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Introduction: Humans show great ability to gen-
eralize linguistic knowledge to sentences that they
have never been exposed to, with their limited lin-
guistic experience. An example of this is our ability
to perform Subject-Verb Agreement (SVA), which
is a feature of syntactic structure in language.1

Subject-verb agreement is a phenomenon where
the main subject agrees in grammatical number
with its associated verb, oblivious to the presence
of any other noun phrase in the sentence. An exam-
ple is:

1. *The keys to the cabinet is on the table. 2

2. The keys to the cabinet are on the table.

In the above example, the number of the main
verb are (plural) has to agree with the number of the
main subject keys (plural). Here, the intervening
noun cabinet has the opposite number (singular) to
that of the main subject. Such intervening nouns
are referred to as agreement attractors (Bock and
Miller, 1991). In natural language sentences, there
can be any number of intervening nouns behaving
as agreement attractors or non-attractors (nouns
with the same number as the main noun).

Previous work (Linzen et al., 2016; Marvin and
Linzen, 2018; McCoy et al., 2018; Kuncoro et al.,
2019; Noji and Takamura, 2020; Hao, 2020) as-
sessed the ability of RNN Language Models (LMs)
to capture syntax-sensitive dependencies. However,
it is still not clear if good performance on SVA tasks
is necessarily a result of the RNN’s ability to cap-
ture the underlying syntax, and this is the question
we seek to further investigate here. McCoy et al.

∗∗Equal contribution
1A longer version of this paper is available at https:

//arxiv.org/abs/2010.04976.
2The main noun and the associated verb are in bold. Inter-

vening nouns are underlined, and * denotes a grammatically
incorrect sentence.

(2020, 2018) showed that hierarchical bias in the
models, as well as the inputs, helps to generalize
to unseen sentences. On the other hand, Chaves
(2020) and Sennhauser and Berwick (2018) pro-
vide evidence that LSTM models are more likely to
learn surface-level heuristics, such as agreeing with
the most recent noun, than the underlying grammar.

Following McCoy et al. (2018) who show that
training on sentences with agreement information
increases the probability of good syntactic general-
ization, we experiment with training RNN models
on sentences with at least one attractor (Figure 1),
to impart additional hierarchical cues compared to
a natural data set. We test the hypothesis that if
the models under consideration were to capture the
correct grammatical structure from syntactically
rich input, then they would be able to generalize
out-of-distribution (OOD), i.e., when tested on sen-
tences without attractors having been trained solely
on sentences with at least one attractor. In our
experiments, we compare this setting to the more
natural one of models trained on a dataset without
any restriction on the number of attractors.

The kind of hypothesis learned by a model is
guided by inductive biases. To account for the
varying inductive biases that different RNN models
might encode, we look at multiple architectures –
LSTM, GRU, ONLSTM, and Decay RNN.

Our major contributions are the following:
– We show that despite providing strong hierar-

chical cues via a selectively sampled training set
(Figure 1), RNNs do not generalize to an unseen
combination of intervening nouns.

– Our findings further suggest that a soft hierar-
chical inductive bias, as imparted by the ONLSTM,
in addition to a syntactically rich training set, is
also insufficient to capture the underlying grammar
of natural language.

– We verify that our findings are consistent
across multiple learning paradigms, self-supervised
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language modeling and supervised grammaticality
judgment, as well as varied test sets, natural and
constructed (Tables 1, 2).

Figure 1: Dataset description. As structure-insensitive
RNN models suffer from agreement attraction errors,
our selectively sampled dataset is syntactically chal-
lenging for such sequential models, for whom surface-
level heuristics such as ‘agree with recent noun’ are
efficiently available. Hence, training RNNs on such
datasets might induce them to capture hierarchical re-
lations rather than learning shallower heuristics.

Architectures: In this work, we conduct our exper-
iments on four recurrent schemes – LSTM (Hochre-
iter and Schmidhuber, 1997), GRU (Cho et al.,
2014), Decay RNN (DRNN) (Bhatt et al., 2020),
and ONLSTM (Shen et al., 2019). The governing
equations of these architectures are mentioned in
§A.1. ONLSTM is a recurrent network with soft
hierarchical inductive bias.

Datasets: We use sentences from the Wikipedia
corpus made available by Linzen et al. (2016). For
training, we further choose two subsets from the
main dataset, based on the number of attractors in
each sentence (Figure 1). The sentences without
any attractor are grammatically simple and allow
for out-of-distribution testing as they are not seen
while training on the selectively sampled dataset.

