mark the target word in its context to let the system
know where to focus on.

3.3 Pointing-out the target words

Learning the similarities between a couple of sen-
tences (sub-task 1) can easily be addressed with
BERT-based models by concatenating the two in-
puts one after the other one as presented in Equa-
tion 1, where S1 and S2 are two sentences given
as inputs, t1i (i = 1..n) are the tokens in S1, and
t2j (j = 1..m) are the tokens in S2. In this case,
the model must learn to discriminate the correct
definition and also to which of the words in S1 the
definition relates to.

input(S1, S2) =

[CLS] t11 t12 ... t1n

[SEP] t21 t22 ... t2m

(1)

To avoid the extra effort by the model to evi-
dence the target word, we propose to introduce this
information into the learning input. Thus, we mark
the target word in St by using a special token be-
fore and after the target word6. The input used
when two sentences are compared is presented in
Equation 2. St is the first sentence with the target
word ti, Sd is the definition sentence, and tkx are
their respective tokens.

inputsp1(St, Sd) =

[CLS] tt1 tt2 ... $ tti $... ttn

[SEP] td1 td2 ... tdm

(2)

In the case of hypernyms (sub-task 2), the input
on the left side is kept as in Equation 2, but the
right side includes the tagging of each hypernym
as presented in Equation 3.

inputsp2(St, Sh) =

[CLS] tt1 tt2 ... $ tti $... ttn

[SEP] sh1 $ sh2 $... $ shl

(3)

3.4 Verifying the senses

We trained two separated models, one for each sub-
problem using the architecture defined in Section
3.2. The output predictions of both models are

6We used ‘$’ but any other special token may be used.

used to solve the two-tasks problem. So, our over-
all prediction for the main problem is calculated
by combining both prediction scores. First, we nor-
malise the scores by applying a softmax function
to each model output, and then we select the pre-
diction with the maximum probability as shown in
Equation 5.

pred(x) =

1, if msp1
1 (x) +msp2

1 (x)

> msp1
0 (x) +msp2

0 (x).

0, otherwise.

(4)

where
mspk

i =
exp(pspki)

�
j={0,1} exp(p

spk
j)

(5)

and pspki is the prediction value for the model k for
the class i (mspk

i).

4 Experiments and Results

4.1 Data Sets

The data set was manually created by the task or-
ganisers and some basic statistics are presented
in Table 1. Detailed information can be found in
the task description paper (Breit et al., 2020). No
extra-annotated data was used for training.

train development test

Positive 1206 198 -

Negative 931 191 -

Total 2137 389 1324

Table 1: WiC-TSV data set examples per class. Posi-
tive examples are identified as ‘T’ and negative as ‘F’
in the data set.

4.2 Implementation details

We implemented BERTEM of Baldini Soares et al.
(2019) using the huggingface library (Wolf et al.,
2019), and trained two models with each training
set. We selected the model with best performance
on the development set. Parameters were fixed as
follows: 20 was used as maximum epochs, Cross
Entropy as loss function, Adam as optimiser, bert-
base-uncased7 as pre-trained model, and other pa-
rameters were assigned following the library rec-
ommendations (Wolf et al., 2019). The final layer
is composed of two neurons (negative or positive).

7https://github.com/google-research/bert

3

Figure 2: Confusion matrices for different position groups. Group 1 (resp. 2, 3, and 4) includes all sentences for
which the target word appears in the first (resp. second, third, and fourth) quarter of the sentence.

4.3 Results

As the test labels are not publicly available, our
following analysis is performed exclusively on the
development set. Results on the test set were calcu-
lated by the task organisers.

We analyse confusion matrices depending on
the position of the target word in the sentence as
our strategy is based on marking the target word.
These matrices are presented in Figure 2. The con-
fusion matrix labelled as position group 1 shows
our results when the target word is in the first 25%
positions of the St sentence. Other matrices show
the results of the remaining parts of the sentence
(second, third, and fourth 25%, for respectively
group 2, 3, and 4).

Confusion matrices show that the easiest cases
are when the target word is located in the first 25%.
Other parts are harder mainly because the system
considers positive examples as negatives (high false
negative rate). However, the system behaves cor-
rectly for negative examples independently of the
position of the target word. To better understand
this wrong classification of the positive examples,
we calculated the true label distribution depend-
ing on the normalised prediction score as in Figure
3. Note that positive examples are mainly located
on the right side but a bulk of them are located
around the middle of the figure. It means that mod-
els msp1 and msp2 where in conflict and average
results were slightly better for the negative class. In
the development set, it seems important to correctly
define a threshold strategy to better define which
examples are marked as positive.

In our experiments, we implicitly used 0.5 as
threshold8 to define either the example belongs to
the ‘T’ or ‘F’ class. When comparing Figures 3
and 4, we can clearly see that small changes in the
threshold parameter would affect our results with

8Because of the condition msp1
1 (x) + msp2

1 (x) >

msp1
0 (x) +msp2

0 (x).

Figure 3: Histograms of predicted values in the dev set.

a larger impact in recall than in precision. This
is mainly given to the fact that our two models
contradict for some examples.

Figure 4: Precision/Recall curve for the development
set for different threshold values.

We also considered the class distribution depend-
ing on a normalised distance between the target
token and the beginning of the sentence. From Fig-
ure 5, we observe that both classes are less frequent
at the beginning of the sentence with negative ex-
amples slightly less frequent than positive ones. It
is interesting to remark that negative examples uni-
formly distribute after the first bin. On the contrary,
the positive examples have a more unpredictable
distribution indicating that a strategy based on only
positions may fail. However, our strategy that com-
bines markers to indicate the target word and a

4

Global WordNet/Wiktionary Cocktails Medical entities Computer Science

Run User Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

run2 CTLR (ours) 78,3 78,9 78,0 78,5 72,1 75,8 70,7 73,2 87,5 82,4 90,3 86,2 85,9 86,7 85,8 86,3 83,3 78,4 88,5 83,1

szte begab 66,9 61,6 92,5 73,9 70,2 66,5 89,6 76,4 55,1 48,9 96,8 65,0 65,4 60,5 95,3 74,0 70,2 61,3 97,4 75,2

szte2 begab 66,3 61,1 92,8 73,7 69,9 66,2 90,2 76,3 53,7 48,1 96,8 64,3 64,4 59,8 95,3 73,5 69,6 60,8 97,4 74,9

BERT - 76,6 74,1 82,8 78,2 73,5 76,1 74,2 75,1 79,2 67,8 98,2 80,2 79,8 75,8 89,6 82,1 82,1 73,0 97,9 83,6

FastText - 53,4 52,8 79,4 63,4 57,1 58,0 74,0 65,0 43,1 43,1 100,0 60,2 51,1 51,5 90,3 65,6 54,0 50,5 67,1 57,3

Baseline (true) 50,8 50,8 100,0 67,3 53,8 53,8 100,0 70,0 43,1 43,1 100,0 60,2 51,7 51,7 100,0 68,2 46,4 46,4 100,0 63,4

Human 85,3 80,2 96,2 87,4 82,1 92,0 89,1 86,5

Table 2: Accuracy, Precision, Recall and F1 results of participants and baselines. Results where split by type.
General results are included in column ‘Global’. All results were calculated by the task organisers (Breit et al.,
2020) as participants have not access to test labels. Best performance for each global metric is marked in bold for
automatic systems.

strong neural language model (BERT) successfully
manage to classify the examples.

Figure 5: Position distribution based on the target token
distances.

Finally, the main results calculated by the organ-
isers are presented in Table 2. The global column
presents the results for the global task, including
definitions and hypernyms. Our submission is iden-
tified as run2-CTLR. In the global results, our strat-
egy outperforms participants and baselines in terms
of Accuracy, Precision, and F1. Best Recall perfor-
mance is unsurprisingly obtained by the baseline
(true) that corresponds to a system that predicts all
examples as positives. Two strong baselines are
included, FastText and BERT. Both baselines were
calculated by the organisers with more details in
(Breit et al., 2020). It is interesting to remark that
the baseline BERT is very similar to our model
but without the marked information. However, our
model focuses more on improving Precision than
Recall resulting with a clear improvement in terms
of Accuracy but less important in terms of F1.

Organisers also provide results grouped by dif-
ferent types of examples. They included four types
with three of them from domains that were not
included in the training set9. From Table 2, we
can also conclude that our system is able to adapt

9More details in (Breit et al., 2020).

to out-of-domain topics as it is clearly shown for
the Cocktails type in terms of F1, and also for the
Medical entities type to a less extent. However,
our system fails to provide better results than the
standard BERT in terms of F1 for the Computer Sci-
ence type. But, in terms of Accuracy, our strategy
outperforms for a large margin the out-of-domain
types (8.3, 6.1, and 1.2 improvements in absolute
points for Cocktails, Medical entities, and Com-
puter Science respectively). Surprisingly, it fails on
both, F1 and Accuracy, for WordNet/Wiktionary.

5 Conclusion

This paper describes our participation in the WiC-
TSV task. We proposed a simple but effective strat-
egy for target sense verification. Our system is
based on BERT and introduces markers around the
target words to better drive the learned model. Our
results are strong over an unseen collection used
to verify senses. Indeed, our method (Acc=78, 3)
outperforms other participants (second best par-
ticipant, Acc=66, 9) and strong baselines (BERT,
Acc=76, 6) when compared in terms of Accuracy,
the official metric. This margin is even larger when
the results are compared for the out-of-domain ex-
amples of the test collection. Thus, the results
suggest that the extra information provided to the
BERT model through the markers clearly boost
performance.

As future work, we plan to complete the evalua-
tion of our system with the WiC dataset (Pilehvar
and Camacho-Collados, 2019) as well as the in-
tegration of the model into a recent multi-lingual
entity linking system (Linhares Pontes et al., 2020)
by marking the anchor texts.

5

Acknowledgements

This work has been partly supported by the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme under grant 825153 (EMBED-
DIA).

References
Livio Baldini Soares, Nicholas FitzGerald, Jeffrey

Ling, and Tom Kwiatkowski. 2019. Matching the
Blanks: Distributional Similarity for Relation Learn-
ing. In ACL. 2895–2905.

Lila Boualili, Jose G. Moreno, and Mohand
Boughanem. 2020. MarkedBERT: Integrating
Traditional IR Cues in Pre-Trained Language
Models for Passage Retrieval. In Proceedings of
the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR ’20). Association for Computing Machinery,
1977–1980.

Anna Breit, Artem Revenko, Kiamehr Rezaee, Moham-
mad Taher Pilehvar, and Jose Camacho-Collados.
2020. WiC-TSV: An Evaluation Benchmark for
Target Sense Verification of Words in Context.
arXiv:2004.15016 (2020).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv:1810.04805 (2018).

