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Abstract

Learning a good latent representation is es-
sential for text style transfer, which generates
a new sentence by changing the attributes of
a given sentence while preserving its content.
Most previous work adopt disentangled latent
representation learning to realize style trans-
fer. We propose a novel text style transfer algo-
rithm with entangled latent representation, and
introduce a style classifier that can regulate
the latent structure and transfer style. More-
over, our algorithm for style transfer applies to
both single-attribute and multi-attribute trans-
fer. Extensive experimental results show that
our method generally outperforms state-of-the-
art approaches.

1 Introduction

Text generation, which leverages knowledge in
computational linguistics and artificial intelligence
for automatically generating natural language texts,
is the core problem for a number of Natural
Language Processing (NLP) applications such as
speech to text, conversational/dialogue system
(Banchs and Li, 2012; Kim et al., 2007), and text
summarization (Ozsoy et al., 2011; Liu et al., 2018).
Text style transfer can be thought of as a control-
lable text generation task, which aims to restyle
a given sentence by changing specific attributes
(sentiment, tense, formality, or politeness) while
preserving the remaining attributes and the con-
tent. Successful applications of text style transfer
include paraphrasing (Han et al., 2017), formality
transfer (Rao and Tetreault, 2018), and text simpli-
fication (Cao et al., 2020).

A good latent representation is essential to the
performance of text style transfer. Regarding the
structure of the latent representation, the current
work for text style transfer can be generally catego-
rized into the disentangled representation and the
entangled representation. In particular, the former

method aims to learn disentangled latent represen-
tations by separating the style information from
the content, while the latter method learns latent
representations that entangle the style with the con-
tent. Disentangled representations are often inter-
pretable and consequently most of the current work
adopts this method (Hu et al., 2017; Yang et al.,
2018; Zhao et al., 2018; John et al., 2019; Bao et al.,
2019). However, learning disentangled representa-
tions is often challenging; and multiple attribute-
specific decoders are commonly required for text
generation, which is undesirable especially when
transferring multiple attributes. The entangled rep-
resentations, on the other hand, has been shown
to achieve promising performance on the content
preservation and to produce fluent sentences with a
much less complicated architecture (Lample et al.,
2019; Wang et al., 2019; Liu et al., 2020).

Although existing models achieve adequate per-
formance on text style transfer, most of them are
designed specifically for style transfer (Hu et al.,
2017; Shen et al., 2017; Yang et al., 2018; Lample
et al., 2019; John et al., 2019; Bao et al., 2019;
Wang et al., 2019), and meanwhile lack of explicit
modeling of the latent space. We argue that the
quality of latent representations is crucial for text
generation. In this study, we focus on building a
generative model that supports both text style trans-
fer and text generation with regularized entangled
latent representations.

Our contributions can be summarized as follows:
(1) We extend the framework of adversarial auto-
encoder by including a classifier for both the regu-
larization of the latent space and text style transfer.
We show that the classifier can divide sentences
with different attributes into different regions in
the latent space and thus greatly improve the per-
formance of style transfer. (2) We provide algo-
rithms for both single-attribute and multi-attribute
style transfer. We empirically compare with sev-
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eral state-of-the-art baselines and show that our
proposed method achieves promising results.

2 Related Work

In this section, we first introduce several Genera-
tive Adversarial Network (GAN)-regularized au-
toencoders, which have been successfully used for
text manipulation. Then we review some recent
methods for text style transfer focusing on the la-
tent representation.

2.1 Probabilistic Generative Autoencoders
GANs (Goodfellow et al., 2014) are popular gener-
ative models consisting of two basic components:
a generator for generating new samples and a dis-
criminator for distinguishing real samples from
generated samples. Makhzani et al. (2015) intro-
duce adversarial autoencoders (AAEs), which turn
basic autoencoders into probabilistic models. The
encoder Eφ maps the input x to a latent represen-
tation z, z = Eφ(x). The decoder Dθ reconstructs
the input from z as x̂ = Dθ(z). The discrimina-
tor Dw is introduced to distinguish between z and
samples from a prior distribution Pz . The objective
of AAEs is formulated below:

min
φ,θ

max
w
Lrec(φ, θ)− λLadv(φ,w),

Lrec(φ, θ) = Ex∼Px [−logpθ(x|Eφ(x))],
Ladv(φ,w) = Ez∼Pz [−logDw(z)]

+ Ex∼Px [−log(1−Dw(Eφ(x)))].

