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Abstract

Biomaterials are synthetic or natural materials
used for constructing artificial organs, fabricat-
ing prostheses, or replacing tissues. The last
century saw the development of thousands of
novel biomaterials and, as a result, an expo-
nential increase in scientific publications in the
field. Large-scale analysis of biomaterials and
their performance could enable data-driven
material selection and implant design. How-
ever, such analysis requires identification and
organization of concepts, such as materials and
structures, from published texts. To facilitate
future information extraction and the applica-
tion of machine-learning techniques, we de-
veloped a semantic annotator specifically tai-
lored for the biomaterials literature. The Bio-
materials Annotator has been implemented fol-
lowing a modular organization using software
containers for the different components and or-
chestrated using Nextflow as workflow man-
ager. Natural language processing (NLP) com-
ponents are mainly developed in Java. This
set-up has allowed named entity recognition
of seventeen classes relevant to the biomateri-
als domain. Here we detail the development,
evaluation and performance of the system, as
well as the release of the first collection of an-
notated biomaterials abstracts. We make both
the corpus and system available to the commu-
nity to promote future efforts in the field and
contribute towards its sustainability.

1 Introduction

The last two decades saw the field of biomate-
rials and tissue engineering grow from a small
niche of biomedical research to an extensive do-
main, covering topics such as functional materi-
als, cell-material interaction, nanomaterials and
medical devices. The expanding scientific data

generated by the field is primarily available in
text documents, such as peer-reviewed research
papers, patents and conference abstracts. This ever-
growing knowledge is increasingly harder for re-
searchers to efficiently discover, organize and use.
For example, systematically reviewing the appli-
cations and scaffolds made of a commonly used
polymer such as poly-lactic-glycolic-acid (PLGA),
requires skimming through >12,000+ abstracts
(MEDLINE search on October 2020). Among the
different alternatives for the automated processing
of available texts, Natural Language Processing
(NLP) workflows for information retrieval and in-
dexing offer a much needed automated solution.
Such computational workflows facilitate informa-
tion discovery, information extraction and orga-
nization, saving researchers time and minimizing
manual tasks.

Central to information retrieval and indexing is
the extraction of concepts of interest, also known
as Named Entity Recognition (NER). NER is an
integral part of NLP workflows as it allows the au-
tomated identification of concepts in unstructured
text and its assignment to a pre-defined category
or class. For example, in the field of biomaterials,
categories may include ‘Biomaterials’ (‘PLGA’),
‘Structures’ (such as ‘fibre’ or ‘sponge’) and ‘Tis-
sues’ (such as ‘tendon’ or ‘bone’). The use of NER
to automatically recognize entities enables several
downstream applications, including machine trans-
lation, information retrieval and indexing as well
as automated question-answering mechanisms.

The recognition of concepts in the biomaterials
domain is complicated by language and terminol-
ogy originating from multiple scientific disciplines
(chemistry, engineering, biology, medicine). A sig-
nificant challenge lies in identifying and combining



37

Figure 1: Overview of the workflow used in the development and validation of the Biomaterials Annotator.

lexical and semantic resources across domains, and
thus to date there are no automatic biomaterials-
specific NER systems to detect relevant entities of
interest.

Here, we report the development of the first
biomaterials-specific annotation system, designed
to recognize named entities from seventeen differ-
ent categories, reflecting the complexity and diver-
sity of contemporary biomaterials research. When
considering approaches for the design of the Bio-
materials Annotator, i.e. lexical versus machine
learning-based NER, such as CRF or RNN, it was
essential to consider the number of desired annota-
tion categories in the system (17) and the absence
of an annotated corpora for text mining efforts for
the majority of them. Based on these premises, it
was concluded that training a model for each cat-
egory was impractical. Thus, the system relies on
manually curated and validated lexical resources.

To cover entities from different domains, mul-
tiple nomenclatures, vocabularies, and especially
ontologies were identified and combined. To com-
bine these resources into a single instrument, the
Devices, Experimental scaffolds and Biomateri-
als Ontology (DEB) was used providing the log-
ical schema and the definition of key categories
(Hakimi et al., 2020).

The resulting open source-system, the Bio-

materials Annotator, along with an annotated
collection of biomaterials literature, are publicly
available for use and further development at
https://github.com/ProjectDebbie/
Biomaterials_annotator.