Yoav Levine, Barak Lenz, Or Dagan, Dan Padnos,
Or Sharir, Shai Shalev-Shwartz, Amnon Shashua,
and Yoav Shoham. 2019. Sensebert: Driving some
Sense into Bert. arXiv:1908.05646 (2019).

Elvys Linhares Pontes, Jose G. Moreno, and Antoine
Doucet. 2020. Linking Named Entities across Lan-
guages Using Multilingual Word Embeddings. In
Proceedings of the ACM/IEEE Joint Conference on
Digital Libraries in 2020 (JCDL ’20). Association
for Computing Machinery, 329–332.

Matthew E. Peters, Mark Neumann, Robert L. Lo-
gan, Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A. Smith. 2019. Knowledge Enhanced Con-
textual Word Representations. In EMNLP. 43–54.

Mohammad Taher Pilehvar and Jose Camacho-
Collados. 2019. WiC: the Word-in-Context Dataset
for Evaluating Context-Sensitive Meaning Represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). 1267–
1273.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-

formers: State-of-the-art Natural Language Process-
ing. arXiv:1910.03771 (2019).

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via
convolutional deep neural network. In Proceedings
of COLING 2014, the 25th International Confer-
ence on Computational Linguistics: Technical Pa-
pers. 2335–2344.

6

Word Sense Disambiguation with Transformer Models

Pierre-Yves Vandenbussche
Elsevier Labs
Radarweg 29,

Amsterdam 1043 NX,
Netherlands

p.vandenbussche@elsevier.com

Tony Scerri
Elsevier Labs

1 Appold Street,
London EC2A 2UT, UK

a.scerri@elsevier.com

Ron Daniel Jr.
Elsevier Labs

230 Park Avenue,
New York, NY, 10169,

USA
r.daniel@elsevier.com

Abstract

In this paper, we tackle the task of Word
Sense Disambiguation (WSD). We present our
system submitted to the Word-in-Context Tar-
get Sense Verification challenge, part of the
SemDeep workshop at IJCAI 2020 (Breit et al.,
2020). That challenge asks participants to pre-
dict if a specific mention of a word in a text
matches a pre-defined sense. Our approach
uses pre-trained transformer models such as
BERT that are fine-tuned on the task using
different architecture strategies. Our model
achieves the best accuracy and precision on
Subtask 1 – make use of definitions for decid-
ing whether the target word in context corre-
sponds to the given sense or not. We believe
the strategies we explored in the context of this
challenge can be useful to other Natural Lan-
guage Processing tasks.

1 Introduction

Word Sense Disambiguation (WSD) is a fundamen-
tal and long-standing problem in Natural Language
Processing (NLP) (Navigli, 2009). It aims at clearly
identifying which specific sense of a word is being
used in a text. As illustrated in Table 1, in the sen-
tence I spent my spring holidays in Morocco., the
word spring is used in the sense of the season of
growth, and not in other senses involving coils of
metal, sources of water, the act of jumping, etc.

The Word-in-Context Target Sense Verification
challenge (WiC-TSV) (Breit et al., 2020) structures
WSD tasks in particular ways in order to make the
competition feasible. In Subtask 1, the system is
provided with a sentence, also known as the context,
the target word, and a definition also known as
word sense. The system is to decide if the use
of the target word matches the sense given by the
definition. Note that Table 1 contains a Hypernym
column. In Subtask 2 system is to decide if the
use of the target in the context is a hyponym of the

given hypernym. In Subtask 3 the system can use
both the sentence and the hypernym in making the
decision.

The dataset provided with the WiC-TSV chal-
lenge has relatively few sense annotated examples
(< 4, 000) and with a single target sense per word.
This makes pre-trained Transformer models well
suited for the task since the small amount of data
would limit the learning ability of a typical super-
vised model trained from scratch.

Thanks to the recent advances made in language
models such as BERT (Devlin et al., 2018) or XL-
Net (Yang et al., 2019) trained on large corpora,
neural language models have established the state-
of-the-art in many NLP tasks. Their ability to cap-
ture context-sensitive semantic information from
text would seem to make them particularly well
suited for this challenge. In this paper, we ex-
plore different fine-tuning architecture strategies
to answer the challenge. Beyond the results of
our system, our main contribution comes from the
intuition and implementation around this set of
strategies that can be applied to other NLP tasks.

2 Data Analysis

The Word-in-Context Target Sense Verification
dataset consists of more than 3800 rows. As shown
in Table 1, each row contains a target word, a con-
text sentence containing the target, and both hyper-
nym(s) and a definition giving a sense of the term.
There are both positive and negative examples, the
dataset provides a label to distinguish them.

Table 2 shows some statistics about the train-
ing, dev, and test splits within the dataset. Note
the substantial differences between the test set and
the training and dev sets. The longer length of
the context sentences and definitions in the test set
may have an impact on a model trained solely on
the given training and dev sets. This is a known

7

Target Word Pos. Sentence Hypernyms Definition Label
spring 3 I spent my spring holidays in Mo-

rocco .
season,
time of year

the season of growth T

integrity 1 the integrity of the nervous system
is required for normal developments

honesty, hon-
estness

moral soundness F

Table 1: Examples of training data.

issue whose roots are explained in the dataset au-
thor’s paper (Breit et al., 2020). The training and
development sets come from WordNet and Wik-
tionary while the test set incorporates both gen-
eral purpose sources WordNet and Wiktionary, and
domain-specific examples from Cocktails, Medical
Subjects and Computer Science. The difference in
the distributions of the test set from the training
and dev sets, the short length of the definitions and
hypernyms, and the relatively small number of ex-
amples all combine to provide a good challenge for
the language models.

3 System Description and Related Work

Word Sense Disambiguation is a long-standing task
in NLP because of its difficulty and subtlety. One
way the WiC-TSV challenge has simplified the
problem is by reducing it to a binary yes/no deci-
sion over a single sense for a single pre-identified
target. This is in contrast to most prior work that
provides a pre-defined sense inventory, typically
WordNet, and requires the system to both identify
the terms and find the best matching sense from
the inventory. WordNet provides extremely fine-
grained senses which have been shown to be dif-
ficult for humans to accurately select (Hovy et al.,
2006). Coupled with this is the task of even select-
ing the term in the presence of multi-word expres-
sions and negations.

Since the introduction of the transformer self-
attention-based neural architecture and its ability to
capture complex linguistic knowledge (Vaswani
et al., 2017), their use in resolving WSD has
received considerable attention (Loureiro et al.,
2020). A common approach consists in fine-tuning
a single pre-trained transformer model to the WSD
downstream task. The pre-trained model is pro-
vided with the task-specific inputs and further
trained for several epochs with the task’s objective
and negative examples of the objective.

Our system is inspired from the work of Huang
et al. (2019) where the WSD task can be seen as a
binary classification problem. The system is given
the target word in context (input sentence) and one

Figure 1: System overview

sense of the word separated by a special token
([SEP]). This configuration was originally used
to predict whether two sentences follow each other
in a text. But the learning power of the transformer
architecture lets us learn this new task by simply
changing the meaning of the fields in the input
data while keeping the structure the same. We add
a fully connected layer on top of the transformer
model’s layers with classification function to pre-
dict whether the target word in context matches
the definition. This approach is particularly well
suited for weak supervision and can generalise to
word/sense pairs not previously seen in the training
set. This overcomes the limitation of multi-class
objective models, e.g. (Vial et al., 2019) that use
a predefined sense inventory (as described above)
and can’t generalise to unseen word/sense pairs. An
illustration of our system is provided in Figure 1.

4 Experiments and Results

The system described in the previous section was
adapted in several ways as we tested alternatives.
We first considered different transformer models,
such as BERT v. XLNet. We then concentrated
our efforts on one transformer model, BERT-base-
uncased, and performed other experiments to im-
prove performance.

All experiments were run five times with differ-

8

Train Set Dev Set Test Set
Number Examples 2,137 389 1,305
Avg. Sentence Char Length 44 ± 27 44 ± 26 99 ± 87
Avg. Sentence Word Length 9 ± 5 9 ± 5 19 ± 16
Avg. Term Use 2.5 ± 2.7 1.0 ± 0.2 1.9 ± 4.4
Avg. Number Hypernyms 2.2 ± 1.5 2.2 ± 1.4 1.9 ± 1.3
Percentage of True Label 56% 51% NA
Avg. Definition Char Length 54 ± 27 56 ± 27 157 ± 151
Avg. Definition Word Length 9.3 ± 4.7 9.6 ± 4.7 25.3 ± 23.9

Table 2: Dataset statistics. Values with ± are mean and SD

Model Accuracy F1
XLNet-base-cased .522 ± .030 .666 ± .020
DistilBERT-base-uncased .612 ± .017 .665 ± .017
RoBERTa-base .635 ± .074 .717 ± .030
BERT-base-uncased .723 ± .023 .751 ± .023

Table 3: Comparison of transformer models perfor-
mance (lr=5e−5; 3 epochs)

ent random seeds. We report the mean and standard
deviation of the system’s performance on the met-
rics of accuracy and F1. We believe this is more
informative than a single ’best’ number. All mod-
els in these experiments are trained on the training
set and evaluated on the dev set.

In addition to the experiments whose results are
reported here, we tried a variety of other things
such as pooling methods (layers, ops), a Siamese
network with shared encoders for two input sen-
tences, and alternative loss calculations. None of
them gave better results in the time available.

4.1 Alternative Transformer Models

We compared the following pre-trained transformer
models from the HuggingFace transformers li-
brary: XLNet (Yang et al., 2019), BERT (De-
vlin et al., 2018), and derived models including
RoBERTa (Liu et al., 2019) or DistilBERT (Sanh
et al., 2019).

Following standard practice, those pretrained
models were used as feature detectors for a fine-
tuning pass using the fully-connected head layer.
The results for those models are given in Table 3.
The BERT-base-uncased model performed the best
so it was the basis for further experiments described
in the next section.

It is worth mentioning that no attempt was made
to perform a hyperparameter optimization for each
model. Instead, a single set of hyperparameters
was used for all the models being compared.

