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Abstract

Understanding of nerve-organ interactions is
crucial to facilitate the development of effec-
tive bioelectronic treatments. Towards the end
of developing a systematized and computable
wiring diagram of the autonomic nervous sys-
tem (ANS), we introduce a curated ANS con-
nectivity corpus together with several neural
language representation model based connec-
tivity relation extraction systems. We also
show that active learning guided curation for
labeled corpus expansion significantly outper-
forms randomly selecting connectivity relation
candidates minimizing curation effort. Our fi-
nal relation extraction system achieves F1 =
72.8% on anatomical connectivity and F1 =
74.6% on functional connectivity relation ex-
traction.

1 Introduction

The NIH Common Fund’s Stimulating Peripheral
Activity to Relieve Conditions (SPARC) program
aims to transform our understanding of nerve-organ
interactions to help spur the development of ef-
fective bioelectronic treatments. Bioelectronic
medicine represents the convergence of molecu-
lar medicine, neuroscience, engineering and com-
puting to develop devices to diagnose and treat
diseases (Olofsson and Tracey, 2017). One of the
projects within this large consortium is to create
a systematized and computable wiring diagram of
the autonomic nervous system, a part of the “wiring
system” that travels throughout the body transmit-
ting messages between the peripheral organs and
the brain or spinal cord. While diagrams of nerves
are currently available in medical texts (Standring
and Gray, 2008), the SPARC program seeks to map
these connections at higher levels of detail and with
greater accuracy. Additionally, the diagrams in
these medical texts are not generally queryable, nor

are they sufficiently detailed to include the granu-
lar paths that these nerves travel. Such information
would be needed, for example, to understand where
reliable access points to a particular nerve might
be so that stimulation only affects the most rele-
vant nerve or to understand the mechanisms behind
stimulation applied at particular locations. Many
scientific studies contain information about individ-
ual nerves and at times the paths they traverse, but
to our knowledge, no systematic approach has been
attempted to bring these large quantities of infor-
mation together into a computationally accessible
format.

The SPARC project is building a cross-species
connectivity knowledge base that contains detailed
information about individual nerves, their path-
ways, cells of origin and synaptic targets. To date,
this knowledge base has been populated through
the development of detailed models of circuitry by
experts funded through the SPARC project using
the ApiNATOMY platform (Kokash and de Bono,
2021). ApiNATOMY provides a modeling lan-
guage for representing the complexity of functional
and anatomical circuitry in a standardized form.
The circuitry contained in these models represent
expert knowledge derived from the synthesis of
the expert’s own work and the synthesis of, in
some cases , hundreds of scientific publications.
However, to ensure that information in the SPARC
knowledge base is comprehensive and up to date,
i.e., it represents the current state of knowledge
about autonomic nervous system (ANS) connectiv-
ity, we sought to augment the expert-based model
approach with experimental information derived
from the primary scientific literature. As there are
thousands of papers and additional sources like text
books, we utilized natural language processing to
identify sentences that contained information on
neuronal connectivity in the ANS.
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The task was approached by first gathering the
relevant scientific literature by matching bodily
structures at a variety of anatomical levels (i.e.
gasserian ganglion, vagus nerve, brainstem, etc.)
from a constructed set of vocabulary at sentence
level. Then, annotators classified each structure to
structure relationship using only the information
provided within the sentence based on the con-
nectivity types defined in our annotation guideline.
This structured data were then used to train our con-
nectivity relations models. Data from two curators
was used to assess the inter-curator agreement to de-
termine if the annotation guidelines are sufficient to
“teach” the task to humans. We assessed connectiv-
ity statements into several types including, anatom-
ical connectivity, functional connectivity, structural
connectivity, topological connectivity and general
connectivity as well as no connectivity. The general
connectivity and no connectivity categories can be
thought of as statements that are too vague to be
of much direct use for our use case. The most im-
portant statements are anatomical connectivity, elu-
cidating which parts are connected physically and
functional connectivity, elucidating which parts are
connected functionally. A definition and an exam-
ple for each connectivity type used for annotation
is shown in Table 1. Of course with single sen-
tences, it is difficult to define a direct functional
relationship, which typically rests on the latency
with which a signal is detected between two ele-
ments (Bennett, 2001). However, statements about
latency are very rare in the subset of the peripheral
nervous system literature, whereas somewhat more
general statements about functional relationships
that, for example, describe damage to one area
and altered functioning in another, are more abun-
dant. We hypothesize that when such statements
are reasonably abundant, a detection classifier will
be easier to train.