For the binary classifier, we augment each sen-
tence with its corresponding counterfactual exam-
ple.3 Apart from testing on the sentences from the
corpus (157k), we also test our models on synthet-
ically generated sentences for targeted syntactic
evaluation (Marvin and Linzen, 2018).

Experiments: In this work, we focus on evalu-
ating the models’ ability to make grammaticality
judgments when trained for classification (super-
vised) and language modeling (self-supervised).

3Augmenting with counterfactual examples is effective
in reducing the spurious correlation in sentiment analysis
(Kaushik et al., 2020). More information provided in §A.2 &
§A.3.

For each task, we train models (with 5 different
random seeds) on both training subsets from the
corpus.

Consider the sentences from the introduction.
A classifier is expected to label sentence 1 as un-
grammatical and sentence 2 as grammatical. For
grammaticality judgment via an LM, we train on a
standard LM objective and during inference, check
if our model gives a higher probability to the gram-
matically correct verb form conditioned on previ-
ous tokens in the sentence.

Training set Natural Sampling Selective Sampling
Test attractors 0 1 2 3 0 1 2 3

LANGUAGE MODEL
LSTM 0.98 0.91 0.84 0.78 0.89 0.98 0.98 0.95
ONLSTM 0.98 0.92 0.86 0.82 0.90 0.98 0.98 0.95
GRU 0.97 0.88 0.78 0.73 0.87 0.98 0.97 0.94
DRNN 0.96 0.69 0.47 0.36 0.83 0.97 0.94 0.91

BINARY CLASSIFIER
LSTM 0.97 0.93 0.87 0.82 0.60 0.98 0.96 0.97
ONLSTM 0.97 0.91 0.84 0.81 0.64 0.98 0.97 0.98
GRU 0.97 0.88 0.76 0.69 0.62 0.95 0.94 0.96
DRNN 0.97 0.90 0.81 0.77 0.70 0.97 0.96 0.96

Table 1: Accuracy of RNN architectures trained as
LMs and classifiers, for test instances with an increas-
ing number of attractors between main subject and verb.
The maximum accuracy for each model and training
setup across attractor counts is in bold; standard devia-
tions are in the Appendix, Table 5. Note that the models
trained on the selectively sampled dataset are not able
to generalize well OOD (sentences without attractors).

Performance on Natural Sentences: Table 1
shows the main results for the described exper-
iments. For the models trained on a naturally
sampled dataset, the performance degrades quite
quickly with an increasing number of attractors be-
tween the subject and the corresponding verb, for
both the LM and the classifier versions. However,
the reduction in the accuracy with increasing attrac-
tor count for the models trained on the selectively
sampled dataset is much less than with the natural
sampling training.

For the selectively sampled dataset, the sen-
tences without attractors serve as OOD sentences,
and the performance boost on in-distribution com-
plex sentences comes at the cost of a reduction in
the accuracy on the OOD yet relatively simple sen-
tences. The error rate for the ONLSTM, a model
with inherent tree bias, also increases when tested
on the OOD sentences, and when trained for a
classification objective it performs worse than the
architecturally simpler Decay RNN.

This fall-off on grammatically simpler OOD
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samples seems counter-intuitive. We note that
the increase in error rates is much greater when
training the models as classifiers rather than LMs.
This shows that models with supervised training for
grammaticality on syntactically rich and counter-
factually augmented data are still unable to capture
the actual syntactic rules, and appear to be learn-
ing shallower heuristics, but ones which capture
more nuanced patterns than simply going by linear
distance. We can infer this because while our se-
lectively sampled subset contains sentences with at
least one attractor, many (over 30%) of the inter-
vening nouns in these sentences are non-attractors.
Hence there are sentences in which a non-attractor
noun (same number as the main subject) imme-
diately precedes the verb rather than an attractor
noun. Therefore, the agreement performance (on
sentences with attractors) of the models trained
on this dataset cannot arise from an overly simple
heuristic like disagreeing with the most recent noun,
and the observed decline in OOD performance im-
plies that less trivial heuristics are being learned
which nevertheless fail to capture the actual syntax.

Analysis of representations: To analyze the dif-
ferences in the learned internal representations
among the models trained on the two subsets of
the data, we perform a representation similarity
analysis (RSA) (Laakso and Cottrell, 2000). We
take 2000 sentences selected randomly from the
test set. Our major observation from Figure 2 is
that the representations of models trained on dif-
ferent subsets are easily linearly separable in this
space, for both the LM and the classifier objectives.
This implies that the representation clustering is not
so much based on model architecture or inductive
bias, but is driven more by the training data.