Model Accuracy F1
BERT-base-uncased .723 ± .023 .751 ± .023
+mask .699 ± .011 .748 ± .009
+target emph .725 ± .013 .752 ± .012
+mean-pooling .737 ± .017 .762 ± .015
+freezing .734 ± .008 .761 ± .010
+data augment. .749 ± .009 .752 ± .011
+hypernyms .726 ± .012 .755 ± .011

Table 4: Influence of strategies on model performance.
We note in bold those that had a positive impact on the
performance

4.2 Alternative BERT Strategies

Having selected the BERT-base-uncased pretrained
transformer model, and staying with a single set of
hyperparameters (learning rate = 5e−5 and 3 train-
ing epochs), there are still many different strategies
that could be used to try to improve performance.
The individual strategies are discussed below. The
results for all the strategies are presented in Table 4

4.2.1 Masking the target word
We wondered if the context of the target word was
sufficient for the model to predict whether the defi-
nition is correct. By masking the target word from
the input sentence, we test the ability of the model
to learn solely from the contextual words. We
hoped this might improve its generalisation. Mask-
ing led to a small decrease in performance. This
small delta indicates that the non-target words in
the context have strong influence on the model’s
prediction of the correct sense.

4.2.2 Emphasising the word of interest
We wondered about the impact of taking the op-
posite tack and calling out the target word. As
illustrated in Figure 1, some transformer models
make use of token type ids (segment token indices)
to indicate the first and second portion of the inputs.

9

We set the token(s) type of the target word in the
input sentence to match that of the definition. Ap-
plying this strategy leads to a slight improvement
in accuracy.

4.2.3 CLS vs. pooling over token sequence
The community has developed several common
ways to select the input for the head binary classi-
fication layer. We compare the performance using
the dedicated [CLS] token vector v. mean/max-
pooling methods applied to the sequence hidden
states of selected layers of the transformer model.
Applying mean-pooling to the last layer gave the
best accuracy and F1 of the configurations tested.

4.2.4 Weight Training vs. Freeze-then-Thaw
Another strategy centers on whether, and how, to
update the pre-trained model parameters during
fine-tuning, in addition to the training of the newly
initialized fully connected head layer. Updating
the pre-trained model would allow it to specialize
on our downstream task but might lead to “catas-
trophic forgetting” where we destroy the benefit of
the pre-trained model. One strategy the commu-
nity has evolved (Bevilacqua and Navigli, 2020)
first freezes the transformer model’s parameters
for several epochs while the head layer receives
the updates. Later the pre-trained parameters are
unfrozen and updated too. This strategy provides
some improvements in accuracy and F1.

4.2.5 Data augmentation
Due to the small size of the training dataset, we
experimented with data augmentation techniques
while using only the data provided for the chal-
lenge. For each word in context/target sense pair,
we generated:

• one positive example by replacing the target
word with a random hypernym, if any exist.

• one negative example by associating the target
word to a random definition.

This strategy triples the size of the training dataset.
This strategy gave the greatest improvement (3.6%)
of all those tested. Further work could test the
effect of more negative examples.

4.2.6 Using Hypernyms (Subtask 3)
For the WiC-TSV challenge’s Subtask 3 , the sys-
tem can use the additional information of hyper-
nyms of the target word. We simply concatenate
the hypernyms to the definition. This strategy leads

Model Acc. Prec. Recall F1
Baseline (BERT) .753 .717 .849 .777
Run1 .775 .804 .736 .769
Run2 .778 .819 .722 .768

Table 5: Model’s Results on the Subtask 1 of the WiC-
TSV challenge

to a slight performance improvement, presumably
because the hypernym indirectly emphasizes the
intended sense of the target word.

5 Challenge Submission

The challenge allowed each participant to submit
two results per task. However there was no clear
winner from the strategies above; most led to a
minimal improvement with a substantial standard
deviation. We therefore selected our system for
submitted results by a grid search over common hy-
perparameter values including the strategies men-
tioned previously. We use the train set for training
and dev set to measure the performance of each
model in the grid search. We chose accuracy as the
main evaluation metric. For Subtask 1 we opted
for the following parameters:

• Run1: BERT-base-uncased model trained for
3 epochs using the augmented dataset, with
a learning rate of 7e−6 and emphasising the
word of interest. Other parameters include:
max sequence length of 256; train batch size
of 32.

• Run2: we kept the parameters from the previ-
ous run, updating the learning rate to 1e−5.

The results on the private test set of the Subtask 1
are presented in Table 5. The Run2 of our system
demonstrated a 3.3% accuracy and 14.2% precision
improvements compared to the baseline.

For Subtask 3 we arrived at the following param-
eters:

• Run1: BERT-base-uncased model trained for
3 epochs using the original dataset, with a
learning rate of 1e−5. Other parameters in-
clude: max sequence length of 256; train
batch size of 32.

• Run2: we kept the parameters from the pre-
vious run, extending the number of training
epochs to 5.

10

Model Acc. Prec. Recall F1
Baseline (BERT) .766 .741 .828 .782
Run1 .694 .643 .893 .747
Run2 .719 .669 .885 .762

Table 6: Model’s Results on the Subtask 3 of the WiC-
TSV challenge

0.
25 0.
5

0.
75 1 3

0.6

0.65

0.7

0.75

Percentage of training data

M
et

ri
c

va
lu

e

F1
Accuracy

Figure 2: Influence of training data size on model per-
formance. We used the augmented dataset to reach a
proportion of 3. Parameters from Subtask 1 Run2 were
used for this comparison.

The results on the private test set of the SubTask 3
are presented in Table 6. Compared to using the
sentence and definition alone, our naive approach
to handling hypernyms hurt performance.

6 Discussion and Future Work

We applied transformer models to tackle a Word
Sense Disambiguation challenge. As in much of
the current NLP research, pre-trained transformer
models demonstrated a good ability to learn from
few examples with high accuracy. Using differ-
ent architecture modifications, and in particular the
use of the token type id to flag the word of inter-
est along with automatically augmented data, our
system demonstrated the best accuracy and preci-
sion in the competition and third-best F1. There is
still a noticeable gap to human performance on this
dataset (85.3 acc.), but the level of effort required
to create these kinds of systems is easily within
reach of small groups or individuals. Despite the
test set having a very different distribution than
the training/development sets, our system demon-
strated similar performance on both the develop-
ment and test sets.

An analysis of the errors produced by our best
performing model on the dev set (Subtask 1, Run2)
is presented in Table 7. It shows a mix of obvi-
ous errors and more ambiguous ones where it has
been difficult for the model to draw conclusions

from the limited context provided by the sentence.
For instance, the short sentence it’s my go could
very well correspond to the associated definition a
usually brief attempt of the target word go.

As motivated by the construction of an aug-
mented dataset, we believe that increasing the size
of the training dataset would probably lead to im-
proved performance, even without system changes.
To test this hypothesis we measured the perfor-
mance of our best model with increasing fractions
of the training data. The results in Figure 2 show
improvement as the fraction of the training dataset
grows.

As a counterbalance to the positive note above,
we must note that this challenge set up WSD as
a binary classification problem. This is a consid-
erable simplification from the more general sense
inventory approach. Further work will be needed
to obtain similar accuracy in that regime.

References
Michele Bevilacqua and Roberto Navigli. 2020. Break-

ing through the 80% glass ceiling: Raising the state
of the art in word sense disambiguation by incor-
porating knowledge graph information. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2854–2864.

Anna Breit, Artem Revenko, Kiamehr Rezaee, Moham-
mad Taher Pilehvar, and Jose Camacho-Collados.
2020. Wic-tsv: An evaluation benchmark for tar-
get sense verification of words in context. arXiv
preprint, arXiv:2004.15016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

E. Hovy, M. Marcus, Martha Palmer, L. Ramshaw, and
R. Weischedel. 2006. Ontonotes: The 90 In HLT-
NAACL.

Luyao Huang, Chi Sun, Xipeng Qiu, and Xuanjing
Huang. 2019. Glossbert: Bert for word sense dis-
ambiguation with gloss knowledge. arXiv preprint
arXiv:1908.07245.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Daniel Loureiro, Kiamehr Rezaee, Mohammad Taher
Pilehvar, and Jose Camacho-Collados. 2020. Lan-
guage models and word sense disambiguation:
An overview and analysis. arXiv preprint
arXiv:2008.11608.

11

Target Word Pos. Sentence Definition Label Pred
criticism 4 the senator received severe criticism

from his opponent
a serious examination and judgment of
something

F T

go 3 it ’s my go a usually brief attempt F T
reappearance 1 the reappearance of Halley ’s comet the act of someone appearing again F T
continent 5 pioneers had to cross the continent

on foot
one of the large landmasses of the earth T F

rail 4 he was concerned with rail safety short for railway T F

Table 7: Examples of errors in the development set for the model used in Subtask 1 Run2.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):1–
69.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Loı̈c Vial, Benjamin Lecouteux, and Didier Schwab.
2019. Sense vocabulary compression through the se-
mantic knowledge of wordnet for neural word sense
disambiguation. arXiv preprint arXiv:1905.05677.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

12

Embeddings for the Lexicon: Modelling and Representation

Christian Chiarcos1 Thierry Declerck2 Maxim Ionov1

1 Applied Computational Linguistics Lab, Goethe University, Frankfurt am Main, Germany
2 DFKI GmbH, Multilinguality and Language Technology, Saarbrücken, Germany

{chiarcos,ionov}@informatik.uni-frankfurt.de
declerck@dfki.de

Abstract

In this paper, we propose an RDF model for
representing embeddings for elements in lex-
ical knowledge graphs (e.g. words and con-
cepts), harmonizing two major paradigms in
computational semantics on the level of rep-
resentation, i.e., distributional semantics (us-
ing numerical vector representations), and lex-
ical semantics (employing lexical knowledge
graphs). Our model is a part of a larger ef-
fort to extend a community standard for rep-
resenting lexical resources, OntoLex-Lemon,
with the means to connect it to corpus data. By
allowing a conjoint modelling of embeddings
and lexical knowledge graphs as its part, we
hope to contribute to the further consolidation
of the field, its methodologies and the accessi-
bility of the respective resources.

1 Background

With the rise of word and concept embeddings,
lexical units at all levels of granularity have been
subject to various approaches to embed them into
numerical feature spaces, giving rise to a myriad
of datasets with pre-trained embeddings generated
with different algorithms that can be freely used
in various NLP applications. With this paper, we
present the current state of an effort to connect
these embeddings with lexical knowledge graphs.

This effort is a part of an extension of a widely
used community standard for representing, link-
ing and publishing lexical resources on the web,
OntoLex-Lemon1. Our work aims to complement
the emerging OntoLex module for representing
Frequency, Attestation and Corpus Information
(FrAC) which is currently being developed by the
W3C Community Group “Ontology-Lexica”, as
presented in [4]. There we addressed only fre-
quency and attestations, whereas core aspects of
corpus-based information such as embeddings were

1https://www.w3.org/2016/05/ontolex/

identified as a topic for future developments. Here,
we describe possible use-cases for the latter and
present our current model for this.