In relation extraction, long-range relations are
usually handled using dependency parse tree infor-
mation. In traditional feature-based models, paths
in the dependency parse tree between entities are
used used as features (Kambhatla, 2004) which
suffered from the sparsity of the feature patterns.
More recently, neural models are increasingly em-
ployed for relation extraction instead of feature en-
gineering using vectorized word embeddings. The
dependency information is represented as computa-
tion graphs along the parse tree (Zhang et al., 2018).
Sequence models, on the other hand, work at the

surface level and represent long distance relation-
ships via either convolutional or recurrent neural
networks and an attention mechanism (Zhang et al.,
2017).

In biomedical domain, relation extraction work
is traditionally focused on protein-protein, gene-
disease or protein-chemical interactions. Sev-
eral labeled datasets, such as GAD (Bravo
et al., 2015) (a gene-disease relation dataset) and
CHEMPROT (Krallinger et al., 2017) (a protein-
chemical multi-relation dataset) are publicly avail-
able. Neural sequence models have also been
applied to protein-chemical relation extraction
task (Lim and Kang, 2018).

Recently, sentence level transformer based lan-
guage representation models such as BERT (De-
vlin et al., 2019) have shown superior down-
stream performance on many NLP tasks. A
biomedical domain adapted version of BERT called
BioBERT (Lee et al., 2019) has been shown state of
the art performance on several biomedical relation
extraction tasks.

While most of the transformer based language
representation models are pretrained on sentences
where a predefined percentage of the tokens are
masked and the model learns to predict the masked
tokens, a recently introduced language representa-
tion model, ELECTRA (Clark et al., 2020) learns
to discriminate if a token in the original input is
replaced by a language generator model or not. The
generator model is a BERT like generative model
that is co-trained with the discriminative model.

While there are efforts to extract brain con-
nectivity information from neuroscience litera-
ture (Richardet et al., 2015), their focus is in the
cognitive parts of the brain instead of ANS. In this
paper, we introduce a labeled ANS connectivity cor-
pus, together with four biomedical domain adapted
ELECTRA models, that we have used to develop
an anatomical and functional connectivity relation
extraction system that outperforms BioBERT.

2 Methods

2.1 Vocabulary

In order to better structure information from pa-
pers, anatomical structure labels were drawn from
a set of relevant ontologies, also approved for use
by the SPARC project. These ontology terms
include primarily FMA (RRID:SCR_003379),
UBERON (RRID:SCR_010668), and NIFSTD
(RRID:SCR_005414) terms, and they are listed
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Relation Definition Example
functional a relationship was determined to

exist between two structures using
physiological techniques

The HB reflex is a reflex initiated by lung infla-
tion, which excited the myelinated fibers of vagus
nerve, pulmonary stretch receptors [11,19].

anatomical a physical synaptic relationship was
observed between two structures us-
ing anatomical techniques such as
tract tracing

Only the most prominent nervous connections,
such as the penis nerve cord (pnc, Fig. 8a), con-
necting the ventral ganglion to the penis gan-
glion can be detected.

structural a relationship that reflected continu-
ity between segments of nerves

The term vocal fold paralysis (VFP) refers to the
reduced or absent function of the vagus nerve or
its distal branch, the recurrent laryngeal nerve
(RLN) [1-3].

topological a relationship that reflected the
course of a nerve

Oculomotor nerve (III) exited from the middle
tectum nearby ventro-medial midbrain and was
observed on 6-day-old fish.

general a statement that contained general
information about connectivity but
did not specify the technique used
or otherwise failed to elucidate the
exact type of connectivity discussed

Moreover, an interoceptive circuit connecting the
gut to the nucleus tractus solitarius (NTS) via
the vagus nerve has been demonstrated to convey
the state of the gut to the limbic system (Figure 9;
Maniscalco and Rinaman, 2018).