Targeted Syntactic Evaluation (TSE): We test
how training the language models on the strate-
gically chosen inputs impacts generalisation to dif-
ferent syntactic constructions. Testing on such ex-
amples lets us evaluate if our models are captur-
ing what we intend them to capture (Marvin and
Linzen, 2018). Table 2 presents the performance of
the LMs on the synthetic data, for sentences with
0 or 1 agreement attractors. These findings cor-
roborate our observations on natural language sen-
tences – the models trained on the selectively sam-
pled dataset performed worse on sentences without
attractors which are syntactically simpler.

(a) Binary classifiers

(b) Language models

Figure 2: Representation similarity analysis of the hid-
den units of different RNN models (5 different seeds
for each model). We observe that for both the learning
objectives, one can partition the 2D space using a line
which separates models trained on the two subsets of
the data, natural and selective sampling.

To assess the performance of the models trained
on the selectively sampled dataset, we take a closer
look at constructed sentences that are structurally
similar to in-distribution sentences but contain non-
attractor intervening nouns rather than agreement
attractors. Figure 3 depicts the performance of
the LSTM LM on three agreement conditions –
across Object RC, Preposition Phrase, and Subject
RC, each with animate main noun. We observe
that with our selective training, the performance
on sentences with non-attractor intervening nouns
(the SS/PP configurations, which are unobserved in
the selectively sampled dataset) worsens substan-
tively for 2 out of 3 syntactic constructions – across
Preposition Phrase and Subject RC.

Discussion and Conclusion: In this work, we an-
alyzed the effects of a strategically chosen training
set with exclusively ‘hard’ agreement instances, on
neural language models and binary classifiers for
grammaticality judgment. We observed that the
models’ inability to perform well on out of distri-
bution (OOD) sentences, even those which would
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Training set Natural Selective
Test attractors 0 1 0 1
LSTM 0.77 (± 0.05) 0.66 (± 0.04) 0.63 (± 0.04) 0.83 (± 0.06)
ONLSTM 0.76 (± 0.07) 0.70 (± 0.06) 0.60 (± 0.05) 0.85 (± 0.01)
GRU 0.74 (± 0.02) 0.64 (± 0.02) 0.51 (± 0.02) 0.81 (± 0.04)
DRNN 0.67 (± 0.04) 0.44 (± 0.04) 0.48 (± 0.04) 0.79 (± 0.03)

Table 2: Accuracy of LMs on test instances with 0 or 1
attractors from the artificial corpus. Models trained on
the selectively sampled subset do not generalize well
on OOD sentences without attractors. Performance
across different syntactic constructions is shown in Ta-
ble 6 in the Appendix.

(a) LSTM trained on the naturally sampled subset

(b) LSTM trained on the selectively sampled subset

Figure 3: Fine-grained analysis of the LSTM LM on
Obj/Subj Relative Clauses and Preposition Phrases, de-
marcated by the inflections of the main subject and the
embedded subject. P: Plural, S: Singular; thus SS de-
notes sentences with a singular main noun and a singu-
lar embedded subject, and likewise for the other cases.

seem to be ‘easy’ agreement instances, is consistent
across variation in learning mechanism (supervised
or self-supervised), innate architectural bias, and
testing set – natural or artificial sentences.

Our analysis showed that the error rates of mod-
els trained on sentences with at least one agreement
attractor are higher on sentences with no attractors
than on sentences with attractors, for both corpus
sentences (Table 1) and artificial sentences (Table
2). This observation is counter-intuitive because
the models were trained on syntactically rich sen-
tences and yet failed to perform well on simpler
sentences. Had our RNN models picked up the cor-
rect grammatical rules, we would not expect this
behavior. We obtained a similar counter-intuitive
result for targeted syntactic evaluation (Appendix,

Table 6), where models trained on the selectively
sampled dataset performed much better on difficult
constructed sentences involving agreement across
nested dependencies, than on simpler sentences
involving agreement within nested dependencies.

Our analysis of representations suggested that
training set bias dominates over the model’s archi-
tectural features or inductive bias in shaping rep-
resentation learning; e.g., there was no discernible
difference between the learned representations of
ONLSTM and LSTM models. The reasons for this
merit further exploration. Moreover, for the binary
classifiers (Figure 2a), although we observe little
variance in test accuracy across different training
seeds, the variance in the projected representation
space is substantially greater than for LMs. Thus,
we posit that an LM objective is more reliable when
comparing the ability of different RNN models to
capture syntax-sensitive dependencies.