2 Previous relevant work

Unlike general purpose NLP systems, biomedical
domain-specific tools require advanced approaches
to detect classes of interest such as diseases and
gene names. In this area, there are several well-
known and widely used systems and tools, such
as Metamap (Aronson, 2001) and Pubtator (Wei
et al., 2013), which were developed using dif-
ferent NER methodologies and approaches, e.g.
gazetteers and hand-made rule-based NER; ma-
chine learning-based NER that includes Hidden
Markov Model, Conditional Random Fields (CRF)
and recurrent neural network (RNN); and Hybrid
NER (Lee et al., 2003; McCallum and Li, 2003;
Song et al., 2004; GuoDong and Jian, 2004; Zhao,
2004; Yeh et al., 2005; Campos et al., 2013; Song
et al., 2018; Dang et al., 2018; Kaewphan et al.,
2018; Cho and Lee, 2019). In the context of this
work, generic text mining tools previously devel-
oped for the eTRANSAFE project (Pognan et al.,
2021) have been adapted and further developed for
the biomaterials domain.

https://github.com/ProjectDebbie/Biomaterials_annotator
https://github.com/ProjectDebbie/Biomaterials_annotator
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Whilst there are a handful of ontologies in the
biomaterials domain (such the nanoparticle ontol-
ogy NPO (Thomas et al., 2011) and the Bone and
Cartilage Tissue Engineering Ontology BCTEO
(Viti et al., 2014)), to the best of the our knowledge,
the DEB ontology (Hakimi et al., 2020) is the only
one that is tailored to link and curate concepts for
Biomaterials NER. Therefore, it specifically cov-
ers different categories related to the biomaterials
domain.

3 Methodology overview

To develop the annotation tool, the workflow
in Figure 1 was followed. Various corpora of
abstracts were used during the development,
covering the general biomaterials literature.
These corpora included a collection of man-
ually curated abstracts of the biomedical
polymer polydioxanone (Fuenteslópez et al 2021,
manuscript in preparation, GitHub repository:
https://github.com/ProjectDebbie/
polydioxanone_project) and a previously
published biomaterials gold standard collection
(Hakimi et al., 2020), comprising a total of 1222
abstracts. Corpora were passed through four steps,
each described in detail below. The first step was a
text preprocessing component (section 3.1). This
was followed by concept recognition (section 3.2),
initially using the MeSH controlled vocabulary
and the DEB ontology. Then, the annotations
were evaluated by two domain experts, errors
were flagged up and additional lexical resources
were added through keyword searches. Concept
recognition, manual evaluation and curation of
lexical resources were performed in an iterative
manner during the development phase (section 3.3)
over 1000 abstracts. Once the development phase
was completed, validation by domain experts was
performed on 199 independent abstracts which
were not used during the development process
(section 4.1). The resulting annotated collection
of biomaterials abstracts was published as open
source.

3.1 Text preprocessing

To prepare the text for concept recognition,
several Natural Language Processing (NLP) steps
were performed, namely: tokenization, sentence
splitting, part-of-speech tagging and morpho-
logical analysis (Figure 2.A). We developed the
Standard NLP preprocessing component which

Figure 2: Overview of the components of the Bioma-
terials Annotator; including the standard preprocessing
steps (A) and the biomaterials named entity recognition
steps (B).

includes the steps previously outlined. This
component is written in JAVA and it uses the
Stanford CoreNLP Natural Language Processing
open source toolkit. The use of the Stanford
CoreNLP API benefits greatly from the provision
of a set of stable, robust, high quality linguistic
analysis components, which can be easily invoked
for common scenarios (Manning et al., 2014).
The Standard NLP preprocessing component
is available at https://gitlab.bsc.es/
inb/text-mining/generic-tools/
nlp-standard-preprocessing.