Table 1: Connectivity relation types

on the SPARC anatomy working group web pages,
which include term lists. In order to provide a more
targeted set of sentences for training, we selected
a set of terms that was specifically associated with
the ANS. These terms included sympathetic and
parasympathetic nerves and ganglia from the FMA
and UBERON. Terms were selected by the SPARC
Anatomical Working Group, a group of anatomi-
cal experts who provide expertise to the SPARC
knowledge engineers.

2.2 Corpus Generation

The sentences of interest for connectivity relation
extraction were detected by longest phrase match
from the target vocabulary of anatomical terms.
We have used four million full-length PMC open
access papers downloaded on November 2020 to
search for sentences of interest. All the sentences
mentioning at least two distinct anatomical struc-
tures from our vocabulary are selected. To focus
our curation effort to a manageable portion of the
vocabulary, a smaller vocabulary consisting of only
ANS nerve and ganglion terms were selected to
further filter the candidate sentence set where only
sentences having at least one structure from the
focused vocabulary set is selected. Since the result-
ing candidate set was still too large for curation,
up to three examples from each unique focused

vocabulary term encountered is randomly sampled
to create our base corpus of 808 sentences to be
curated.

2.2.1 Annotation of the Corpus and
Inter-annotator Agreement

Three curators/domain experts were involved in the
connectivity corpus labeling process. Our main
curator (J.M.) is a full-time curator with several
years of experience with biomedical named entity
recognition, relation extraction and text classifica-
tion curation tasks. Dr. A.B. is a neurophysiologist
by training with expertise in microcircuitry. Dr.
M.M. is a trained anatomist with expertise in mi-
crocircuitry and a professor of neuroscience. All
curators annotated training sets using the relation
annotator tool developed in-house. The tool allows
the curators both to edit entities (if automatically
detected anatomical structure boundaries are not
correct) and to label automatically generated bi-
nary relation combinations arising from the two or
more anatomical structures detected in the curated
sentence.

To start, A.B. and J.M. completed 30 sentences
together to gauge the difficulty of the task and
train J.M. on the differences between anatomical
and functional connectivity. Then, M.M. and J.M.
independently annotated 102 relation labels. In
this first iteration, connectivity between structures
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could only be classified as anatomical connectivity,
functional connectivity, or no relation. The ini-
tial inter-annotator agreement was 66.7%; Cohen’s
kappa was 0.25. Even when simply comparing bi-
nary connectivity vs. no relation, there was only an
inter-annotator agreement of 72%; Cohen’s kappa
was 0.34. After discussing disagreements, addi-
tional connectivity types were added to the relation
annotator tool. After expansion, connectivity could
be classified as structural, topological, or general
in addition to the previous versions labels: anatom-
ical, functional, and no relation. This was done
to make each connectivity type more explicit with
less potential overlap, especially between our main
connectivity types of interest (anatomical vs. func-
tional).

In our second iteration, M.M. and J.M. indepen-
dently annotated another 170 relation labels across
100 sentences. This time, the inter-annotator agree-
ment was 73.5%; Cohen’s kappa was 0.25. Anno-
tation differences though were primarily found to
be between our general connectivity and no rela-
tion tags. If we consider general connectivity to be
the same as no relation (collapsing them together),
then our inter-annotator agreement jumps to 91.2%;
likewise, Cohen’s kappa also increases to 0.55. Be-
cause our primary disagreements were between two
tags of less interest (general connectivity vs. no-
relation), we believe our inter-annotator agreement
is acceptable for this high difficulty task.