Shen et al. (2020) adopt AAEs and introduce
denoising adversarial autoencoders (DAAEs) with
a smoother structure of latent space. Based on the
Wasserstein autoencoders (WAEs) (Tolstikhin et al.,
2018; Zhao et al., 2018) propose adversarially reg-
ularized autoencoders (ARAE) by extending AAEs
for discrete sequences. Unlike AAEs which use a
fixed prior distribution, Zhao et al. (2018) adopt
a learnable prior parameterized by the generator
of a GAN . Particularly, the discriminator and the
generator are first learned by using the latent rep-
resentation from the encoder. The discriminator
is then used to adversarially train the encoder by
minimizing the discrepancy between the posterior
and the prior.

2.2 Methods for Text Style Transfer
Disentangled latent representation Most work
on text style transfer is based on learning disentan-
gled latent representations (Hu et al., 2017; Shen

et al., 2017; Yang et al., 2018; John et al., 2019;
Bao et al., 2019), where the attributes are sepa-
rated from the content. For example, to generate
a sentence with desired attributes, the decoder in
(Hu et al., 2017) takes the style-independent latent
representation and the desired style as the input.
Shen et al. (2017) adopts adversarial training by
using a binary CNN-based discriminator to deter-
mine whether a generated sentence is successfully
transferred or not. Yang et al. (2018) use a target
domain language model instead of a conventional
binary classifier as the discriminator.

Entangled latent representation On the con-
trary, some recent work proposes to learn latent
representations that entangle the style with the con-
tent. Although the learning of disentangled latent
representations is unnecessary, other mechanisms
are needed to guide the style transfer. For exam-
ple, Lample et al. (2019) apply the back-translation
mechanism (referred to as BTDAE) and the algo-
rithm achieves the state-of-the-art performance on
the content preservation. Wang et al. (2019) trans-
fer text style by updating the latent representation
(referred to as TAE) based on the Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2015).
Liu et al. (2020) also use a gradient-based optimiza-
tion to update the latent representation.

Style classifier A classifier is commonly used
in a style discriminator to enforce the desired style
(Hu et al., 2017; Yang et al., 2018; Tian et al., 2018).
For example, ARAE (Zhao et al., 2018) imposes a
style classifier on the latent representation of a sen-
tence to ensure the transferred sentence containing
the target attribute.

The main differences between our method and
ARAE (Zhao et al., 2018) can be summarized as
follows: 1) Representation structure: the latent rep-
resentation of ARAE can be considered as disen-
tangled while ours is entangled. 2) Style classifier:
the style classifier we adopt helps the clustering
of latent representations based on attributes while
the classifier in ARAE only enforces the target
contribute on transferred sentences. 3) To realize
style transfer, ARAE uses the classifier to train
the encoder net adversarially, such that the latent
representation of the given text could contain the
information of the target attribute. However, in our
method, the style transfer is realized by directly
modifying the latent representation. 4) Due to the
adversarial training process ARAE requires mul-
tiple decoders to perform style transfer, while our
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method can use only one decoder.

3 Our Method

We first briefly explain text style transfer as follows.
Generally, a source or an input sentence includes
both the content and the attribute. In Figure 1,
we use (x, y) to include both the input x and the
attribute y. As a concrete example, a sentence “this
place is a great place to live !” has two types of
attribute: the positive sentiment and the present
tense. The positive sentiment is reflected by the
word “great” and the present tense is reflected by
the word “is”. All remaining words in this sentence
are considered as the content. For single-attribute
style transfer, only one attribute (e.g. sentiment)
will be transferred, and the other attributes and the
content will be kept the same. In the above example
with the sentiment style transfer, the sentence will
be converted into a negative sentence: “this place is
a terrible place to live !” by flipping the sentiment
label y from positive to negative. In contrast, for
multi-attribute style transfer, two or more attributes
will be transferred simultaneously while the rest
will be preserved. Again, in the above example
the sentence will be converted into “this place was
a terrible place to live !” by transferring both the
sentiment and the tense.