We observed that the hierarchical inductive bias
in the ONLSTM is not sufficient to perform well
on OOD sentences. McCoy et al. (2020) argued
that an architecture with explicit tree bias, plus syn-
tactically annotated inputs, are needed to capture
syntax for sequence-to-sequence tasks. Here we
show that the ONLSTM (soft tree bias) trained on
a syntactically rich dataset (soft structural infor-
mation) turns out to be insufficient to generalize
well to OOD sentences and capture the underlying
grammar. Our targeted syntactic evaluation pin-
points the cases which our models fail to capture,
and improving performance on such cases is a key
future direction.

Our observations suggest that RNNs being fun-
damentally statistical models can efficiently cap-
ture the correlation of the output variable with the
input as observed during training, even for rela-
tively ‘hard’ or non-linear linguistic dependencies,
without necessarily learning the underlying hierar-
chical structure. This is consistent with the con-
clusions of Sennhauser and Berwick (2018) and
Chaves (2020). Thus, we need to be cautious in in-
ferring the ability of such models to capture syntax-
sensitive dependencies. Performance on any par-
ticular kind of construction might always reflect
some overfitting to it, even if it is syntactically rich
or complex. Broad-based testing on instances of
diverse types and complexity levels is essential to
the development of models which better capture
the structure of human language in all its richness
and variety.
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A Appendix

A.1 Model Architectures
Following are the equations of the models used in
this papers. ‘◦’ denotes the Hadamard product.

A.1.1 Long Short Term Memory (LSTM)
Following are the equations governing the standard
LSTM (Hochreiter and Schmidhuber, 1997) with
the standard notations.

it = σ (Wi [ht−1, xt] + bi)

ft = σ (Wf [ht−1, xt] + bf )

gt = tanh (Wg [ht−1, xt] + bg)

ot = σ (Wo [ht−1, xt] + bo)

ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh (ct)

A.1.2 Gated Recurrent Unit (GRU)
Following are the equations governing the standard
GRU (Cho et al., 2014) with the standard notations.

rt = σ (Wr [ht−1, xt] + br)

zt = σ (Wz [ht−1, xt] + bz)

h̃ = tanh (Wx [rt ◦ ht−1, xt] + bx)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃
A.1.3 Ordered Neurons (ONLSTM)
Ordered Neuron or Ordered Neuron LSTMs (Shen
et al., 2019) are recurrent schemes that have been
claimed to represent hierarchical information in
their representations by their cumax or cumulative
softmax activation. The following are the equations
of Ordered Neurons with the standard notations.

ft = σ (Wf [ht−1, xt] + bf )

it = σ (Wi [ht−1, xt] + bi)

ot = σ (Wo [ht−1, xt] + bo)

ĉt = tanh (Wc [ht−1, xt] + bc)

f̃t = cumax
(
Wf̃ [ht−1, xt] + bf̃

)

ĩt = 1− cumax
(
Wĩ [ht−1, xt] + bĩ

)

ωt = f̃t ◦ ĩt
f̂t = ft ◦ ωt +

(
f̃t − ωt

)

ît = it ◦ ωt +
(̃
it − ωt

)

ct = f̂t ◦ ct−1 + ît ◦ ĉt
ht = ot ◦ tanh (ct)

A.1.4 Decay RNN (DRNN)
Decay RNN (DRNN) (Bhatt et al., 2020) is a
bio-inspired recurrent baseline without any gating
mechanism. Authors also show that DRNN sur-
passes vanilla RNNs on linguistic tasks.

c(t) = (ReLU(W )Wdale)h
(t−1) + Ux(t) + b

h(t) = tanh
(
αh(t−1) + (1− α)c(t)

)

Here α ∈ (0,1) as a learnable parameter and
Wdale is a diagonal matrix which provides biologi-
cal constraints.

Property Natural Selective
Training sentences 97842 97842
Ratio of Singular to Plural main nouns 0.67 0.45
Ratio of Singular to Plural nouns (total) 0.79 0.71
Fraction of 0 attractors 0.93 -
Fraction of 1 attractors 0.056 0.79
Fraction of 2 attractors 0.011 0.15
Fraction of 3 attractors 0.003 0.037
Testing Sentences 157k 157k

Table 3: Training data statistics.