3.2 Concept recognition

Here, we developed NER components to detect
relevant entities related to the biomaterials domain
based on the DEB ontology in conjunction with
other open relevant resources, such as the National
Cancer Institute Thesaurus (NCIT) and (CHEBI).
A comprehensive description of the resources
included in this work is described in section 3.3 and
Appendix B. Lexical resources were transformed
into gazetteers to be used in the NER process
(Figure 2.B). Internally, the NER process was
divided into three main steps; the MSH Annotator,
which annotates relevant categories from the
MeSH terminology; the Dictionary Annotator,
which annotated predefined categories from the
relevant dictionaries; and the Post-processing step
in which specific rules were executed. These in-
clude entity recognition based on lexical rules and
the removal of false positives, among other tasks.

https://github.com/ProjectDebbie/polydioxanone_project
https://github.com/ProjectDebbie/polydioxanone_project
https://gitlab.bsc.es/inb/text-mining/generic-tools/nlp-standard-preprocessing
https://gitlab.bsc.es/inb/text-mining/generic-tools/nlp-standard-preprocessing
https://gitlab.bsc.es/inb/text-mining/generic-tools/nlp-standard-preprocessing
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The MSH Annotator is available at https://
github.com/ProjectDebbie/debbie_
umls_annotations; and the Dictionary An-
notator and Post-processing rules are available at
https://github.com/ProjectDebbie/
DEBBIE_dictionaries_annotations.
These components are instances of the nlp-gate-
generic-component (https://gitlab.bsc.
es/inb/text-mining/generic-tools/
nlp-gate-generic-component), a
generic component developed in JAVA by our
team that uses the General Architecture of Text
Engineering (GATE) software (Cunningham et al.,
2013) and can be parametrized with gazetteers and
specific handmade JAPE (Java Annotation Patterns
Engine) rules. Using the Biomaterials Annotator,
every recognised entity is labelled with one of the
categories (Figure 3.A-B).

The nlp-gate-generic-component was configured
to use the GATE Flexible gazetteer, allowing to
capture the words present in the text as well as
their morphological root value (lemma). This en-
sures that inflected forms of a word (i.e. plural,
singular, -ing forms, tense) can be recognised and
analysed as a single item. In addition, the dictio-
naries used in the Biomaterials Annotator include
preferred synonyms, providing the possibility to
map terms semantically to a specific primary con-
cept. Thus, the Biomaterials Annotator performs
semantic mapping of the annotations by, not only
recognizing the category of an entity, but also link-
ing it to the appropriate entry in a well-established
resource (Jovanović and Bagheri, 2017). For exam-
ple, the terms: “canine”, “dogs” and “dog” were
all annotated under the ‘Species’ category; and in-
side the features of each annotation the preferred
term is “dog”. This enables the retrieval of all the
corresponding terms using the single search term

‘dog’.

To complete the annotation process, the annota-
tor executes JAPE rules for post-processing func-
tions, such as the removal of false positives and the
addition of information to each annotation. Added
information includes the ontology source, the ontol-
ogy term id, the lemma and the preferred synonym
(Figure 3.C-D). In addition, JAPE rules were run
to identify entities using lexical constraints and
address the concept recognition of abbreviations.
Rule-based entities recognition can use part-of-
speech of concepts, as an example; in the case
of ‘Cell’ category, there is a lexical rule defined to

detect concepts:
(Token.pos == "JJ" | Token.pos == "NN") To-
ken.root == "cell"
The inclusion of this rule enables the detection of
Cell-type concepts that are not present in the dic-
tionaries; e.g. “neuronal cells”, “cancer cell” and

“osteogenic cells”. The discovery of such rules is
a continuous work; future Biomaterials Annotator
versions will improve the lexical rules included to
detect relevant concepts.

Another key problem to address is the recogni-
tion of abbreviation concepts; to achieve this prob-
lem we developed a post-processing rule based
on a modified version of Schwartz’s algorithm
(Schwartz and Hearst, 2003). First, we detect
an abbreviation candidate given a text pattern
(regex=”(?:[a-z]*[A-Z][a-z]*)2,”); subsequently,
the Schwartz’s algorithm is applied to detect
whether there is a definition that matches the abbre-
viation candidate in the sentence; in such case, if
the definition has an entity class assigned to it, we
annotate the abbreviation with the same class. As
an example, in the following sentence: “We investi-
gated the potential of human bone marrow derived
Mesenchymal stem cells (MSCs) for neuronal differ-
entiation in vitro....”; the expression ‘Mesenchymal
stem cells’ is annotated under the ’Cell’ category.
But the ‘MSCs’ abbreviation is not; moreover in the
rest of the text the abbreviation is used instead of
its long form. The abbreviation-rule detects ‘MSCs’
as an abbreviation of ‘Mesenchymal stem cells’ and
assigns the ’Cell’ category to all the ‘MSCs’ men-
tions in the text.