3.1 Network Architecture

We propose a generative model that can be used
for both text style transfer and text generation. The
network architecture of our method is illustrated
in Figure 1, where the top one is for training and
the bottom one is for style transfer. The network
for training includes three parts: an autoencoder, a
GAN, and a style classifier. Specifically, the autoen-
coder is learned to reconstruct the input sentences.
The discriminator of the GAN is to distinguish the
aggregated posterior of the encoder from the prior,
which is modeled by the generator of the GAN.
The style classifier uses the latent representation
as the input, and classifies latent representations
based on their attributes. The classifier can also be
used in style transfer, which will be explained later.

3.2 Objective Function for Training

The overall objective function for training includes
three parts: the reconstruction loss, the adversarial
loss induced by the GAN, and the classification
loss. Similar to ARAE (Zhao et al., 2018), we use
the Wasserstein distance to measure the discrep-

Figure 1: Network architecture: training (top) and text
style transfer (bottom).

ancy between two distributions. Denote the param-
eters of the encoder, the decoder, the discriminator,
the generator, and the classifier as φ, θ, w, ψ, and
φc, respectively. The overall objective function is
defined as follows.

L(φ, θ, φc) = Lrec(φ, θ) + λwLcrit(φ)
+ λcLclas(φ, φc),

where

Lrec(φ, θ) = Ex∼Px [−logpθ(x|Eφ(x))],
Lcrit(φ) = Ez̃∼Pz [fw(z̃)]− Ex∼Px [fw(Eφ(x))],
Lclas(φ, φc) = Ex∼Px [−logpφc(y|Eφ(x))].

In the above expressions, the variable z̃ is the
output of the generator Gψ(s), where the noise
s ∈ N (0, I); y is the label of the source attribute;
and the critic function fw of the discriminator is
obtained by a min-max optimization:

min
ψ

max
w
Lcrit(ψ,w) = Ex∼Px [fw(Eφ(x))]

− Ez̃∼Pz [fw(z̃)].

We summarize the training algorithm in Algo-
rithm 1. First, the autoencoder is trained by mini-
mizing the reconstruction loss, i.e., min

φ,θ
Lrec(φ, θ).

Next, based on the latent representation from the en-
coder, the encoder and the style classifier are jointly
trained by minimizing the classification loss, i.e.,
min
φ,φc
Lclas(φ, φc). Meanwhile, the critic function

fw and the generator of the GAN are learned via the
min-max optimization min

ψ
max
w
Lcrit(ψ,w). Fi-

nally, the critic function fw is utilized to adver-
sarially train the encoder, i.e., minφ Lcrit(φ). We



75

emphasize that we do not explicitly disentangle the
attributes from the content in the latent represen-
tation. Therefore, to implement style transfer, the
style classifier is crucial, which guides the cluster-
ing of the entangled latent representations based on
their attributes.

Algorithm 1: Training Algorithm.
Inputs: Px input distribution; Eφ encoder; Gψ

generator; fw discriminator/critic function
for each training iteration do

// Train the encoder and decoder
for reconstruction(φ, θ).

Sample {x(i)}mi=1 ∼ Px and compute
z(i) = Eφ(x(i)) ;

Backprop loss:
Lrec(φ, θ) = − 1

m

∑m
i=1 logpθ(x(i)|z(i)) ;

// Train the attribute
classifier(φc) and optimize
the encoder using the
classifier regularisation(φ).

Sample {x(i)}mi=1 ∼ Px and save attribute y(i);
Backprop loss:
Lclas(φc, φ) =
− 1
m

∑m
i=1 logpφc(y

(i)|Eφ(x(i)));

// Train the
discriminator/critic
function(w).