A.2 Training Settings
Statistical information about our training data is
shown in Table 3. In our experiments, we train a
two-layered LM where we keep the hidden size
at 650 units and the input size at 200 units. We
perform standard dropout with a rate of 0.2 and the
batch size 128. Optimization starts with a 0.001
learning rate for all architecture and clips the gradi-
ent if necessary.

For Binary classifiers, we use a single-layered
recurrent unit, batch size of 64, hidden, and input
size of 50 units. For LSTM and ONLSTM, the
initial learning rate is 0.005, while for the GRU
and DRNN, it is 0.01. No gradient clipping is
performed to train the classifier.

All models are optimized with Adam (Kingma
and Ba, 2015), and the codes are written in PyTorch
(Paszke et al., 2019).

A.3 Binary Classifier and Counterfactual
Augmentation

For the binary classifier, we augment each sen-
tence with its corresponding counterfactual exam-
ple. Augmenting with counterfactual examples is
effective in reducing the spurious correlation in sen-
timent analysis (Kaushik et al., 2020). In our case,
the counterfactual example will be constructed by
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Binary Classifier
Configuration

LSTM GRU ONLSTM DRNN
Without
Augmentation

With
Augmentation

Without
Augmentation

With
Augmentation

Without
Augmentation

With
Augmentation

Without
Augmentation

With
Augmentation

Natural Sampling 0.96 0.97 0.94 0.96 0.95 0.96 0.95 0.96
Selective Sampling 0.64 0.64 0.62 0.67 0.59 0.69 0.71 0.74

Table 4: Performance of Binary classifier without counterfactual augmentation. Counterfactual augmentation
effectively doubles the training size.

Architecture Natural Sampling Selective Sampling
0 1 2 3 0 1 2 3

LANGUAGE MODEL
LSTM 0.98 (±0.00) 0.91 (±0.01) 0.84 (±0.03) 0.78 (±0.06) 0.89 (±0.01) 0.98 (±0.00) 0.98 (±0.00) 0.95 (±0.01)
ONLSTM 0.98 (±0.00) 0.92 (±0.01) 0.86 (±0.01) 0.82 (±0.03) 0.90 (±0.01) 0.98 (±0.00) 0.98 (±0.00) 0.95 (±0.01)
GRU 0.97 (±0.00) 0.88 (±0.01) 0.78 (±0.02) 0.73 (±0.03) 0.87 (±0.01) 0.98 (±0.00) 0.97 (±0.00) 0.94 (±0.01)
DRNN 0.96 (±0.00) 0.69 (±0.02) 0.47 (±0.03) 0.36 (±0.03) 0.83 (±0.01) 0.97 (±0.00) 0.94 (±0.01) 0.91 (±0.01)

BINARY CLASSIFIER
LSTM 0.97 (±0.01) 0.93 (±0.02) 0.87 (±0.03) 0.82 (±0.03) 0.60 (±0.06) 0.98 (±0.00) 0.96 (±0.00) 0.97 (±0.01)
ONLSTM 0.97 (±0.01) 0.91 (±0.05) 0.84 (±0.07) 0.81 (±0.07) 0.64 (±0.08) 0.98 (±0.00) 0.97 (±0.00) 0.98 (±0.01)
GRU 0.97 (±0.00) 0.88 (±0.01) 0.76 (±0.02) 0.69 (±0.04) 0.62 (±0.05) 0.95 (±0.01) 0.94 (±0.02) 0.96 (±0.01)
DRNN 0.97 (±0.00) 0.90 (±0.01) 0.81 (±0.02) 0.77 (±0.02) 0.70 (±0.02) 0.97 (±0.00) 0.96 (±0.00) 0.96 (±0.01)

Table 5: Performance of LM and classifier with an increasing number of attractors between the main subject and
verb. Bolds mark the maximum accuracy in each configuration across the attractor, for each model; the more the
better.

flipping the number of the main verb of a grammat-
ically correct sentence. Thus, we use the correct as
well as the incorrect version of the same sentence
in training. This results in the training size of 195k
sentences for the binary classifier. Table 4 shows
the performance with/without counterfactual aug-
mentation. Note that, the accuracy improved sub-
stantially for ONLSTM trained on the selectively
sampled dataset.

In Table 5 we give a full version of Table 1 in-
cluding the standard deviations on 5 different runs.