2 Sharing Embeddings on the Web

Although word embeddings are often calculated on
the fly, the community recognizes the importance
of pre-trained embeddings as these are readily avail-
able (it saves time), and cover large quantities of
text (their replication would be energy- and time-
intense). Finally, a benefit of re-using embeddings
is that they can be grounded in a well-defined, and,
possibly, shared feature space, whereas locally built
embeddings (whose creation involves an element
of randomness) would reside in an isolate feature
space. This is particularly important in the context
of multilingual applications, where collections of
embeddings are in a single feature space (e.g., in
MUSE [6]).

Sharing embeddings, especially if calculated
over a large amount of data, is not only an econom-
ical and ecological requirement, but unavoidable in
many cases. For these, we suggest to apply estab-
lished web standards to provide metadata about the
lexical component of such data. We are not aware
of any provider of pre-trained word embeddings
which come with machine-readable metadata. One
such example is language information: while ISO-
639 codes are sometimes being used for this pur-
pose, they are not given in a machine-readable way,
but rather documented in human-readable form or
given implicitly as part of file names.2

2.1 Concept Embeddings
It is to be noted, however, that our focus is not
so much on word embeddings, since lexical infor-
mation in this context is apparently trivial – plain

2See the ISO-639-1 code ‘en’ in FastText/MUSE files such
as https://dl.fbaipublicfiles.com/arrival/
vectors/wiki.multi.en.vec.

13

tokens without any lexical information do not seem
to require a structured approach to lexical seman-
tics. This changes drastically for embeddings of
more abstract lexical entities, e.g., word senses or
concepts [17], that need to be synchronized be-
tween the embedding store and the lexical knowl-
edge graph by which they are defined. WordNet
[14] synset identifiers are a notorious example for
the instability of concepts between different ver-
sions: Synset 00019837-a means ‘incapable of
being put up with’ in WordNet 1.71, but ‘estab-
lished by authority’ in version 2.1. In WordNet
3.0, the first synset has the ID 02435671-a, the
second 00179035-s.3

The precompiled synset embeddings provided
with AutoExtend [17] illustrate the consequences:
The synset IDs seem to refer to WordNet 2.1
(wn-2.1-00001742-n), but use an ad hoc no-
tation and are not in a machine-readable format.
More importantly, however, there is no synset
00001742-n in Princeton WordNet 2.1. This
does exist in Princeton WordNet 1.71, and in fact,
it seems that the authors actually used this edition
instead of the version 2.1 they refer to in their pa-
per. Machine-readable metadata would not prevent
such mistakes, but it would facilitate their verifia-
bility. Given the current conventions in the field,
such mistakes will very likely go unnoticed, thus
leading to highly unexpected results in applications
developed on this basis. Our suggestion here is
to use resolvable URIs as concept identifiers, and
if they provide machine-readable lexical data, lex-
ical information about concept embeddings can
be more easily verified and (this is another applica-
tion) integrated with predictions from distributional
semantics. Indeed, the WordNet community has
adopted OntoLex-Lemon as an RDF-based repre-
sentation schema and developed the Collaborative
Interlingual Index (ILI or CILI) [3] to establish
sense mappings across a large number of WordNets.
Reference to ILI URIs would allow to retrieve the
lexical information behind a particular concept em-
bedding, as the WordNet can be queried for the
lexemes this concept (synset) is associated with. A
versioning mismatch can then be easily spotted by
comparing the cosine distance between the word
embeddings of these lexemes and the embedding
of the concept presumably derived from them.

3See https://github.com/globalwordnet/
ili

2.2 Organizing Contextualized Embeddings

A related challenge is the organization of contex-
tualized embeddings that are not adequately iden-
tified by a string (say, a word form), but only by
that string in a particular context. By providing
a reference vocabulary to organize contextualized
embeddings together with the respective context,
this challenge will be overcome, as well.

As a concrete use case of such information, con-
sider a classical approach to Word Sense Disam-
biguation: The Lesk algorithm [12] uses a bag-of-
words model to assess the similarity of a word in a
given context (to be classified) with example sen-
tences or definitions provided for different senses
of that word in a lexical resource (training data,
provided, for example, by resources such as Word-
Net, thesauri, or conventional dictionaries). The
approach was very influential, although it always
suffered from data sparsity issues, as it relied on
string matches between a very limited collection of
reference words and context words. With distribu-
tional semantics and word embeddings, such spar-
sity issues are easily overcome as literal matches
are no longer required.

Indeed, more recent methods such as BERT al-
low us to induce contextualized word embeddings
[20]. So, given only a single example for a partic-
ular word sense, this would be a basis for a more
informed word sense disambiguation. With more
than one example per word sense, this is becom-
ing a little bit more difficult, as these now need
to be either aggregated into a single sense vector,
or linked to the particular word sense they pertain
to (which will require a set of vectors as a data
structure rather than a vector). For data of the sec-
ond type, we suggest to follow existing models for
representing attestations (glosses, examples) for
lexical entities, and to represent contextualized em-
beddings (together with their context) as properties
of attestations.

3 Addressing the Modelling Challenge

In order to meet these requirements, we propose a
formalism that allows the conjoint publication of
lexical knowledge graphs and embedding stores.
We assume that future approaches to access and
publish embeddings on the web will be largely in
line with high-level methods that abstract from de-
tails of the actual format and provide a conceptual
view on the data set as a whole, as provided, for ex-

14

Figure 1: OntoLex-Lemon core model

ample, by the torchtext package of PyTorch.4

There is no need to limit ourselves to the cur-
rently dominating tabular structure of commonly
used formats to exchange embeddings; access to
(and the complexity of) the actual data will be hid-
den from the user.

A promising framework for the conjoint publi-
cation of embeddings and lexical knowledge graph
is, for example, RDF-HDT [9], a compact binary
serialization of RDF graphs and the literal values
these comprise. We would assume it to be inte-
grated in programming workflows in a way similar
to program-specific binary formats such as Numpy
arrays in pickle [8].

3.1 Modelling Lexical Resources

Formalisms to represent lexical resources are mani-
fold and have been a topic of discussion within the
language resource community for decades, with
standards such as LMF [10], or TEI-Dict [19] de-
signed for the electronic edition and/or search in
individual dictionaries. Lexical data, however, does
not exist in isolation, and synergies can be un-
leashed if information from different dictionaries is
combined, e.g., for bootstrapping new bilingual dic-
tionaries for languages X and Z by using another
language Y and existing dictionaries for X �→ Y
and Y �→ Z as a pivot.

Information integration beyond the level of indi-
vidual dictionaries has thus become an important
concern in the language resource community. One
way to achieve this is to represent this data as a
knowledge graph. The primary community stan-
dard for publishing lexical knowledge graphs on
the web is OntoLex-Lemon [5].

OntoLex-Lemon defines four main classes of
lexical entities, i.e., concepts in a lexical resource:

4https://pytorch.org/text/

(1) LexicalEntry representation of a lexeme in a
lexical knowledge graph, groups together form(s)
and sense(s), resp. concept(s) of a particular expres-
sion; (2) (lexical) Form, written representation(s)
of a particular lexical entry, with (optional) gram-
matical information; (3) LexicalSense word sense
of one particular lexical entry; (4) LexicalConcept
elements of meaning with different lexicalizations,
e.g., WordNet synsets.

As the dominant vocabulary for lexical knowl-
edge graphs on the web of data, the OntoLex-
Lemon model has found wide adaptation beyond
its original focus on ontology lexicalization. In
the WordNet Collaborative Interlingual Index [3]
mentioned before, OntoLex vocabulary is used to
provide a single interlingual identifier for every con-
cept in every WordNet language as well as machine-
readable information about it (including links with
various languages).

To broaden the spectrum of possible usages of
the core model, various extensions have been de-
veloped by the community effort. This includes
the emerging module for frequency, attestation and
corpus-based information, FrAC.

The vocabulary elements introduced with FrAC
cover frequency and attestations, with other as-
pects of corpus-based information described as
prospective developments in our previous work [4].
Notable aspects of corpus information to be cov-
ered in such a module for the purpose of lexico-
graphic applications include contextual similarity,
co-occurrence information and embeddings.

Because of the enormous technical relevance
of the latter in language technology and AI, and
because of the requirements identified above for
the publication of embedding information over the
web, this paper focuses on embeddings,

3.2 OntoLex-FrAC

FrAC aims to (1) extend OntoLex with corpus in-
formation to address challenges in lexicography,
(2) model lexical and distributional-semantic re-
sources (dictionaries, embeddings) as RDF graphs,
(3) provide an abstract model of relevant concepts
in distributional semantics that facilitates applica-
tions that integrate both lexical and distributional
information. Figure 2 illustrates the FrAC concepts
and properties for frequency and attestations (gray)
along with new additions (blue) for embeddings as
a major form of corpus-based information.

Prior to the introduction of embeddings, the

15

Figure 2: OntoLex-FrAC overview: Extensions for em-
beddings highlighted in blue

main classes of FrAC were (1) Observable, any
unit within a lexical resource about which informa-
tion can be found in a corpus, includes all main
classes of OntoLex-Core, lexical forms, lexical en-
tries, lexical senses and concepts; (2) Corpus, a
collection of linguistic data from which empirical
evidence can be derived, including corpora in the
sense as understood in language technology; (3) At-
testation, example for a specific phenomenon, us-
age or form found in a corpus or in the literature;
(4) CorpusFrequency, absolute frequency of a
particular observation in a given corpus.

4 Modelling Embeddings in FrAC

In the context of OntoLex, word embeddings
are to be seen as a feature of individual lexical
forms. However, in many cases, word embed-
dings are not calculated from plain strings, but
from normalized strings, e.g., lemmatized text. For
such data, we model every individual lemma as
an ontolex:LexicalEntry. Moreover, as
argued in Sec. 2, embeddings are equally rele-
vant for lexical senses and lexical concepts; the
embedding property that associates a lexical en-
tity with an embedding is thus applicable to every
Observable.

4.1 Word Embeddings
Pre-trained word embeddings are often distributed
as text files consisting of the label (token) and a se-
quence of whitespace-separated numbers. E.g. the
entry for the word frak from the GloVe embeddings
[15]:

frak 0.015246 -0.30472 0.68107 ...

Since our focus on publishing and sharing embed-
dings, we propose to provide the value of an embed-

ding as a literal rdf:value. If necessary, more
elaborate representations, e.g., using rdf:List,
may subsequently be generated from these literals.

A natural and effort-less modelling choice is
to represent embedding values as string literals
with whitespace-separated numbers. For decod-
ing and verification, such a representation bene-
fits from metadata about the length of the vector.
For a fixed-size vector, this should be provided
by dc:extent. An alternative is an encoding as
JSON list. In order to support both structured and
string literals, FrAC does not restrict the type of
the rdf:value of embeddings.