Sample {x(i)}mi=1 ∼ Px and
{s(i)}mi=1 ∼ N (0, I) ;

Compute z(i) = Eφ(x(i));
Backprop loss:
min
ψ

max
w
Lcrit(w,ψ) =

1
m

∑m
i=1 fw(z

(i))− 1
m

∑m
i=1 fw(Gψ(s

(i))) ;

// Train the encoder
adversarially(φ).

Sample {x(i)}mi=1 ∼ Px ;
compute z̃(i) = Gψ(s(i)) ;
Backprop loss:
Lcrit(φ) =
1
m

∑m
i=1 fw(Eφ(x

(i)))− 1
m

∑m
i=1 fw(z̃

(i)) ;
end

3.3 Style Transfer
After training the network, we can implement text
style transfer (as shown at the bottom of Figure 1).
We summarize the algorithm for style transfer in
Algorithm 2, which works for both single-attribute
and multi-attribute style transfer. Normally for
multi-attribute style transfer, multiple style clas-
sifiers are required: each corresponding to an at-
tribute. To make the network scalable, we instead
use a single style classifier by combining the la-
bels of attributes. In this case, each attribute la-
bel corresponds to an attribute-combination (such

Algorithm 2: Transfer Algorithm.
Inputs: input distribution Px; encoder Eφ;

well-trained classifier Cφc ; the initial weights
w = {wj}; decay coefficient λ; target
attribute y′; threshold t; maximal iterations I;
attribute vector v; the weight of attribute
vector k.

Result: A target latent representation ẑf
(i) or ẑv

(i).
Sample {x(i)}mi=1 ∼ Px and compute
z(i) = Eφ(x(i)) ;

// Method 1: based on Fast
Gradient Sign Method.

for each wj ∈ w do
ẑ(i) = z(i) − w5z ∗Lclas(Cφc(z

(i)), y′(i)) ;
for |Cφc(z

(i))− y′(i)| > t do
it++ ;
wj = λwj ;
ẑf

(i) =

z(i) − w5z ∗Lclas(Cφc(z
(i)), y′(i)) ;

if it > I then
break ;

end
end

end

// Method 2: based on vector

arithmetic. x
(i)
s are the samples

with source attribute and x
(i)
t

are the samples with target
attribute.

Sample {x(i)
s }ni=1 ∼ Px and {x(i)

t }ni=1 ∼ Px ;
compute z

(i)
s = Eφ(x(i)

s ) and compute
z
(i)
t = Eφ(x(i)

t ) ;
Calculate the attribute vector
v = 1

n

∑n
i=1 z

(i)
s − 1

n

∑n
i=1 z

(i)
t ;

ẑ
(i)
v = z(i) ± k ∗ v

as present-positive, past-positive, present-negative,
and past-negative with both the tense and the senti-
ment as the attributes for transferring).

To perform style transfer, given an input sen-
tence, we first get its latent representation as the
output of the encoder. With the entangled latent
representation, the key of style transfer is how to
update the latent representation of the source sen-
tence. To achieve that, we adopt two different but
commonly used updates: the fast gradient based
and the vector arithmetic based. To obtain the tar-
get sentence with the desired attribute, we then feed
the updated latent representation to the decoder.

Fast gradient based: FGSM is employed by
Wang et al. (2019) to update the latent representa-
tion for style transfer. Concretely, the latent rep-
resentation is updated along the gradient of the
classification loss with the step size w. A set w
contains a few step sizes with an increasing order.
We sequentially test these step sizes until obtaining
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the desired latent representation. This is to maxi-
mally preserve the content of the sentence and also
to prevent the modification of the latent presenta-
tion from falling into a local optimum. In each
iteration, the updated latent representation ẑf is
given as follows:

ẑf = z − w5z ∗Lclas(Cφc(z), y′),

where Lclas represents a style classifier loss, Cφc
is a well-trained classifier, and y′ represents the
target label. The detailed algorithm is displayed in
Method 1 of Algorithm 2.