3.3 Terminologies and ontologies curation
and manual evaluation

One of the main hurdles to biomaterials concept
recognition is the interdisciplinary nature of the
domain, with scientific texts containing concepts
from various fields such as biology, chemistry,
engineering and medicine. A key objective of
the Biomaterials Annotator was to identify and
combine lexical resources from the different
domains in order to cover as many relevant
biomaterials concepts as possible. Resources were
identified using a manual, bottom-up approach,
with cyclic re-iteration, as shown in Figure 1. As a
starting point, abstracts were annotated with the
automated NER approach described in section 3.2
using the DEB ontology. After each annotation
round, manual evaluation was performed by

https://github.com/ProjectDebbie/debbie_umls_annotations
https://github.com/ProjectDebbie/debbie_umls_annotations
https://github.com/ProjectDebbie/debbie_umls_annotations
https://github.com/ProjectDebbie/DEBBIE_dictionaries_annotations
https://github.com/ProjectDebbie/DEBBIE_dictionaries_annotations
https://gitlab.bsc.es/inb/text-mining/generic-tools/nlp-gate-generic-component
https://gitlab.bsc.es/inb/text-mining/generic-tools/nlp-gate-generic-component
https://gitlab.bsc.es/inb/text-mining/generic-tools/nlp-gate-generic-component
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Figure 3: The appearance of an annotated abstract on GATE’s user interface. A) Shows the annotated text and in B)
colored labels used to tag annotations by their respective category. C) Information regarding each annotation (type,
position, features), and in D) a specific example: “polymers”: "BiomaterialType" entity with their corresponding
features.
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two domain experts. The evaluation entailed
reviewing samples of 10-20 abstracts in order
to flag annotation errors and highlight relevant
concepts which were missed by the system. The
flagged terms were used for keyword search in
the Bioportal (Martínez-Romero et al., 2017) and
the UMLS metathesaurus browser (Bodenreider,
2004). Through these searches, specific classes
(or ‘parent concepts’) within relevant ontologies
and UMLS ‘semantic types’ were identified
and added to the annotation schema (part of
which is shown for illustration in Figure 4). The
resources identified belonged to three categories:
ontologies, controlled vocabularies and nomen-
clatures. All the ontologies were open access and
downloaded in .owl format from NCBO Bioportal
(http://bioportal.bioontology.org)
(Martínez-Romero et al., 2017). The controlled
vocabulary (MeSH) was downloaded for use
under license from the UMLS Terminology
Services. The GMDN nomenclature was kindly
provided in .xml format by the GMDN agency
under a license. A summary of all the used
resources is in Appendix B. For the resources
to be used in the annotation system, relevant
classes were imported into a dictionary (gazetteer)
containing the following fields: the term, its
label (annotation category), the ID and whenever
available, a preferred synonym. The extraction of
desired classes from the ontologies to dictionary
format was done using an implementation of
owlready2 (Lamy, 2017) and the code (named
owl2dict_light) is available in an open github
repository as part of the (https://github.
com/ProjectDebbie/OWL2DICT). The
resulting dictionaries are also available
(https://github.com/ProjectDebbie/
DEBBIE_dictionaries_annotations).
These were in turn used by the Dictionary
Annotator component for concept recognition as
described above in section 3.2.

4 Results

4.1 Expert validation

To measure the efficiency of a text mining system
such as the Biomaterials Annotator, it is fundamen-
tal to organize and plan a validation stage aimed at
indicating the performance of the system. The Bio-
materials Annotator was validated through manual
verification of the validation set, an independent
collection of 199 abstracts. The annotated valida-

tion set, resulting from the execution of the Bio-
materials Annotator, was manually verified by 9
biomaterials experts. The validation process was
performed using the GATE user interface, where
annotations made by the system were presented
to the biomaterials experts with the possibility of
adding missing annotations, removing false annota-
tions and editing annotations. Once the expert had
finished the validation of a document, it was saved
as a different validated copy.

Two strategies to indicate if two annotations
agree or not were considered; a strict approach,
in which the annotations agree if they have the
same origin and end offset, and a more relaxed or
“lenient” approach, where the annotations agree
if they overlap at some point. For example, in
the partial approach the biomaterials expressions
“polyvinyl alcohol” and “polyvinyl” are considered
to agree, which does not happen in the strict agree-
ment.