Lexicalized embeddings should be published
together with their metadata, at least proce-
dure/method (dct:description with free text,
e.g., ”CBOW”, ”SKIP-GRAM”, ”collocation
counts”), data basis (frac:corpus), and dimen-
sionality (dct:extent).

We thus introduce the concept embedding, with
a designated subclass for fixed-size vectors:

Embedding (Class) is a representation of a
given Observable in a numerical feature space.
It is defined by the methodology used for creating
it (dct:description), the URI of the corpus
or language resource from which it was created
(corpus). The literal value of an Embedding is
provided by rdf:value.
Embedding � rdf:value exactly 1 �
corpus exactly 1 � dct:description
min 1

embedding (ObjectProperty) is a relation that
maps an Observable into a numerical feature
space. An embedding is a structure-preserving
mapping in the sense that it encodes and preserves
contextual features of a particular Observable
(or, an aggregation over all its attestations) in a
particular corpus.

FixedSizeVector (Class) is an Embedding
that represents a particular Observable as a list
of numerical values in a k-dimensional feature
space. The property dc:extent defines k.

For the GloVe example, a lemma (lexical entry)
embedding can be represented as follows:
: f r a k a o n t o l e x : L e x i c a l E n t r y ;

o n t o l e x : c a n o n i c a l F o r m /
o n t o l e x : w r i t t e n R e p ” f r a k ”@en ;

f r a c : embedding [
a f r a c : F i x e d S i z e V e c t o r ;

r d f : v a l u e ”0 .015246 . . . ” ;

16

d c t : s o u r c e
<h t t p s : / / c a t a l o g . l d c > ;

d c t : e x t e n t 5 0 ˆ ˆ ˆ xsd : i n t ;
d c t : d e s c r i p t i o n ” GloVe v . 1 . 1 ,

. . . ” @en .] .

4.2 Contextualized Embeddings

Above, we mentioned contextualized embeddings,
and more recent methods such as ELMo [16], Flair
NLP [1], or BERT [7] have been shown to be re-
markably effective at many NLP problems.

In the context of lexical semantics, contextual
embeddings can prove beneficial for inducing or
distinguishing word senses, and in extension of
the classical Lesk algorithm, for example, a lexi-
cal sense can be described by means of the con-
textualized word embeddings for the examples
associated with that particular lexical sense, and
words for which word sense disambiguation is to
be performed can then just be compared with these.
These examples then serve a similar function as
attestations in a dictionary, and indeed, the link has
been emphasized before [11]. Within FrAC, con-
textualized embeddings are thus naturally modelled
as a property of Attestation.

instanceEmbedding (ObjectProperty) for
a given Attestation. The property
instanceEmbedding provides an embedding
of the example in its current corpus context into a
numerical feature space (see Embedding).

In this modelling, multiple contextualized em-
beddings can be associated with, say, a lexical
sense by means of an attestation that then points to
the actual string context. Considering play, multi-
ple WordNet examples (glosses) per sense can thus
be rendered by different fixed-size vectors:

wn31 : p l a y n a o n t o l e x : L e x i c a l E n t r y ;
o n t o l e x : s e n s e wn31:07032045−n ,

wn31 : p l a y n 4 , . . .
wn31:07032045−n

a o n t o l e x : L e x i c a l S e n s e ;
f r a c : a t t e s t a t i o n [

f r a c : q u o t a t i o n ” t h e p l a y
l a s t e d two h o u r s ” ;
f r a c : l o c u s wn31:07032045−n ;
f r a c : i n s t a n c e E m b e d d i n g

wn31−b e r t :07032045−n−1
] .

wn31−b e r t :07032045−n−1 a
f r a c : F i x e d S i z e V e c t o r ;
dc : e x t e n t ” 3 0 0 ” ˆ ˆ xsd : i n t ;
r d f : v a l u e ”0 .327246 0 .48170 . . . ” ;
dc : d e s c r i p t i o n ” . . . ” ;
f r a c : c o r p u s <h t t p : / / wordnet−r d f .

p r i n c e t o n . edu / s t a t i c / wordne t .
n t . gz> .

Like most RDF models, this appears to be overly
verbose, but by introducing a subclass for a set
of embeddings from which the embedding can in-
herit extent, corpus, and description information,
e.g. :WN31FixedSizeVector, the BERT em-
bedding in this example becomes much more di-
gestable – without any loss in information:

wn31−b e r t :07032045−n−1 a
: WN31FixedSizeVector ;
r d f : v a l u e ”0 .327246 0 .48170 . . . ” .

4.3 Other Types of Embeddings
FrAC is not restricted to uses in language technol-
ogy; its definition of ‘embedding’ is thus broader
than the conventional interpretation of the term
in NLP, and based on its more general usage
across multiple disciplines. In mathematics, the
embedding f of an object X in another object Y
(f : X → Y) is defined as an injective, structure-
preserving map (morphism). Important in the con-
text of FrAC is the structure-preserving character
of the projection into numerical feature spaces, as
embeddings are most typically used to assess simi-
larity, e.g., by means of cosine measure, the entire
point being that these assessments remain stable
when cooccurrence vectors are projected into a
lower-dimensional space.

In computational lexicography, raw collocation
counts continue to be used for the same purpose. In
its classical form, these collocation counts get ag-
gregated into bags of words, sometimes augmented
with numerical weights. Bags of words are closely
related to raw collocation vectors (and thus, pro-
totypical embeddings), with the main difference
being that collocation vectors consider only a finite
set of diagnostic collocates (the reference dictio-
nary), whereas a bag of words can include any
word that occurs in the immediate context of the
target expression.

In this understanding, a bag of words can be
considered as an infinite-dimensional collocation
vector, i.e., as an embedding in the broad sense
introduced above. The practical motivation is that
applications of bag-of-words models and fixed-size
vectors are similar, and that bags of words remain
practically important to a significant group of On-
toLex or FrAC users.

A difference is that a bag of words model, if it
provides frequency information or another form of
numerical scores, must not be modelled by a plain
list, but rather, by a dictionary or a map. As a data
structure for this, we recommend JSON literals.

17

To represent this model, we introduce the follow-
ing Embedding subclass:

BagOfWords (Class) is an Embedding that
represents an Observable by a set of collocates
or their mapping to numerical scores.

Another type of embeddings concerns sequential
data, and one example for that are multimodal cor-
pora. In a case study with Leiden University, we
explored the encoding of dictionaries for African
sign languages. In addition to graphics and videos,
such dictionaries can also contain sensor data that
records the position of hands and digits during the
course of a sign or a full conversation. To search
in this data, conventional techniques like dynamic
time warp [2] are being applied – effectively in anal-
ogy with cosine distance among finite-size vectors.
Furthermore, such data has also been addressed in
NLP research in the context of neural time series
transformation for the sake of translation between
or from sign languages [18]. Also, in an NLP
context, time series analysis is relevant for stream
processing, so this would make this data structure
of more general interest [13] in and beyond the
language technology community.

Both from a modelling perspective and in terms
of actual uses of such forms of lexical data, it is
thus appealing to extend the concept of embeddings
to time series data. In our current use case, we
assume that time series data is mostly relevant in
relation to attestations rather than OntoLex core
concepts, but we can foresee that generalizations
over multiple attestations could be developed at
some point which would then used to extrapolate
prototypical time series information for canonical
forms, lexical entries, senses, or concepts.

To represent this, we introduce another
Embedding subclass:

TimeSeries (Class) is an Embedding that rep-
resents an Observable or its Attestation
as a sequence of a fixed number of data points
recorded over a certain period of time.

The dc:extent of a time series specifies the
number of data points per observation. The
rdf:value should be a structured JSON literal.

5 Summary and Outlook

We identified a number of shortcomings in the
(lack of) standards applied by providers of pre-
trained embeddings on the web and aim to address

them by providing a vocabulary that covers the
relevant aspects of lexical data involved in this con-
text, grounded in existing specifications for lexical
metadata and publication forms for lexical knowl-
edge graphs on the web of data. We provide an
RDF vocabulary for encoding numerical, corpus-
based information, in particular, embeddings such
as those prevalent in language technology, in con-
junction with, or as a part of lexical knowledge
graphs. We cover a broad range of applications
from NLP to computational lexicography, and a
broad range of data structures that fall under a gen-
eralized understanding of embeddings.

Notable features of our proposal include (1) the
coverage of a broad band-width of use cases, (2)
its firm grounding in commonly used community
standards for lexical knowledge graphs, (3) the pos-
sibility to provide machine-readable metadata and
machine-readable lexical data along, and even in
close integration with word, lexeme, sense or con-
cept embeddings, (4) the extension beyond fixed-
size vectors as currently dominating in language
technology applications, (5) and a designated vo-
cabulary for organizing contextualized embeddings
with explicit links to both their respective context
and the lexical entities they refer to.

At the time of writing, one dataset (AutoExtend)
has been successfully transformed from its tradi-
tional publication form and integrated with a lex-
ical knowledge graph. However, we are still in
the process of evaluating which WordNet edition
the AutoExtend data actually refers to. Another
dataset currently under construction is a dictionary
of African sign languages, where time series infor-
mation is being encoded as attestation-level embed-
dings.

We see our work as a building block for the de-
velopment of convergencies between the Linguistic
Linked Open Data and the NLP/ML community,
as a conjoint modelling – or, at least, compatible
levels of representation, allow to combine both
technology stacks to common problems. For the
NLP/ML community, machine-readable metadata
and adherence to established community standards
will facilitate the potential for verifying, enriching
and building embeddings with or against lexical
resources. For computational lexicography, closer
ties with the language technology community will
facilitate the uptake of machine-learning methods
and their evaluation, and intensify synergies be-
tween both fields.

18

Acknowledgements

The research presented in this paper was in part
supported by the European Horizon2020 Prêt-à-
LLOD project (grant agreement no. 825182), by
the project ”Linked Open Dictionaries” (LiODi),
funded by the German Ministry of Education and
Science (BMBF), and the COST Action CA18209
European network for Web-centred linguistic data
science (”NexusLinguarum”).

References
[1] Alan Akbik, Duncan Blythe, and Roland Vollgraf.

Contextual string embeddings for sequence label-
ing. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1638–
1649, Santa Fe, New Mexico, USA, August 2018.
Association for Computational Linguistics.

[2] Donald J Berndt and James Clifford. Using dynamic
time warping to find patterns in time series. In KDD
workshop, volume 10, pages 359–370. Seattle, WA,
USA:, 1994.