Vector arithmetic based: In several studies
e.g., Zhao et al. (2018); Shen et al. (2020), the la-
tent vector arithmetic based method is employed in
text style transfer or text interpolation. Specifically,
the latent representation z of the source sentence is
modified by an attribute vector “v”. For example,
assume that the source attribute is positive. When
transferring the attribute from positive to negative
we can update z by z − v; and when transferring
from negative to positive we can update z by z+v.
The same as Shen et al. (2020), the attribute vector
“v” uses the mean of the latent representations of
100 samples with the source attribute and 100 sam-
ples with the target attribute from the validation set.
For multi-attribute transfer, the attribute vector v is
computed in the same way. The only difference is
that the label of the source attribute and the target
attribute corresponds to an attribute-combination as
explained before. The updated latent representation
ẑv can be formulated as follows:

ẑv = z ± k ∗ v,

where k is a hyperparameter denoting the weight
associated with the attribute vector.

4 Experiments

In this section, we first visualize the latent rep-
resentation of our method, and then compare our
method with several baselines, namely, TAE (Wang
et al., 2019), ARAE (Zhao et al., 2018), and DAAE
(Shen et al., 2020) for single-attribute and multiple-
attribute text style transfer. We then evaluate our
model on text generation and compare it with
ARAE.

4.1 Datasets

We use Yelp and Amazon datasets for evaluation.

Yelp: This dataset consists of Yelp restaurant
and business reviews (Li et al., 2018), which in-
cludes 444K training samples, 4K validation sam-
ples, and 1K test samples.

Amazon: This dataset includes product reviews
from Amazon (He and McAuley, 2016), which
includes 555K training samples, 2K validation
samples, and 1K test samples.

On both Yelp and Amazon datasets, reviews with
a rating score above three are considered as posi-
tive samples, otherwise are considered as negative
samples.

4.2 Experimental setups

In our experiment, similar to ARAE (Zhao et al.,
2018), we use one layer LSTM with 200 hidden
units for both the encoder and the decoder. Both
the generator and the discriminator in the GAN use
simple MLP networks. The style classifier is built
by a shallow MLP network with two hidden layers,
as our experiment indicates that too many layers
can degrade the performance of the classifier.

The weighting parameters λw and λc are set
to 0.1 on Yelp and 1 on Amazon. In the fast
gradient method, the set of the initial weights w
is set to {0.005, 0.006, 0.007, 0.008, 0.009, 0.01},
where the weights are ordered increasingly.

4.3 Evaluation

Following previous studies, for both automatic and
human evaluations, we assess the performance of
style transfer from three perspectives: transfer con-
trol, content preservation, and fluency. In auto-
matic evaluation, three commonly used metrics are
adopted: the transfer rate, the BLEU score, and the
Perplexity (PPL) score.

Transfer control: It evaluates whether the style
of the source sentences is correctly flipped. The
transfer rate is the percentage of the corrected trans-
ferred sentences, and we use a fastText classifier
(Joulin et al., 2017) to determine that.

Content preservation: It evaluates how the
content is preserved in the transferred sentences.
We use n-gram statistics (4-gram) of the BLEU
score (Papineni et al., 2002) to quantify the content
preservation against the references (Li et al., 2018).

Fluency: It evaluates the grammatical structure
and the naturalness of the generated (or transferred)
text sentences. We use a language model KenLM
(Heafield, 2011) to calculate the PPL score of text
sentences for evaluating fluency.
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4.4 Evaluation on Latent Representation

4.4.1 Visualization
We show the projected latent representation of both
the source and the target sentences and compare
it with TAE (Wang et al., 2019). To better show
the structure of the latent representation, we use
the visualization tool t-SNE (van der Maaten and
Hinton, 2008) in 2-dimension. Figure 2(a) shows
the latent representations of 1000 source samples
with positive and negative labels. Figure 2(b) and
Figure 2(c) show the latent representations of six
target samples, which are updated by FGSM. w[i]
in these two figures denotes the i-th step size in
the set w, and a larger value of i indicates a larger
value of w[i].