2.3 Models

2.3.1 ELECTRA based language
representation models for Biomedical
Domain

Domain specific language representation models re-
sult in performance improvements on downstream
NLP tasks as demonstrated by BioBERT (Lee et al.,
2019). Similarly, we have pretrained four ELEC-
TRA (Clark et al., 2020) based models on biomedi-
cal corpus.

For pretraining corpus we have used both
PubMed abstracts and PubMed Central (PMC)
open access full-length papers. 21.2 million
PubMed abstracts from the January 2021 baseline
distribution are used to build our main pretraining
corpus. Sentences extracted from the paper title
and abstract text resulted in a corpus of 3.6 billion
words. For the PMC open access papers, sentences
extracted from all sections except the references
section of the full-length papers are used to build a

12.3 billion words corpus. A domain specific word
piece vocabulary is generated using SentencePiece
byte-pair-encoding (BPE) model (Sennrich et al.,
2016) from PubMed abstract texts. The models
are pretrained for one million steps on the PubMed
abstracts corpus followed by 200,000 steps training
on the PMC open access papers corpus.

During training, ELECTRA uses a small trans-
formers based encoder model using masked lan-
guage objective like in BERT to generate possible
replacements for the larger discriminative model
which is also based on transformers architecture.
Both models are trained jointly. During fine-tuning,
only the discriminative model parameters are used.
The discriminative model has essentially the same
architecture as BERT but trained in a discrimina-
tive manner using a different objective. We have
trained three different model sizes; a base model
with embedding and hidden size of 768, 12 atten-
tion heads and 12 transformer layers; a mid sized
model with embedding size of 384, hidden size of
512, 8 attention heads and 12 transformer layers;
a mid sizes tall model having same parameters as
the mid sized model but with 24 transformer layers.
We have also trained another mid sized model with
the combined PubMed abstract and PMC open ac-
cess full paper corpus instead of the two corpus
cascaded training approach used for the other three
Bio-ELECTRA models. For all models, the maxi-
mum allowed input sequence length was set to 512.
For all models besides the mid-tall model, the batch
size was set to 256. The mid-tall model had a batch
size of 128 because of the memory limitations of
a single tensor processing unit (TPU). The model
architectures, sizes and training times are summa-
rized in Table 2. All the models are trained on a
single 8 core version 3 TPU with 128 GB RAM.

While, we have used our Bio-ELECTRA models
for connectivity relation extraction only, the models
like BioBERT are applicable to many downstream
biomedical NLP tasks.

3 Experiments

We conducted our experiments in two phases. In
the first phase, all the binary connectivity relation
candidates in the 805 sentences extracted from the
open access subset of PubMed Central is annotated
by a curator. The curated base set is then randomly
split into 80/20% train/test set. Afterwards, ten
randomly initialized models are trained. The re-
ported results are average of 10 runs together with
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Model Params Architecture Steps Train Time/Hardware
Mid 50M hidden:512, layers:12 1.2M 6.5d on 8 TPUv3s
Base 110M hidden:768, layers:12 1.2M 12.5d on 8 TPUv3s
Mid-tall 88M hidden:512, layers:24, batch:128 1M 5.5d on 8 TPUv3s
Mid Combined 50M hidden:512, layers:12 1.2M 6.5d on 8 TPUv3s

Table 2: ELECTRA Models for Biomedical Domain

standard deviation. In the second phase, the base
set is enhanced via active learning.

As our baseline model, we have used a graph
convolution over dependency parse tree neural
model (Zhang et al., 2018) where the dependency
graph structure is represented by an adjacency ma-
trix over which convolution operations are per-
formed. The model uses word embedding vec-
tors for input encoding and stacked layers of graph
convolution network (GCN) layers to encode rela-
tions. The input encodings can be further contexu-
alized via a bi-directional long-short-term memory
(LSTM) layer, which we have used in our exper-
iments. For word embeddings we have used 300
dimensional Common Crawl (840B tokens) trained
GloVe (Pennington et al., 2014) vectors. The de-
pendency parse trees for the input sentences were
generated via Stanford CoreNLP (Manning et al.,
2014) package.