A.4 Targeted Syntactic Evaluation
Table 6 presents the detailed performance of mod-
els on the synthetically constructed sentences
(TSE).
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Subject Verb Agreement #sentences LSTM ONLSTM GRU DRNN
Condition Natural Selective Natural Selective Natural Selective Natural Selective
Simple 312 0.99 (±0.01) 0.86 (±0.01) 0.98 (±0.02) 0.86 (±0.01) 0.98 (±0.01) 0.84 (±0.04) 0.97 (±0.02) 0.79 (±0.05)
Short VP 3432 0.85 (±0.02) 0.71 (±0.06) 0.88 (±0.02) 0.73 (±0.08) 0.81 (±0.03) 0.69 (±0.04) 0.70 (±0.05) 0.66 (±0.04)
Within ORC (A) 9984 0.79 (±0.06) 0.63 (±0.05) 0.78 (±0.10) 0.59 (±0.06) 0.75 (±0.02) 0.50 (±0.02) 0.7 (±0.08) 0.46 (±0.04)
Within ORC (IA) 4032 0.77 (±0.06) 0.64 (±0.06) 0.75 (±0.08) 0.59 (±0.04) 0.73 (±0.02) 0.50 (±0.03) 0.69 (±0.06) 0.46 (±0.05)
Within no that ORC (A) 9984 0.73 (±0.06) 0.61 (±0.05) 0.72 (±0.08) 0.57 (±0.07) 0.72 (±0.03) 0.47 (±0.04) 0.63 (±0.04) 0.45 (±0.06)
Within no that ORC (IA) 4032 0.66 (±0.04) 0.61 (±0.05) 0.66 (±0.06) 0.56 (±0.06) 0.62 (±0.04) 0.47 (±0.04) 0.68 (±0.06) 0.45 (±0.06)
Long VP 520 0.65 (±0.03) 0.69 (±0.07) 0.67 (±0.04) 0.67 (±0.06) 0.63 (±0.04) 0.65 (±0.04) 0.56 (±0.05) 0.65 (±0.03)
Across Prep Phrase (A) 29952 0.86 (±0.04) 0.89 (±0.03) 0.88 (±0.03) 0.88 (±0.01) 0.81 (±0.02) 0.88 (±0.02) 0.68 (±0.04) 0.83 (±0.01)
Across Prep Phrase (IA) 4032 0.87 (±0.03) 0.94 (±0.02) 0.88 (±0.02) 0.95 (±0.01) 0.86 (±0.02) 0.94 (±0.01) 0.69 (±0.06) 0.91 (±0.02)
Across SRC 9984 0.81 (±0.03) 0.89 (±0.05) 0.81 (±0.05) 0.87 (±0.02) 0.77 (±0.05) 0.86 (±0.05) 0.58 (±0.04) 0.80 (±0.05)
Across ORC (A) 9984 0.73 (±0.10) 0.82 (±0.07) 0.78 (±0.07) 0.84 (±0.02) 0.72 (±0.06) 0.79 (±0.05) 0.63 (±0.04) 0.78 (±0.05)
Across ORC (IA) 4032 0.74 (±0.09) 0.84 (±0.10) 0.81 (±0.07) 0.87 (±0.02) 0.74 (±0.08) 0.85 (±0.05) 0.65 (±0.07) 0.86 (±0.02)
Across no that ORC (A) 9984 0.61 (±0.04) 0.72 (±0.08) 0.62 (±0.05) 0.78 (±0.02) 0.60 (±0.02) 0.68 (±0.06) 0.64 (±0.03) 0.73 (±0.02)
Across no that ORC (IA) 4032 0.66 (±0.04) 0.77 (±0.11) 0.66 (±0.06) 0.84 (±0.03) 0.62 (±0.04) 0.72 (±0.07) 0.68 (±0.06) 0.83 (±0.02)
Average Performance 104296 0.78 (±0.03) 0.78 (±0.02) 0.79 (±0.03) 0.78 (±0.01) 0.75 (±0.01) 0.73 (±0.02) 0.66 (±0.02) 0.71 (±0.02)

Table 6: Accuracy of models on targeted syntactic evaluation. Quantities in bold marks the maximum accuracy for
each model across the configuration. ORC: Objective Relative Clause, SRC: Subject Relative Clause, Prep Phrase:
Prepositional Phrase, VP: Verb Phrase. A/IA in the parenthesis represents an animate/inanimate main subject.
Models trained on selectively sampled subset perform well on the difficult sentences, but not on the simpler ones.
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