In our framework, both the GAN and the style
classifier help the regularization of the latent repre-
sentation. Figure 2(a) indicates that in our method,
the latent representations tend to form two clusters.
Specifically, the positive samples tend to locate at
the bottom while the negative samples tend to lo-
cate on the top. In contrast, the positive and the
negative samples in TAE are generally mixed to-
gether. In Figure 2(c), as the value of the step size
w increases in our method, the latent representation
of the positive samples tends to move towards the
bottom, which corresponds to the position of the
positive cluster. In contrast, the latent representa-
tion of the negative samples tends to move towards
the top, which corresponds to the position of the
negative cluster. This observation clearly shows
the guidance of the style classifier on clustering
the latent representations. In comparison, in Figure
2(b), without the GAN and the style classifier in
TAE, the latent representation of each target sample
needs to be updated along different directions.

4.4.2 Evaluation of Latent Representation
via K-nearest-neighbours

It is desirable that close latent representations lead
to semantically similar sentences after feeding la-
tent representations to the decoder. Such property
indicates the smoothness of the latent space. In this
experiment, we find k = 9 nearest neighbours of
the latent representation of a sentence “service is
terrible and won’t return.”, and then generate sen-
tences by feeding these latent representations to the
decoder. It is expected that the generated sentences
are close to the source sentence in terms of the sen-
timent attribute and the content. For comparison,
we consider four differ network architectures and

(a) Projected latent representations in TAE (left) and in our
method (right).

(b) Projected target latent representations with FGSM update
in TAE.

(c) Projected target latent representations with FGSM update
in our method.

Figure 2: Comparison between our method and TAE
on projected latent representations.

show the generated sentences in Table 1.

• TAE: The generated sentences contain both
the positive and the negative samples. More-
over, many of them have different contents
that are related to “place” or “location” instead
of the source content “service” or “return”.

• TAE+GAN: We regularize the latent repre-
sentation in TAE by a GAN. Although all
sentences are related to the source content
“service” their sentiment attributes are largely
different.

• TAE + classifier: We add a style classifier
in TAE. Different from TAE+GAN, the gen-
erated sentences have the same negative at-
tribute but some sentences deviate from the
source content “service” or “return”.

• Our method: Our network architecture in-
cludes both the GAN and a style classifier.
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All generated sentences have the same neg-
ative attribute and are related to the source
content “service” or “return”.

Table 1: Evaluation of the smoothness of the latent
space via k-nearest-neighbours. The source sentence
is “service is terrible and won’t return ”.

TAE TAE + GAN

service was terrible . service is great and friendly .
their service is terrible . service isn’t that great either .

service is great and friendly . service is mediocre and slow .
this place is terrible ! service is slow and horrible .

service is slow and horrible . service is lacking and food is mediocre .
this location is terrible . the service is friendly and fast .
service is always good . prices are good and the service is great .

service was bad . service is quick and friendly .
everything was great and i will return ! the service is always friendly and good .

TAE + classifier guidance Our method

service was terrible . service is n’t that great either .
their service is terrible . i wo n’t be back .

food was terrible . the service is n’t frequent enough .
this place is terrible . will not return to this place .

service is slow and horrible . needless to say we wo n’t be back !
the waiter was terrible . service was n’t too bad - nice people .

i wo n’t be back . the service was not that professional !
service is mediocre and slow . the service did n’t get any better .

terrible service . service is n’t too bad , but could be better .

4.5 Evaluation of Style Transfer

4.5.1 Single-Attribute Style Transfer
We compare our method with TAE by using FGSM
to update the latent representation since TAE is
only designed with FGSM (Table 2). TAE has a
very low transfer rate in experiments. This however
leads to high BLEU scores and low PPL scores as
most target sentences are the same as the source
sentences. By contrast, our method can success-
fully transfer most sentences, and leads to decent
BLEU and PPL scores.

Table 2: Comparison between our method and TAE for
sentiment transfer on Yelp.