[3] Francis Bond, Piek Vossen, John P McCrae, and
Christiane Fellbaum. Cili: the collaborative interlin-
gual index. In Proceedings of the Global WordNet
Conference, volume 2016, 2016.

[4] Christian Chiarcos, Maxim Ionov, Jesse de Does,
Katrien Depuydt, Fahad Khan, Sander Stolk,
Thierry Declerck, and John Philip McCrae. Mod-
elling frequency and attestations for ontolex-lemon.
In Proceedings of the 2020 Globalex Workshop on
Linked Lexicography, pages 1–9, 2020.

[5] Philipp Cimiano, John P. McCrae, and Paul Buite-
laar. Lexicon Model for Ontologies: Community
Report, 2016.

[6] Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. Word
translation without parallel data. arXiv preprint
arXiv:1710.04087, 2017.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. As-
sociation for Computational Linguistics.

[8] Laurent Fasnacht. mmappickle: Python 3 module to
store memory-mapped numpy array in pickle format.
Journal of Open Source Software, 3(26):651, 2018.

[9] Javier D Fernández, Miguel A Martı́nez-Prieto,
Claudio Gutiérrez, Axel Polleres, and Mario Arias.

Binary rdf representation for publication and ex-
change (hdt). Journal of Web Semantics, 19:22–41,
2013.

[10] Gil Francopoulo, Monte George, Nicoletta Calzo-
lari, Monica Monachini, Nuria Bel, Mandy Pet, and
Claudia Soria. Lexical markup framework (lmf).
In International Conference on Language Resources
and Evaluation-LREC 2006, page 5, 2006.

[11] Luyao Huang, Chi Sun, Xipeng Qiu, and Xuan-
jing Huang. Glossbert: Bert for word sense dis-
ambiguation with gloss knowledge. arXiv preprint
arXiv:1908.07245, 2019.

[12] Michael Lesk. Automatic sense disambiguation us-
ing machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In Proceedings of the
5th annual international conference on Systems doc-
umentation, pages 24–26, 1986.

[13] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and
Bill Chiu. A symbolic representation of time series,
with implications for streaming algorithms. In In
Proceedings of the 8th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Dis-
covery, pages 2–11. ACM Press, 2003.

[14] George A Miller. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41, 1995.

[15] Jeffrey Pennington, Richard Socher, and Christo-
pher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543, 2014.

[16] Matthew Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana, June 2018. Associa-
tion for Computational Linguistics.

[17] Sascha Rothe and Hinrich Schütze. Autoex-
tend: Combining word embeddings with semantic
resources. Computational Linguistics, 43(3):593–
617, 2017.

[18] S. S Kumar, T. Wangyal, V. Saboo, and R. Srinath.
Time series neural networks for real time sign lan-
guage translation. In 2018 17th IEEE International
Conference on Machine Learning and Applications
(ICMLA), pages 243–248, 2018.

[19] TEI. TEI P5: Guidelines for electronic text encod-
ing and interchange. Technical report, 2019.

[20] Gregor Wiedemann, Steffen Remus, Avi Chawla,
and Chris Biemann. Does bert make any
sense? interpretable word sense disambiguation
with contextualized embeddings. arXiv preprint
arXiv:1909.10430, 2019.

19

Relation Classification via Relation Validation

Jose G. Moreno
University of Toulouse

IRIT, UMR 5505 CNRS
F-31000, Toulouse, France

jose.moreno@irit.fr

Antoine Doucet
University of La Rochelle

L3i
F-17000, La Rochelle, France
antoine.doucet@univ-lr.fr

Brigitte Grau
LIMSI, UPR 3251 CNRS
F - 91405 Orsay , France

bg@limsi.fr

Abstract

Recognising if a relation holds between two
entities in a text plays a vital role in informa-
tion extraction. To address this problem, multi-
ple models have been proposed based on fixed
or contextualised word representations. In this
paper, we propose a meta relation classifica-
tion model that can integrate the most recent
models by the use of a related task, namely
relation validation. To do so, we encode the
text that may contain the relation and a relation
triplet candidate into a sentence-triplet repre-
sentation. We grounded our strategy in recent
neural architectures that allow single sentence
classification as well as pair comparisons. Fi-
nally, our model is trained to determine the
most relevant sentence-triplet pair from a set
of candidates. Experiments on two public data
sets for relation extraction show that the use
of the sentence-triplet representation outper-
forms strong baselines and achieves compara-
ble results when compared to larger models.

1 Introduction

Recognising and classifying relations between two
entities in a text plays a vital role in knowledge base
population (KBP), a major sub-task of information
extraction (IE). Some examples of typical relations
in knowledge bases (KB) are spouse, CEO, place of
birth, profession, etc. Nowadays, there exist large
KB that store millions of facts such as DBpedia
(Bizer et al., 2009) or YAGO (Hoffart et al., 2013).
However, more than 70% of people entities have
not associated information for relations such as
place of birth or nationality (Dong et al., 2014).

Most approaches model the relation classifica-
tion (RC) (dos Santos et al., 2015; Nguyen and
Grishman, 2015) task as a learning problem where
it is required to predict if a passage contains a type
of relation (multi-class classification). This setup
requires annotated examples of each class, i.e. each

type of relation, which can be difficult to obtain.
To overcome this problem, distant supervision has
been proposed (Mintz et al., 2009) for automati-
cally annotating texts given relation triplets existing
in a KB by projecting triplets into texts to increase
the input data. Its main counterpart is that distant
supervision models must deal with wrongly anno-
tated examples. The difficulty of the task is shown
by the results of the TAC KBP slot filling task1. For
instance, in 2014, the maximum F1-score of the
task was 0.3672 (Surdeanu and Ji, 2014). Another
trend is trying to collect information directly from
the web in an unsupervised setting, i.e. the open
IE paradigm (Banko et al., 2007). In these two last
settings, one crucial point is to be able to assess the
validity of the extracted relations. This point moti-
vated an extra track in TAC KBP 2015 following a
divide-and-conquer setup. It consists in validating
the relations extracted by relation extraction (RE)
systems in order to improve their final scores.

The purpose of relation validation (RV) aims at
taking advantage of several hypotheses, provided
by one or several systems, for improving the recog-
nition of relations in texts and discarding false ones.
Given a candidate relation triplet (e1, R, e2) and a
passage, this task can be defined as learning to de-
cide if the passage supports the relation in a binary
classification setup. Trigger words and relation pat-
terns are usually modelled in relation validation as
features for representing the relation type. In Wang
and Neumann (2008), the relation validation setup
is modified and presented as an entailment prob-
lem, where systems learn whether the text entails
the relation based on linguistic features.

In this paper, we propose not only to learn the
representation of the relation type, but also to learn
the representation of the validation knowledge by
using a neural architecture for modelling relation

1https://catalog.ldc.upenn.edu/LDC2018T22

20

validation, inspired by neural entailment models.
We aim to decide whether the text supports the
relation by encoding the text and the triplet2 in
a transformer architecture as in (Baldini Soares
et al., 2019; Zhao et al., 2019). Once a model for
relation validation is learned, we use it to validate
the output of a relation classification model. Our
experiments show that our proposal outperforms
robust neural models for relation classification but
fails to improve most recent works.

The remainder of this paper is structured as fol-
lows: Section 2 presents some relevant models for
relation classification and validation. Section 3
details our strategy to classify relations based on
relation validation. Then, the experimental setup
and results are presented in Sections 4. Finally,
conclusions are drawn in Section 5.

2 Related Work

Different ensemble models (Viswanathan et al.,
2015) have been defined for the relation valida-
tion KBP task based on the prediction made by the
RE systems. However, Yu et al. (2014) show that
relation validation requires considering linguistic
features for recognising if a relation is expressed in
a text by exploiting rich linguistic knowledge from
multiple lexical, syntactic, and semantic levels. In
Wang and Neumann (2008), the relation to validate
is transformed by simple patterns in a sentence and
an alignment between the two texts is performed
by a kernel-based approach.

Traditional methods for relation extraction are
based on feature engineering and rely on lexical
and syntactic information. Dependency trees pro-
vide clues for deciding the presence of a relation
in unsupervised relation extraction (Culotta and
Sorensen, 2004; Bunescu and Mooney, 2005; Fun-
del et al., 2007). Gamallo et al. (2012) defined
patterns of relation by parsing the dependencies
in open information extraction. Words around the
entity mentions in sentences give clues to charac-
terise the semantics of a relation (Niu et al., 2012;
Hoffmann et al., 2011; Yao et al., 2011; Riedel
et al., 2010; Mintz et al., 2009). In addition to lin-
guistic information, collective information about
the entities and their relations were exploited for
RV (Rahman et al., 2018) by adding features based
on a graph of entities and for RE by Augenstein

2We are aware that our model mainly based its improve-
ments on input modification. However, we strongly believe
that this is unfairly underestimated in the field.

(2016) that integrated global information about the
object of a relation. The latter model shows the im-
portance of adding information about the entities
in the triplet. The above approaches rely on Natu-
ral Language Processing (NLP) tools for syntactic
analysis and on lexical knowledge for identifying
triggers. Thus, it remains difficult to overcome
the lexical gap between texts and relation names
when learning relation patterns for different types
of relations in an open domain.

Recently, end-to-end neural network (NN) based
approaches have been emerged and getting lots of
attention for the relation classification task (dos
Santos et al., 2015; Nguyen and Grishman, 2015;
Vu et al., 2016; Dligach et al., 2017; Zheng et al.,
2016; Zhang et al., 2018). However, they do not
leverage any triplet representation of a relation for
better understanding the relatedness between the
text and the triplet. A lot of NN models for eval-
uating the similarity of two sentences have been
proposed. They encode each entry by a CNN or
an RNN (e.g., LSTM or BiLSTM), and compute
a similarity between the sentence representations
(Severyn and Moschitti, 2015) or compute interac-
tions between the texts by an attention layer (Yin
et al., 2016).

Most recent models encode one or two sentences
by using the pre-trained neural models. Their use in
RC has been successfully tested by Baldini Soares
et al. (2019) where entities are marked and the
sentence representation is used. Then a simple
but effective sequence classification is performed
using the sentence representation token which en-
codes the full sentence including the marked tokens.
Their performances are boosted by using more doc-
uments in an unsupervised fashion. Despite more
information being used, Baldini Soares et al. (2019)
do not use an explicit relation representation. In
an effort to cope with this problem, we explore
the use of pre-trained neural models into the RV
problem by explicitly using a triplet-sentence rep-
resentation.