All the other models are fine-tuned from pre-
trained transformers based language representation
models. We have downloaded Bio-ELECTRA++
from Zenodo1. Besides our four biomedical cor-
pus pretrained ELECTRA models, we have used
BioBERT (Lee et al., 2019) version 1.1 and ELEC-
TRA Base models. The binary anatomical struc-
ture entities are masked in candidate sentences as
in (Zhang et al., 2018; Lee et al., 2019). Besides
that, no further preprocessing is done. All the mod-
els are trained for three epochs, using the the de-
fault learning rate and maximum allowed batch size
for our 8GB Nvidia RTX 2070 GPU.

The test performance of models tested are sum-
marized in Table 3. Even after the benefit of depen-
dency parses, contextualized graph convolution net-
works were at the bottom of the performance rank
tying with the smallest language representation
model. Two Bio-ELECTRA models, namely Bio-
ELECTRA Base and Bio-ELECTRA Mid outper-
formed BioBERT. Given that the Bio-ELECTRA
Mid has less than half the parameters of Bio-BERT,

1https://doi.org/10.5281/zenodo.
3971235

its performance is especially impressive. We chose
the best performing Bio-ELECTRA Base model
for the second stage.

3.1 Extending Curation Set via Active
Learning

Since labeled data set generation is costly and time
consuming, we have tried to leverage active learn-
ing to minimize curation effort while trying to max-
imize prediction performance. To this end, 250
randomly selected candidate sentences from the
nerve-ganglia PMC data set, are interactively cu-
rated by our curator in ten iterations. Each iteration
has consisted of 25 candidate sentences selected by
the binary relation extraction classifier trained on
all the the curated sentences from the previous itera-
tions plus the base training set. In the first iteration,
the classifier is trained on the base training set only.
For the control set, we have randomly selected 250
candidate sentences from the nerve-ganglia PMC
data set, which are annotated separately by our cu-
rator. We have used uncertainty sampling as our
oracle query strategy where the 25 unlabeled sen-
tences that are closest to the decision boundary
(probability estimate of 0.5) are selected for cu-
ration at each iteration. After each iteration, the
extended training set is used to train ten randomly
initialized models which are tested on the testing
set. The precision and F1 performance scores over
the active learning set is shown in Figure 1.

The testing performance of active learning based
vs random selection based training set expansion
is shown in Table 4. Active learning strategy was
significantly better than random selection based on
two-tailed t test.

3.2 Effect of Hyperparameter Optimization

The additional 500 curated sentences (250 from
active learning, 250 from random control set) are
combined with the base training set. To maximize
relation extraction performance, we used hyperpa-
rameter tuning on the 80%/20% training/dev set
split of the combined training set. Using hyper-

https://doi.org/10.5281/zenodo.3971235
https://doi.org/10.5281/zenodo.3971235
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Model Parameters Precision Recall F1

Contextualized-GCN 71.05 (4.36) 54.23 (4.20) 61.36 (3.01)
ELECTRA Base 110M 69.35 (4.23) 70.85 (5.43) 70.03 (4.39)
BioBERT 110M 67.82 (4.71) 72.34 (2.18) 69.89 (2.40)
Bio-ELECTRA++ 11M 54.41 (2.11) 70.32 (3.38) 61.26 (1.33)
Bio-ELECTRA Mid 50M 69.16 (3.53) 73.83 (2.24) 71.36 (2.16)
Bio-ELECTRA Base 110M 69.93 (2.91) 74.26 (3.55) 71.99 (2.76)
Bio-ELECTRA Mid Combined 50M 67.66 (2.38) 74.36 (5.80) 70.70 (2.78)
Bio-ELECTRA Mid-tall 88M 63.89 (4.51) 65.96 (3.81) 64.78 (2.98)