Methods Transfer ↑ BLEU ↑ PPL ↓

TAE
w = 2 0.24 37.98 42.08
w = 4 0.25 35.70 48.73
w = 6 0.25 33.33 56.50

Our method:
w = 0.005 0.76 25.74 70.16
w = 0.007 0.80 25.16 72.70
w = 0.01 0.87 23.90 75.46

We also compare the performance of our meth-
ods with ARAE and DAAE using the vector arith-
metic based update on latent representations for
style transfer. As mentioned before, the vector
arithmetic based update can be used to evaluate
the smoothness of the latent space. In Table 3, we

compare with two baselines on both Yelp and Ama-
zon and display the results that achieve the best
trade-off among the three evaluation metrics. The
hyperparameter k of vector arithmetic method is
chosen based on the performance in the validation
set. Our method achieves the highest transfer rate
and a comparable BLEU score with ARAE on Yelp,
while ARAE achieves the lowest PPL score. On
Amazon, our method obtains the best performance
on the transfer rate and the BLEU score with a
slightly higher PPL score than ARAE. By contrast,
DAAE does not perform well on both datasets es-
pecially on Amazon.

Table 3: Evaluation results of style transfer based on
the vector arithmetic based update on Yelp and Ama-
zon.

Methods Transfer ↑ BLEU ↑ PPL ↓

ARAE±1.5v 0.536 20.08 64.75
Yelp DAAE±2.0v 0.461 18.55 114.59

Our method±1.5v 0.792 19.90 78.63

ARAE±2.5v 0.513 14.71 31.37
Amazon DAAE±1.0v 0.473 3.50 –

Our method±2.0v 0.884 14.73 33.86

FGSM and vector arithmetic method for style
transfer have their pros and cons. Table 4 shows the
evaluation results of both FGSM based and vector
arithmetic based methods on Yelp data. Generally,
for both methods, as the step size w or v increases,
the transfer rate is improving, while the perfor-
mance of BLEU and PPL are decreasing. In the
case of the FGSM based method, the best trade-off
is when w is set as 0.007, while the vector arith-
metic based method has the best trade-off when
v is set as 1.5. With w = 0.007 and v = 1.5,
FGSM based method achieves better transfer rate
and BLEU score but the lower performance of PPL
than vector arithmetic based method. From our ex-
periment, we also observe that FGSM based style
transfer needs much longer updating time in testing
than the vector arithmetic based method.

Table 4: Comparison results between FGSM based and
vector arithmetic based style transfer on Yelp.

Methods w/v Transfer ↑ BLEU ↑ PPL ↓

w = 0.005 0.76 25.74 70.16
FGSM based w = 0.007 0.80 25.16 72.70

w = 0.01 0.87 23.90 75.46

±1.0v 0.49 30.00 49.42
Vector arithmetic ±1.5v 0.79 19.90 78.63
based ±2.0v 0.94 11.38 113.52

Although the automatic evaluation metrics e.g.,
the BLEU score, are widely used, they sometimes
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do not well align with the human judgement (Ma
et al., 2018). Therefore, to fully evaluate the per-
formance we also carried out the human evaluation
on sentiment transfer and compare it with ARAE
on Yelp. We use the vector arithmetic based update
of the latent representation on the first 200 positive
and 200 negative sentences in the test set. Three
annotators were recruited and provided scores in
the range of 1∼5 regarding the transfer control, the
content preservation and the fluency. The Kappa
statistic of the agreement between raters in the hu-
man evaluation is 0.657. The average scores over
three annotators are shown in Table 5, and our
method generally outperforms ARAE.

Table 5: Human evaluation results of sentiment transfer
on Yelp.

Methods Transfer ↑ Content ↑ Fluency ↑
Control Preservation

ARAE 3.388 2.671 3.439

Our method 3.468 3.018 3.612

4.5.2 Multi-Attribute Style Transfer
We also evaluate our model for multi-attribute trans-
fer and compare with ARAE on Yelp. The goal of
multi-attribute style transfer is to transform multi-
ple attributes in a sentence at once while preserving
the main content of the sentence. Using the same
example sentence “this place is a great place to
live !” with positive sentiment and present tense,
multi-attribute transfer converts it into a sentence
with the negative sentiment and the past tense “this
place was a terrible place to live !”.