3 Relation classification via relation
validation

Our proposal first learns how to validate relations
ground on a sentence-triplet representation in order
to predict if a relation stands or not in a sentence.
To do so, our model is based on a pre-trained BERT
model for sequence classification (Devlin et al.,
2018). Using pre-trained models to address RC is

21

a promising strategy as shown by Baldini Soares
et al. (2019). In both cases, i.e. RV or RC, a
major consideration is the input definition to cor-
rectly identify the target entities, mainly because
pre-trained models do not include this option by
default. In this section, we present the details of the
architecture together with the input transformations
to correctly feed a sequence classification model
such as BERT.

3.1 BERT-based Architecture
We opted for a simplified version3 of the architec-
ture proposed in Baldini Soares et al. (2019) for
relation classification, namely BERTEM . It is
based on fine-tuning of a pre-trained transformer
called BERT (Devlin et al., 2018) where an extra
layer is added to make the classification of the sen-
tence representation, e.g. a classification task is
performed using as input the [CLS] token. As re-
ported by Baldini Soares et al. (2019), an important
component is the use of mark symbols to identify
the entities to classify.

3.2 Relation Classification
3.2.1 Problem definition
Given a tokenised sentence S = “t1 t2
... tn”, an origin offset oo ∈ 1, n, a target off-
set ot ∈ 1, n, and a set of k relations R =
{r1, r2, ..., rk}. The relation extraction problem
consists in determining which relation rp ∈ R
stands in the sentence between the tokens in po-
sitions oo and ot, respectively.4

3.2.2 Input considerations
We follow the input considerations for RC pro-
posed by (Baldini Soares et al., 2019). Thus, to
introduce those markers, the original input of RC
models

input(S) = [CLS] t1 t2

... tn [SEP]
(1)

is modified to include the entities markers

input�(S) = [CLS] ...$ too $

...# tot #... [SEP]
(2)

Note that length(input�(S)) =
length(input(S)) + 4, because we added
the tokens $ and # twice.

3We used the EntityMarkers[CLS] version. Other configu-
rations were not explored and are left for future work.

4Note that a non-relation or other relation may be part of
the set R.

3.3 Relation Validation
3.3.1 Problem definition
Given a tokenised sentence S = “t1 t2
... tn”, an origin offset oo ∈ 1, n, a target off-
set ot ∈ 1, n, and a triplet t =< too , r, tot >. The
relation validation problem consists in determin-
ing whether the relation r between too and tot is
supported by the sentence S or not.

3.3.2 Input considerations
We transform triplets t =< too , r, tot > into a se-
quence of its label words. Then we use the sentence
S on one side and the triplet t on the other side as
input of the model to match the relation validation
problem into a text entailment setup as suggested
by Wang and Neumann (2008). So, in this case,
the input is modified to

input��(S) = [CLS]...$ too $

... # tot #...[SEP]

too tot rw1 rw2 ... rwm [SEP]

(3)

Note that length(input��(S)) =
length(input(S)) + 4 + (m + 2), because
of the tokens $ and #, and the triplet t is repre-
sented by m+ 2 tokens (m words for the relation
r and the two entities tokens). This architecture
is possible because of the single or double input
capabilities of transformer architectures such as
BERT. Our proposed architecture is depicted in
Figure 1. As for RC, we add the mark symbols
in the sentence but not for the triplet. The final
prediction is based on the sentence representation
or the [CLS] token.

As our work focuses on relation extraction, a
prior stage is needed to transform any relation clas-
sification data set into a relation validation one
(i.e. as many examples as relations/classes). This
transformation consists in generating |R| relation
validation examples for each relation extraction
one, by considering the correct relation as positive
and others as negatives. In this case, if S is the
set of examples for RC, then the set of examples
for RV (SRV) is |R| times larger than S . However,
to prevent imbalance, negative sampling is com-
monly used. In this case, |SRV | = (ns+ 1)× |S|
where ns is the number of negative examples used
to build SRV .

3.4 Validation of a classification prediction
Our main contribution is the definition of a new
model for RC using RV, namely BERT+RC+RV.

22

Figure 1: Our relation validation model. Tokens in bold are marked using ”$” for the Entity1 and ”#” for the
Entity2.

During training time our RV model behaves as
described in Algorithm 1. The set SRV used
as input is built as described in Section 3.3.2.
createInput generates an input such as in Equa-
tion 2. The output is a relation validation model
(MRV) capable of detecting if the input is valid or
not.

Algorithm 1: BERT+RC+RV train
Input: Set of examples SRV {Sentence (S),

triplet (t), label (lRV)}
epoch = 1
while epoch < maxepochs do

for S, t, lRV ∈ SRV do
input��(S) = createInput(S,t)
update with Loss(input��(S),lRV)

Output: Validation model (MRV)

On the other hand, at inference time not all cases
are evaluated. Our model can use as input the out-
puts of multiples RC models5 (Sv) as described
in Algorithm 2. Each example in Sv is composed
of a sentence and nRC labels predicted by nRC

RC models, i.e. each example has a list (L) of
nRC predictions. Thus, our RV model defines the
most suitable label based on the sentence and the
triplet together instead of a classic RC model that
only uses the sentence. getTriplet is a function
based on a simple dictionary that returns the rela-
tion words (rw1 , ..., rwm) related to a label lrc and
the entities (too and tot) in S. This way, our model
is not only capable of learning from the same data
but also capable of aggregating multiple RC pre-
dictions.

5In our experiments, we used the outputs of our implemen-
tation of a state-of-the-art RC model, BERTEM , described
in Section 4.2.

Algorithm 2: BERT+RC+RV prediction
Input: Set of examples to validate Sv

{Sentence (S), labels (L)}, a Validation
model (MRV)
lV = []
for S, L ∈ Sv do

li−valid = []
for li ∈ unique(L) do

t = getTriplet(li,S)
input��(S) = createInput(S,t)
confid = predict(MRV , input��(S))
li−valid. append(li, confid)

lV .append(labelMaxConfidence(li−valid))

Output: List of predictions (lV)

4 Experiments and Results

4.1 Data Sets

In this study, we experimented on two publicly
available data set: SemEval106 and TACRED7.
Statistics of these standard relation classification
data sets are presented in Table 1. We created a
relation validation version from both data sets as de-
scribed in Section 3.3.2. The input of our RV model
needs a set of relation words which, originally, are
not present in the data sets. Thus, to obtain these
words, we used a rather simple strategy that con-
sists of tokenising the relations names and using
them as relation words. If needed it considers the
relation direction by reversing the position of the
tokenised words. Table 2 shows some examples of
the selected words.

In both cases, we used the respective official F1

metric8 for evaluation.
6Task 8 (Hendrickx et al., 2010) from

http://semeval2.fbk.eu/semeval2.php?location=tasks
7https://nlp.stanford.edu/projects/tacred/
8Macro-F1-measures are calculated using each script.

Both scripts exclude the other class during evaluation.

23

Data set Train Dev Test # Relations

SemEval10 8000 - 2717 19

TACRED 68124 22631 15509 42

Table 1: Summary of SemEval10 and TACRED data
sets for relation classification.

4.2 Implementation details

We implemented BERTEM (EntityMarkers[CLS]
version) of Baldini Soares et al. (2019) for RC and
adapted it to perform RV9. For SemEval10, we
used 10% of training data as validation data which
allows fair comparison against previous works. A
maximum number of epochs was fixed to 5 and
the best epoch in validation used for prediction10.
Negative sampling was fixed to 10 where the input
sentence remains and the entities remain the same
but the words used for the relation representation
(rw1 , rw2 , ..., rwm) are sampled from other classes.
Binary Cross Entropy was used as loss function,
Adam as optimiser, bert-base-uncased11 as pre-
trained model, and other parameters were assigned
following the library recommendations (Wolf et al.,
2019).12 The final layer is composed of as many
neurons as classes in each data set for RC and equal
to two for RV (negative or positive).

Data set Relation Words

Cause-Effect(e1,e2) Cause, Effect

SemEval10 Cause-Effect(e2,e1) Effect, Cause

Content-Container(e1,e2) Content, Container

org:founded by org, founded, by

TACRED per:city of death per, city, of, death

per:age per, age

Table 2: Examples of words used per relation.

4.3 Results

Average and best result of 5 runs of our imple-
mentation of (Baldini Soares et al., 2019) using
the SemEval10 data set are presented in Table 3
(BERTEM*). The reported results are within the
values reported in the original paper for this con-
figuration, but we used bert-base-uncased instead

9Our code is publicly available at
https://github.com/jgmorenof/rcviarv2020.

10Our models got the best validation performances at epoch
5, no further epochs were explored.

11https://github.com/google-research/bert
12We did not perform parameters search.

SemEval10 TACRED

BERTEM* - average 87.03 65.50

BERTEM* - best 87.70 66.02

BERT+RC+RV - average (ours) 88.36 66.20

BERT+RC+RV - best (ours) 88.44 67.48

BERTEM* - voting 89.02 68.67

BERT+RC+RV - voting (ours) 89.41 69.13

TRE (Alt et al., 2019) 87.1 67.4

BERT-LSTM-base (Shi and Lin, 2019) - 67.8

C-GCN+PALSTM (Zhang et al., 2018) - 68.2

C-AGGCN (Guo et al., 2019) - 68.2

Att-Pooling-CNN (Wang et al., 2016) 88.0 -

Entity-Aware BERT (Wang et al., 2019) 89.0 -

KnowBert-W+W (Peters et al., 2019) 89.1 71.5

R-BERT (Wu and He, 2019) 89.25 -

BERTEM (Baldini Soares et al., 2019) 89.2 70.1

Span-BERT (Joshi et al., 2019) - 70.8

BERTEM+MTB (Baldini Soares et al., 2019) 89.5 71.5

EPGNN (Zhao et al., 2019) 90.2 -

Table 3: Results of official F1 metric for the Se-
mEval10 and TACRED data sets. Best result of our
tested models is marked in bold. Results that outper-
form our method are underlined. ’*’ indicates that
the result was obtained by our implementation of (Bal-
dini Soares et al., 2019). Other values were taken from
referenced papers.

Number of candidates

2 3 4

Corr. Incorr. Corr. Incorr. Corr. Incorr.

BERT+RC+RV 338 154 37 52 2 4

68.69% 31.30% 41.57% 58.42% 33.33% 66.66%

Table 4: Percentage of correct (Corr.) and incorrect
(Incorr.) predictions from RV model for the SemEval10
data set grouped by the number of candidates provided
by RC.

Epoch

1 2 3 4 5

BERT+RC+RV 0.8790 0.8807 0.8793 0.8802 0.8831

BERTEM* - run1 - - - - 0.8760

BERTEM* - run2 - - - - 0.8683

BERTEM* - run3 - - - - 0.8688

BERTEM* - run4 - - - - 0.8770

BERTEM* - run5 - - - - 0.8614

Table 5: Performances for one run of our method vs
BERTEM runs in terms of F1 using the SemEval10
data set. We calculated our results by epoch after train-
ing.