To measure the performance of the NER system,
the set validated by the experts was taken as the
gold standard and the system’s output as the set
to be validated. Table 1 shows the recall, preci-
sion and F-score, including the strict and lenient
approaches, as well as an average between them.
The global scores calculated for the system are also
presented, obtaining an 0.75 strict F-score, 0.79
lenient F-Score and 0.77 average F-score.

Figure 5 shows the average F-scores calculated
for the different categories. Categories with an av-
erage F-score above 0.8 are considered categories
in which the concepts are satisfactorily covered by
the resources used (e.g. Structure, BiomaterialType
and Tissue). On the other hand, there are categories
with lower scores, and specifically: ’Biomaterial’,
’Biologically active substance’ and ’Cell’. The cat-
egories Biomaterials and Biologically active sub-
stance had significantly reduced accuracy because
they include many ambiguous concepts. Some ma-
terials may act as a biomaterial in one set-up, but
can also be measured in terms of cell expression
or non-biomaterial use in another set-up (e.g. col-
lagen). In the latter case, the human validator will
delete the ‘Biomaterial’ annotation. Solving this
kind of ambiguities will require other strategies,
such as specific lexical rules or machine learning
approaches. Another factor impeding good quality
annotations of Biomaterials is the lack of good qual-
ity vocabulary of medical polymers. Polymer and
co-polymer naming is notoriously variable, with

http://bioportal.bioontology.org
https://github.com/ProjectDebbie/OWL2DICT
https://github.com/ProjectDebbie/OWL2DICT
https://github.com/ProjectDebbie/DEBBIE_dictionaries_annotations
https://github.com/ProjectDebbie/DEBBIE_dictionaries_annotations
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Category Precision
- strict

Recall
- strict

F-score
- strict

Precision
- lenient

Recall
- lenient

F-score
- lenient

Precision
- average

Recall
- average

F-score
- average

Adverse Effects 0.94 0.75 0.82 1 0.8 0.87 0.97 0.77 0.85
Associated Biological Process 0.88 0.68 0.77 0.94 0.73 0.82 0.91 0.71 0.79
Biologically Active Substance 0.58 0.43 0.49 0.7 0.52 0.59 0.64 0.48 0.54
Biomaterial 0.76 0.47 0.57 0.83 0.52 0.63 0.79 0.49 0.6
Biomaterial Type 0.92 0.88 0.9 0.98 0.93 0.95 0.95 0.9 0.92
Cell 0.76 0.59 0.66 0.84 0.65 0.73 0.8 0.62 0.69
Effect On Biological System 0.96 0.69 0.79 1 0.72 0.82 0.98 0.71 0.8
Manufactured Object 0.96 0.86 0.9 0.96 0.86 0.9 0.96 0.86 0.9
Manufactured Object Component 0.91 0.84 0.86 0.91 0.84 0.87 0.91 0.84 0.87
Manufactured Object Features 0.68 0.59 0.62 0.71 0.61 0.65 0.69 0.6 0.64
Material Processing 0.78 0.6 0.67 0.83 0.63 0.71 0.81 0.61 0.69
Medical Application 0.68 0.49 0.57 0.82 0.6 0.69 0.75 0.54 0.63
Research Technique 0.81 0.63 0.71 0.87 0.68 0.76 0.84 0.66 0.73
Species 0.97 0.79 0.87 0.99 0.81 0.89 0.98 0.8 0.88
Structure 0.93 0.77 0.84 0.95 0.79 0.86 0.94 0.78 0.85
Study Type 0.96 0.95 0.96 0.99 0.97 0.98 0.98 0.96 0.97
Tissue 0.8 0.77 0.78 0.85 0.82 0.83 0.82 0.8 0.81
Global 0.84 0.69 0.75 0.89 0.73 0.79 0.86 0.71 0.77

Table 1: The performance of the Biomaterials Annotator in a test set of 199 abstracts validated manually by 9
experts.

some named by their commercial name or abbrevi-
ation. To address these inaccuracies, future work
will involve expanding relevant ontologies using
tools such as Spike (Taub-Tabib et al., 2020), in-
cluding additional lexical rules, and adding ma-
chine learning components.