Table 3: Binary connectivity/no-connectivity relation extraction on base set

Data Set Precision Recall F1

Random 70.29 (1.69) 74.04 (3.27) 72.06 (1.68)
Active learning 75.88 (2.70) 75.11 (2.39) 75.47 (2.30)

Table 4: Test performance effect for active learning vs random selection based labeled set expansion

Figure 1: Average test performance over active learn-
ing iterations

opt (Bergstra et al., 2013) Python package, we
searched for the optimum F1 value for the follow-
ing hyperparameters; the learning rate among the
values 1e-5, 5e-5, 1e-4 and 5e-4, number of epochs
among the values 3, 5, 10. We have used the maxi-
mum possible batch size of 16 for our 8GB RAM
GPU. The best performing hyperparameter com-
bination was then used to train ten randomly ini-
tialized Bio-ELECTRA Base based connectivity
relation extraction classifiers. The results together
with ten runs using default learning parameters are
shown in Table 5. Hyperparameter optimization
performance was significantly better than default
learning parameter performance as determined by
two-tailed t test (p = 0.014)

To detect anatomical and functional connectivity
relations among candidate structure binary relation

sentences, we have introduced a three class classi-
fier based on the same Bio-ELECTRA Base lan-
guage representation model as the connectivity/no-
connectivity classifier. Ten randomly initialized
classifiers are trained using optimized hyperparam-
eters. The test performance is shown in Table 6.

4 Discussion

Connectivity relations constituted only about 12%
of the connectivity relationship candidates in our
corpus. Taking this into account, the anatomical
and functional connectivity detection performance
of our final classifier is good enough to be used
for ANS connectivity knowledge base construction
with drastically reduced domain expert curation.

When looking at our model’s performance, we
considered errors at the level of individual connec-
tivity relations labels, meaning we could (and did)
have some sentences with multiple errors. We de-
fined errors as cases where relation labels tagged
by the model and the annotator did not agree. We
performed our error analysis in two phases. In
phase 1, our analysis was performed using only
binary connectivity data (i.e. did annotators mark
a relationship using any type of connectivity or as
no relation) from 40 connectivity errors: 19 false
positives and 21 false negatives. False positives
were defined as instances when the model predicted
connectivity when there was actually no relation-
ship (as defined by the annotator). Inversely, false
negatives were cases when the model predicted
structures to have no relationship when there was
actually some type of connectivity. In phase 2, our
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Model Precision Recall F1

Bio-ELECTRA Base (default) 76.97 (2.72) 74.68 (2.32) 75.77 (1.99)
Bio-ELECTRA Base (opt) 77.32 (2.39) 77.98 (1.65) 77.62 (1.33)

Table 5: Connectivity/No-Relation test performance on the extended training set

Relation Precision Recall F1

Anatomical connectivity 68.93 (2.94) 77.12 (1.37) 72.77 (1.99)
Functional connectivity 82.79 (2.39) 68.00 (2.80) 74.61 (2.35)

Table 6: Anatomical/functional connectivity test performance on the extended training set

analysis was performed on anatomical connectivity
errors (18 false positives; 15 false negatives) and
functional connectivity errors (5 false positives; 11
false negatives). With both phases, we noticed pat-
terns emerging among the errors, although in most
cases, these errors were present across all connec-
tivity types. In other words, there was very little
difference between the errors seen in phase 1 vs.
the errors seen in phase 2.

The first identified error pattern was mislabeled
data due to human error. We noticed 4 instances
where the data was mislabeled. The second type of
error occurred because a solid line of demarcation
between connectivity types was difficult to estab-
lish due to ambiguities in our curation guidelines
and the overall difficulty of the task. When we
began annotating, connectivity between structures
could only be defined as anatomical, functional or
having no relation. After discussing the differences
in our annotations though, it became apparent we
needed to add additional connectivity types to clar-
ify the lines of demarcation between each. As a
result, we added structural, topological, and gen-
eral connectivities, and while we did see improved
classifier performance after adding these, it appears
we weren’t entirely successful in our attempts to
explicate our connectivity types. In the example,

"The central amygdaloid nucleus (CeA)
and the bed nucleus of the stria termi-
nalis (BNST), which is considered to be
a component of the “extended amyg-
dala”, establish important connections
with the hypothalamus and other brain
areas controlling visceral and sensory in-
formation."