24

of bert-large-uncased due to computational con-
straints. In both cases, for average and best, our
results using the relation validation model outper-
form their counterparts by a non-negligible mar-
gin. In order to understand the cases in which
BERT+RC+RV makes the right prediction, we
have reported the percentage of correct and in-
correct predictions grouped by the number of
candidates in Table 4. Note that at this stage
BERT+RC+RV does not consider the number of
predictions made for a candidate (as is made by
voting) but analyse each candidate independently
of its popularity. Although we used 5 runs, none of
the examples obtained five candidates as for every
test example at least two models predicted the same
class. The number of correct predictions made by
our validation model is 68.69% when there are only
2 candidates but decreases as the number of candi-
dates increase (down to 33.33% for 4 candidates).
However, in most of the cases, the predictions of
the relation classification model only get 2 candi-
dates (83.81%). Clearly, this result shows that there
is still room for improvement by proposing better
RV models.

Following this direction, we apply majority
voting13 over the predictions of BERTEM and
BERT+RC+RV. Results are included in Table 3.
Note that voting benefits our baseline but also
our method by a similar margin. The lower part
of Table 3 allows comparing our results to those
of the most recent RC models. The best result,
giving an F1 score of 0.8941 is obtained based
on majority voting of the prediction from the RV
model. When compared against results reported
in SemEval10, our method achieves the third posi-
tion slightly behind BERTEM+MTB, but quite
far from EPGNN (Zhao et al., 2019). However,
BERT+RC+RV remains an easy-to-implement
model as no special modification is needed when
compared with BERTEM+MTB which uses ex-
tra auto-supervised training plus a larger model14

and EPGNN which needs graph embeddings.
Moreover, we believe that BERTEM+MTB can
be improved if more robust models are validated.

We also studied the performance of our method
by epoch, as reported in Table 5. Results of
BERTEM* are presented for epoch 5 as this epoch
got the best validation result. Note that our method

13The class that receives the highest number of votes will
be chosen.

14bert-large-uncased uses three times more parameters (340
millions) than bert-base-uncased (110 millions).

outperforms all individual RC predictions from the
first epoch and no underperformance is observed
across epochs. This result suggests that our method
is an effective way to mixture RC predictions.

Finally, we experimented with our model us-
ing the TACRED data set. Results are reported in
Table 3. The results follow the same pattern as
with the SemEval10 data set, except for one im-
portant difference: The performance obtained with
BERTEM* (F1 = 65.50) is much lower than the
value reported by the authors (F1 = 69.13). This
can be explained from the fact that the number of
relations in TACRED is twice as high as in Se-
mEval10. Subsequently, more parameters allowed
a richer representation and a better starting point
(+4.5 absolute points w.r.t. F1).

5 Conclusion

In this paper, we presented a new strategy to im-
prove the neural models for relation classification
by using relation validation knowledge, i.e. the
sentence-triplet representation. Experiments with
two public data sets experimentally support our hy-
pothesis. The proposed strategy enables new ways
to improve existing methods as it can be easily
plugged into more recent (or future) and powerful
models. Future work will be focused on the use of
this strategy across tasks from different (and far)
domains as our relation validation architecture can
validate triplets with unseen relations. This opened
an interesting research direction for relation classi-
fication by focusing more on triplet-sentence repre-
sentations rather than exclusively on the sentence.

Acknowledgements

This work has been partly supported by the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme under grant 825153 (EMBED-
DIA).
We also thank the anonymous reviewers for their
careful reading of this paper and their many insight-
ful comments and suggestions.

References
Christoph Alt, Marc Hübner, and Leonhard Hen-

nig. 2019. Improving Relation Extraction by Pre-
trained Language Representations. In Proceedings
of AKBC.

Isabelle Augenstein. 2016. Web Relation Extraction
with Distant Supervision. Ph.D. Dissertation. Uni-
versity of Sheffield.

25

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019. Matching the
Blanks: Distributional Similarity for Relation Learn-
ing. In Proceedings of the 57th Annual Meeting of
the ACL. 2895–2905.

Michele Banko, Michael J Cafarella, Stephen Soder-
land, Matthew Broadhead, and Oren Etzioni. 2007.
Open Information Extraction from the Web.. In IJ-
CAI, Vol. 7. 2670–2676.

Christian Bizer, Jens Lehmann, Georgi Kobilarov,
Sören Auer, Christian Becker, Richard Cyganiak,
and Sebastian Hellmann. 2009. DBpedia-A crystal-
lization point for the Web of Data. Journal of web
semantics 7, 3 (2009), 154–165.

Razvan C Bunescu and Raymond J Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In Proceedings of the conference on HLT and
EMNLP. Association for Computational Linguistics,
724–731.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
Tree Kernels for Relation Extraction. In Proceedings
of the 42nd Annual Meeting on ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv preprint arXiv:1810.04805
(2018).

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven
Bethard, and Guergana Savova. 2017. Neural Tem-
poral Relation Extraction. EACL 2017 (2017), 746.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowl-
edge vault: A web-scale approach to probabilis-
tic knowledge fusion. In Proceedings of the 20th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. 601–610.

Cicero dos Santos, Bing Xiang, and Bowen Zhou.
2015. Classifying Relations by Ranking with Con-
volutional Neural Networks. In Proceedings of the
53rd Annual Meeting of ACL and the 7th Interna-
tional JCNLP. 626–634.

Katrin Fundel, Robert Küffner, and Ralf Zimmer. 2007.
RelEx-Relation extraction using dependency parse
trees. Bioinformatics 23, 3 (2007), 365–371.

Pablo Gamallo, Marcos Garcia, and Santiago
Fernández-Lanza. 2012. Dependency-based open
information extraction. In Proceedings of the joint
workshop on unsupervised and semi-supervised
learning in NLP. 10–18.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Attention
Guided Graph Convolutional Networks for Relation
Extraction. In Proceedings of the 57th Annual Meet-
ing of ACL. 241–251.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 Task 8:
Multi-Way Classification of Semantic Relations be-
tween Pairs of Nominals. In Proceedings of the 5th
SemEval. 33–38.

Johannes Hoffart, Fabian M Suchanek, Klaus
Berberich, and Gerhard Weikum. 2013. YAGO2: A
spatially and temporally enhanced knowledge base
from Wikipedia. Artificial Intelligence 194 (2013),
28–61.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th
Annual Meeting of ACL. 541–550.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2019. Spanbert:
Improving pre-training by representing and predict-
ing spans. arXiv preprint arXiv:1907.10529 (2019).

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the 47th
Annual Meeting of the ACL and the 4th International
JCNLP of the AFNLP. 1003–1011.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing. 39–48.

Feng Niu, Ce Zhang, Christopher Ré, and Jude W
Shavlik. 2012. DeepDive: Web-scale Knowledge-
base Construction using Statistical Learning and In-
ference. VLDS 12 (2012), 25–28.

Matthew E. Peters, Mark Neumann, Robert L Lo-
gan, Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A. Smith. 2019. Knowledge Enhanced Con-
textual Word Representations. In EMNLP.

Rashedur Rahman, Brigitte Grau, and Sophie Rosset.
2018. Impact of Entity Graphs on Extracting Se-
mantic Relations. In Information Management and
Big Data. 31–47.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Machine Learning and Knowl-
edge Discovery in Databases. Springer, 148–163.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to Rank Short Text Pairs with Convolu-
tional Deep Neural Networks. In Proceedings of the
38th International ACM SIGIR. 373–382.

Peng Shi and Jimmy Lin. 2019. Simple BERT Models
for Relation Extraction and Semantic Role Labeling.
arXiv preprint arXiv:1904.05255 (2019).

26

Mihai Surdeanu and Heng Ji. 2014. Overview of the
english slot filling track at the tac2014 knowledge
base population evaluation. In Proc. TAC.

Vidhoon Viswanathan, Nazneen Fatema Rajani, Yinon
Bentor, and Raymond Mooney. 2015. Stacked En-
sembles of Information Extractors for Knowledge-
Base Population. In Proceedings of the 53rd Annual
Meeting of ACL and the 7th International JCNLP.
177–187.

Ngoc Thang Vu, Heike Adel, Pankaj Gupta, and Hin-
rich Schütze. 2016. Combining Recurrent and Con-
volutional Neural Networks for Relation Classifica-
tion. In Proceedings of the 2016 Conference of the
NAACL-HTL. 534–539.

Haoyu Wang, Ming Tan, Mo Yu, Shiyu Chang, Dakuo
Wang, Kun Xu, Xiaoxiao Guo, and Saloni Potdar.
2019. Extracting Multiple-Relations in One-Pass
with Pre-Trained Transformers. In Proc. of the 57th
Annual Meeting of ACL. 1371–1377.

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan
Liu. 2016. Relation Classification via Multi-Level
Attention CNNs. In Proceedings of the 54th Annual
Meeting of the ACL. 1298–1307.

Rui Wang and Günter Neumann. 2008. Relation vali-
dation via textual entailment. Ontology-based infor-
mation extraction systems (obies 2008) (2008).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. arXiv:1910.03771 (2019).

Shanchan Wu and Yifan He. 2019. Enriching Pre-
trained Language Model with Entity Information for
Relation Classification. In CIKM.

Limin Yao, Aria Haghighi, Sebastian Riedel, and An-
drew McCallum. 2011. Structured relation discov-
ery using generative models. In Proceedings of the
Conference on EMNLP. 1456–1466.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2016. ABCNN: Attention-Based Con-
volutional Neural Network for Modeling Sentence
Pairs. Transactions of the Association for Computa-
tional Linguistics 4 (2016), 259–272.

Dian Yu, Hongzhao Huang, Taylor Cassidy, Heng Ji,
Chi Wang, and et al. 2014. The Wisdom of Minority:
Unsupervised Slot Filling Validation based on Multi-
dimensional Truth-Finding, In Proceedings of 2014
International CICLING.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph Convolution over Pruned Dependency
Trees Improves Relation Extraction. In Proceedings
of the 2018 Conference on EMNLP. 2205–2215.

Yi Zhao, Huaiyu Wan, Jianwei Gao, and Youfang Lin.
2019. Improving Relation Classification by Entity
Pair Graph. In ACML. 1156–1171.

Suncong Zheng, Jiaming Xu, Peng Zhou, Hongyun
Bao, Zhenyu Qi, and Bo Xu. 2016. A neural net-
work framework for relation extraction: Learning en-
tity semantic and relation pattern. Knowledge-Based
Systems 114 (2016), 12–23.

27