4.2 Full system implementation and
availability

A significant challenge for scientific software ap-
plications is providing facilities to share, distribute
and run such systems in a simple and convenient
way. Furthermore, an important concern is the
possibility of replicating the results obtained
during the research. In order to accomplish these
requirements and follow good practices, we de-
veloped the Biomaterials Annotator using Docker
as software container technology and Nextflow
as the workflow manager. Through the use of
Docker, all the subcomponents of the Biomaterials
Annotator were individually compartmentalized;
hosting their own dependencies and programs that
work only inside the isolated container. In addition,
the Nextflow workflow manager was used for
the automated orchestration and execution of the
pipeline. By using this architecture, the entire tool,
or any of its individual components, can be easily
installed and run in heterogeneous environments.
The Biomaterials Annotator is available at
https://github.com/ProjectDebbie/
Biomaterials_annotator.

The Biomaterials Annotator is part of DEB-
BIE (Database of biomedical materials), a
wider system that retrieves abstracts from
pubmed, annotates using the Biomaterials An-

notator and deposits them in an open access
database. DEBBIE is under development and
can be accessed at https://github.com/
ProjectDebbie/DEBBIE_pipeline.

Category Count
Adverse Effects 657
Associated Biological Process 6231
Biologically Active Substance 7709
Biomaterial 5726
Biomaterial Type 1543
Cell 6839
Effect On Biological System 972
Manufactured Object 5967
Manufactured Object Component 2307
Manufactured Object Features 4200
Material Processing 2728
Medical Application 3868
Research Technique 3701
Species 2089
Structure 4136
Study Type 1806
Tissue 9997
Entities 70476
Tokens 392605
Sentences 15979
Abstracts 1222

Table 2: Annotated biomaterials corpus statistics.

4.3 Annotated corpus release

Another key objective was to generate the first an-
notated corpus with entities related to the bioma-
terials domain. Such a corpus will facilitate the
development and evaluation of text mining mod-
els for automated extraction of biomaterials-related
data from text.

The biomaterials annotated dataset consists of
1222 biomaterials abstracts describing the evalu-
ation of biomaterials in either a laboratory or a

https://github.com/ProjectDebbie/Biomaterials_annotator
https://github.com/ProjectDebbie/Biomaterials_annotator
https://github.com/ProjectDebbie/DEBBIE_pipeline
https://github.com/ProjectDebbie/DEBBIE_pipeline
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Figure 5: Average F-score of the automated annotations across categories.

clinical setting. Each abstract is individually con-
tained as a separate file under the GATE format.
Table 2 shows statistics concerning the number of
concepts corresponding to the different categories,
as well as the number of total entities, sentences
and tokens.

The annotated biomaterials corpus is
available and free for use; information
to access the corpus can be found at
https://github.com/ProjectDebbie/
Biomaterials_annotator.

5 Conclusions and future directions

In this work we present the Biomaterials Annota-
tor, an ontology-based NER system that identifies
17 domain specific types of concepts and delivers
an annotated biomaterials corpus of 1222 MED-
LINE articles available for future text mining and
machine learning efforts. We have carried out a val-
idation activity to measure the performance of the
NER system, with the participation of nine bioma-
terials experts, obtaining a global average F-score
of 0.77.

Future work in the development of the system
could involve annotating relations and linking iden-
tified concepts to manufactured biomaterials ob-
jects. It may also include incorporating additional
categories using controlled resources. Improve-
ments to the system will continue in an iterative

manner aiming to enhanced performance in key
categories such as Biomaterials and Cells. In addi-
tion, future versions of the Biomaterials Annotator
will be closely related to the DEBBIE system and
include additional functionalities and features de-
veloped to achieve its main objectives.

The Biomaterials Annotator and the annotated
corpus are open source and available to the com-
munity to promote future efforts in the field and
contribute towards its sustainability.
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A Semantic resources

Table 3: List of semantic resources used by the Biomaterials Annotator

Semantic Resource Name Acronym Scope and relevance Type

1 Chemical Methods
Ontology CHMO Methods used to collect chemical

experiments data. Ontology

2 Chemical Entities of
Biological Interest CHEBI Compounds of biological relevance,

macromolecules. Ontology

3
The Devices, Experimental
Scaffolds and Biomaterials
Ontology

DEB
Biomaterials-related concepts,
materials, structures,
material processing.

Ontology

4 EDAM Bioimaging
Ontology

EDAM-
BIOIMAGING

Imaging and sample preparation
techniques. Ontology

5 Global Medical Device
Nomenclature GMDN Full names of medical devices. Nomenclature

6 Interlinking ontology of
biological concepts IOBC

Biological concepts including
biological phenomena, diseases,
molecular functions,
research imaging techniques.

