
Consistent unsupervised estimators for anchored PCFGs

Alexander Clark
Department of Philosophy

King’s College London
alexsclark@gmail.com
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1 Introduction

Learning probabilistic context-free grammars just
from a sample of strings from the grammars is
a classic problem going back to Horning (1969).
This abstract, based on the full paper in Clark
and Fijalkow (2020), presents an approach for
strongly learning a linguistically interesting sub-
class of probabilistic context free grammars from
strings in the realizable case. Unpacking this, we
assume that we have some PCFG that we are in-
terested in learning and that we have access only
to a sample of strings generated by the PCFG –
i.e. sampled from the distribution defined by the
context free grammar. Crucially we do not ob-
serve the derivation trees – the hierarchical latent
structure. Strong learning means that we want the
learned grammar to define the same distribution
over derivation trees – i.e. the labeled trees — as
the original grammar and not just the same distri-
bution over strings.

The motivation for this work is to get some the-
oretical insight into first language acquisition, and
particularly into the information sources necessary
for the acquisition of syntactic structure. The stan-
dard view is that children learn the syntactic struc-
ture of their first languages not by purely syntac-
tic means, but rather by using information about
the range of available interpretations, derived from
the situational context of the sentences they hear
and inferences about the intentions and goals of
the speaker. This work strongly suggests that the
surface strings alone contain enough information
for the gross constituent structure to be acquired,
without the necessity for such external informa-
tion sources.

2 Anchored PCFGs

The first and most important condition is that each
nonterminal has a single terminal that is only de-

rived from that nonterminal: if so then we say
that the terminal is an anchor for that nonterminal.
This is in essence an exemplar based approach.

Given a probability distribution over strings, for
each string w we can define a distribution over
contexts, where the probability of a context l, r is
proportional to the probability of lwr. We can of
course measure distances of various types between
these distributions. A long standing idea in struc-
turalist linguistics was to use these distances to in-
fer syntactic information. With the anchoring as-
sumption the core idea is given terminals (words)
a, b, c that are anchors for nonterminals A,B,C
respectively, we should be able to infer something
about the possible production A → BC, and its
parameter by comparing the distributions of a and
bc; and given some terminal d, comparing the
distributions of d and a should tell us something
about the production A → d. It turns out that the
appropriate measure to use is a Renyi divergence
defined as:

R∞ (P‖Q) = log sup
x

P (x)

Q(x)
(1)

We will write ρ(v → w) for this divergence be-
tween the context distributions of v and w.

3 Bottom up WCFGs

A weighted CFG is a CFG where each production
is associated with a parameter given by a function
θ. One important technical detail is to reparame-
terize the probabilistic grammar, where the param-
eters correspond to conditional probabilities of the
right hand side, given the left, in a top down gener-
ative process as a bottom-up process. If a WCFG
is in bottom-up form then the parameters satisfy:

θ(A→ BC) =
E(A→ BC)

E(B)E(C)
(2)

θ(A→ a) = E(A→ a).
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This parameterization defines, apart from a few
uninteresting edge cases, the same family of distri-
butions as a PCFG, and we can efficiently convert
between the two parameterizations.

4 Parameter equalities

The paper shows that with two additional assump-
tions, detailed below, the following equations hold
between the log parameters of each production, in
the bottom-up format.

log θ(A→ BC) = log
E(bc)

E(b)E(c)
− ρ(a→ bc)

(3)
Here the first term on the right hand side is very
close to the pointwise mutual information between
b and c and depends only on the right hand side of
the production. The term ρ(a → bc) is the Renyi
divergence between the distributions of a and bc;
this takes a value between 0 and∞, and penalises
productions where distributions of the left hand
side and right hand side are far apart.

log θ(A→ d) = logE(d)− ρ(a→ d) (4)

The equation for a simple lexical rule is even sim-
pler: the first term is just the log of a quantity that
is approximately the lexical frequency of the item
involved, and the second term is again the diver-
gence between left hand side and right hand side.

The two additional conditions are also fairly
natural, and both informally bound the degree of
ambiguity.

• The first is called Strict Upward Monotonic-
ity (SUM): a grammar satisfies this condition
if adding any new production (in Chomsky
normal form) will strictly increase the set of
strings generated.

• The second is Local unambiguity. This re-
quires that for any production there are some
sentences that can only be generated by using
that production ”in the same place”. In other
words for a production A→ α there must be
strings l, u, r such that every derivation of the
string lur contains a tree of the form A

∗⇒ u.

Given the first two conditions the context dis-
tributions of terminals that are anchored will lie
at the vertices of a simplex in high dimensional
space, and those of ambiguous words will lie in the
interior. A simple algorithm derived from Stratos

et al. (2016) allows us to recover these. Using
some naive estimators for the divergences and the
expectations in Equations 3 and 4 we can then di-
rectly give estimates of the parameters of the pro-
ductions from a large sample of strings.

5 Discussion

The main result is that there is a simple computa-
tionally efficient algorithm that consistently learns
all PCFGs that satisfy these three conditions, only
seeing the strings that are sampled from the distri-
bution defined by the PCFG. This algorithm uses
naive estimators that would be extremely slow to
converge; but Clark and Fijalkow (2020) also give
some computational experiments with synthetic
data that show that even when none of the condi-
tions are satisfied, a variant of this algorithm per-
forms well with reasonably sized samples. How-
ever this still relies heavily on the assumption that
the samples come from a distribution generated by
a PCFG.

While there are many empirically evaluated
heuristic algorithms in the literature for unsuper-
vised learning of PCFGs, this is more or less the
first algorithm with any nontrivial theoretical guar-
antees. The three conditions give successively
stronger conditions:

• If the grammar is anchored then the algorithm
will converge to some grammar that gener-
ates the correct set of strings.

• If it is anchored and SUM, then it will con-
verge to the correct CFG, but with possibly
incorrect parameters

• If it is satisfies all three conditions it con-
verges to the correct PCFG.

The resulting grammars satisfy a minimax prop-
erty: they are not the smallest grammars but
rather the largest grammars with the minimal num-
ber of nonterminals. The anchoring condition
is clearly too strong in its naive form: a cor-
pus study shows that in a corpus of child di-
rected speech in English (Pearl and Sprouse, 2012)
clausal categories are not represented by single
word, and fine grained distinctions between lexi-
cal categories need a more refined approach, but
this is perhaps a limitation of the CFG formalism
per se rather than the learning algorithm.
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