BNST and the extended amygdala were incorrectly
identified as having anatomical connectivity. This
“part of the whole” pattern was seen multiple times
in our errors (binary, anatomical and functional),

primarily as a false positive. In future works, it
might benefit curation efforts to add additional con-
nectivity type(s), e.g. fractional connectivity for
this “part of the whole” pattern, in order to fur-
ther elucidate lines of demarcation. Additionally,
because connections between structures are not al-
ways obvious, even to human curators (i.e. if A
is connected to B and B is connected to C, is A
always connected to C?), the lines of demarcation
separating connectivity types may always remain
somewhat hazy.

We were able to identify a few additional pat-
terns by comparing the syntax and vocabulary of
sentences with errors to that of sentences without
errors. In general though, sentences with errors
tended to have far more complex sentence struc-
ture than sentences without. More specifically, er-
ror prone sentences generally contained far more
prepositional phrases and compound subject and
verb phrases. For example, we saw multiple errors
within the following sentence:

“Chemoreceptors in the carotid body
or aortic body in the walls of the inter-
nal carotid artery or the aorta sense the
level of oxygen or carbon dioxide in the
blood and convey these signals via the
glossopharyngeal and vagus nerves to
the nucleus of the tractus solitarius.”

Just from a cursory glance, it becomes obvious that
this sentence is complicated; it contains multiple
subject and verb phrases clouded by prepositional
phrases. Unfortunately, the convoluted nature of
the sentence hurts readability for both humans and
machines. Because humans also tend to have issues
understanding these highly complex sentences, we
feel the best solution is for authors to limit the com-
plexity of their sentences to reasonable levels when
possible. If a sentence is too complex for a human
to understand, it will most likely be too complex
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for a computer. Additionally, we noticed persis-
tent issues when subjects were not explicit. Unre-
solved pronouns (e.g. pronouns whose antecedents
are unknown) and ambiguous body structures (i.e.
fibers) tended to cause errors wherein the model
would correctly identify that the sentence contained
connectivity but would incorrectly identify which
structures are connected. With regards to verb us-
age, our model seemed to perform better when the
connectivity between structures was described in
active voice rather than passive. One potential ex-
planation is that sentences using active voice tend
to be more clear and simple than sentences using
passive voice. Lastly, our model seemed to per-
form worse the further apart the two connecting
structures were within the sentence.

5 Conclusions

In this paper, we introduced a labeled corpus for
ANS connectivity relations which is further ex-
panded via active learning. The labeled ANS con-
nectivity relation corpus is used to develop relation
extraction systems mostly based on language repre-
sentation neural models. We have introduced four
biomedical domain pretrained ELECTRA (Clark
et al., 2020) based discriminative language repre-
sentation models, two of which have outperformed
BioBERT (Lee et al., 2019) on the ANS connectiv-
ity relation extraction task. Using active learning
guided curation, the labeled corpus is expanded
minimizing the curation effort while significantly
improving ANS connectivity relation extraction
performance.

Based on the observed benefits of the ac-
tive learning, we are planning to use our Bio-
ELECTRA based relation extraction system in a
web based tool for ANS connectivity knowledge
base construction with active learning based con-
tinuous learning ability.

Software and Data Availability

All pretrained Bio-ELECTRA models are available
on Zenodo (https://doi.org/10.5281/
zenodo.4699034). The labeled connectivity
corpus and codebase including the connectivity
relation annotation tool are available on Github
(https://github.com/SciCrunch/
connectivity-re).
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