Ontology

7 Medical Subject Headings MeSH
A hierarchically organized
vocabulary produced by
the NLM.

Controlled
vocabulary

8 National Cancer Institute
Thesaurus NCIT Vocabulary for clinical care,

translational and basic research.
Controlled
vocabulary

9 Nanoparticle ontology NPO The description, preparation, and
characterization of nanomaterials. Ontology

10 Ontology for Biomedical
Investigations OBI

Biomedical protocols, instruments,
data generated, materials, analysis
performed.

Ontology

11 Ontology of Nuclear
Toxicity ONTOTOXNUC Models, chemicals, tools, research

techniques and models. Ontology

12 Precision Medicine
Ontology PREMEDONTO

Human disease terms, genomic,
molecular, phenotype, related
medical vocabulary.

Ontology

13 Uber Anatomy Ontology UBERON An integrated cross-species
anatomy ontology Ontology
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B Annotation categories

Table 4: Annotation categories, their respective semantic resources and imported classes

Annotation
category Definition Resource and imported classes

1 Biomaterial
A non-drug raw material
or substance suitable for
inclusion in systems which
augment or replace the
function of bodily tissues
or organs.

DEB: Biomaterials
CHEBI: Macromolecule
MeSH: Biomedical or Dental Material

2 Biomaterial
Types

Classification or nature
of biomaterials. DEB: Biomaterial Type

3
Biologically
Active
Substance

Substance included in a
manufactured object in
order to impart a biological
activity.

DEB: Biologically Active Substance
MeSH: amino acid, peptide, protein
Biologically Active Substance
Pharmacologic Substance
NCIT: Protein Domain

4 Manufactured
Object

A physical object created
by hand or machine.

DEB: Manufactured Object
MeSH: Medical device
GMDN: Full nomenclature

5
Manufactured
Object
Component

A part, region or
component referred to
as a distinct unit, such
as a surface or a layer.

DEB: Manufactured Object Component

6 Medical
Application,
Disease
or condition

Intended use, context,
function or outcome of
the manufactured object.

DEB: Medical Application
MeSH: Disease or Syndrome
Therapeutic or Preventive Procedure
Anatomical Abnormality

7 Manufactured
Object
Features

Characteristics inherent
or given during processing
to a manufactured object or
its components.

DEB: Manufactured Object Features
MeSH: Chemical Viewed Structurally

8 Structure

The configuration, form
or texture associated with
a manufactured object
or its components.

DEB: Structure

9
Associated
Biological
Process

A cellular or biological
process that the
manufactured object is
designed to cause
or support, or is measured
to affect.

DEB: Associated Biological Process
MeSH: Organ or Tissue Function
Molecular Function
Cell Function
Biological function
NCIT: Cellular Process

10 Material
Processing

A planned process which
results in physical changes
in a specified input
material.

DEB: Material Processing
CHMO: Material Processing

11 Cell
The reported cell line
or primary cell
type.

MeSH: Cell
NCIT: Cell
UBERON: Bone cell, cardiocyte
circulating cell
connective tissue cell
epithelial cell

12 Species
The species and /or
breed used in the
study.

MeSH: Mammal

13 Tissue
A tissue or an organ
mentioned in the
study as the target
or test system for
the biomaterial object
or medical device.

MeSH: Tissue,
Body Location or organ
Body part, organ or
organ component
UBERON: Tissue
PREMEDONTO:Body Part,
Organ, Organ System



48

Table: Continued

Annotation
category Definition Resource and imported classes

14 Adverse
Effects

An unfavourable or
unintended disease, sign,
or symptom (including an
abnormal laboratory
finding) that is temporally
associated with the use
of a medical device or
biomaterial.

DEB: Adverse Effects
MeSH: Pathologic Function

15 Research
Technique

The reported laboratory
technique or instrument
used in an experimental
study.

MeSH: Laboratory Procedure,
Molecular Biology Research Technique
DEB: Research Technique
NCIT: Research Technique
NPO: Instrument
IOBC: Microscope
OBI: Assay
EDAM: Imaging,
Sample preparation
ONTOTOXNUC: Outil

16
Effect
On Biological
System

The effect associated with
manufactured object in
a specific test system
(cells, tissue or organism).

DEB: Effect On Biological System

17 Study
Type

The study set up,
such as in vitro,
in vivo, or clinical.

DEB: Study Type