In the training phase, the style classifier uses
both the latent vector of a given sentence and the
original attribute label as the inputs; while in style
transfer, the style classifier uses both the latent
vector and the desired attribute label as the inputs.
In pre-processing of single-attribute style transfer,
the attribute is labelled as either “0” or “1”. In
multi-attribute style transfer (e.g. tense and senti-
ment), each attribute combination will be defined
as an individual class (e.g. present-positive: ”0”,
past-positive: “1”, present-negative: “2”, and past-
negative: “3”).

In particular, we use the Stanford Parser to ex-
tract the main verb of a sentence from Yelp and
then determine the tense of a sentence based on
its part-of-speech tag (POS tags) (Klein and Man-
ning, 2003). Table 6 shows the evaluation results
of style transfer for two attributes: sentiment and

tense transfer. In our model, we test on two net-
work variants, one consisting of two style classi-
fiers each corresponding to one attribute, and the
other consists of only one style classifier that com-
bines both attributes into one label as described
before. The results show that our method is supe-
rior to ARAE even with one style classifier. When
using two classifiers to realize multiple attributes
transfer, for example, tense and sentiment transfer,
each classifier is responsible for transferring one
attribute. Specifically, after the sentiment-classifier
transferred sentiment attribute, the transferred sen-
tences will be the inputs of the tense-classifier for
transferring tense attribute. As using two classifiers,
each classifier only needs to transfer one attribute,
having less pressure of transferring two attributes
together, it achieves higher accuracy than one clas-
sifier case. However, since it requires two steps
transfer, the self BLEU score decreases slightly.

Table 6: Results of multiple attributes (sentiment and
tense) transfer on Yelp.

Methods Transfer ↑ Self BLEU ↑ PPL ↓

ARAE (±2.0v) 0.663 11.57 86.99

Our method:
2 classifiers;±1.5v 0.750 13.86 85.47
1 classifier;±1.5v 0.733 14.34 85.41

4.6 Evaluation of Text Generation

Unlike most of the current models for style transfer,
our model can also be used to generate new text
sentences owing to the introduction of the latent
prior distribution. To generate a new sentence, we
first take the noise s as the input to the generator
of the GAN and get a latent representation. Then
we feed the latent representation to the decoder and
obtain the new sentence.

In previous work, both LSTM (Zhao et al., 2018;
Lample et al., 2019; Shen et al., 2020) and trans-
former (Wang et al., 2019) have been used as the
base network in the encoder and decoder architec-
ture. Hence, we further evaluate the performance
of our method based on these two networks on
Yelp and show the results in Table 7. Experimen-
tal results indicate that both the transformer-based
networks and the LSTM-based networks in our
method achieve a similar trade-off among the three
evaluation metrics. The transformer-based method
achieves higher BLEU scores but lower transfer
rates and higher PPL scores, while the LSTM-
based method leads to a better performance on
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the transfer rate and the PPL score, but a worse
performance on the BLEU score.

Table 7: Comparison of sentiment transfer between the
transformer-based autoencoder and the LSTM-based
autoencoder in our method on Yelp.

Methods Transfer ↑ BLEU ↑ PPL ↓

Transformer-based:
w=0.7 0.73 31.14 71.58
w=0.8 0.79 27.42 84.13
w=0.9 0.82 24.48 92.65
w=1.0 0.85 21.40 97.21

LSTM-based:
w=0.005 0.76 25.74 70.16
w=0.007 0.80 25.16 72.70
w=0.009 0.84 24.50 74.32
w=0.01 0.87 23.90 75.46

We evaluate the quality of the text generation
using the LSTM-based network in our method by
comparing 10, 000 generated sentences with sen-
tences generated by ARAE on Yelp. The exper-
imental results in Table 8 show that our method
achieves a better degree of fluency. In particu-
lar, the PPL score of our method is lower than
that of ARAE by around 10% (the PPL score of
our method and ARAE is 76.83 and 86.98, respec-
tively).

Table 8: Generated sentences of our method and ARAE.

Our method

the woman who could give up the store says you are very picky .
the wait staff is great but overall i did n’t like the customer.
i will not recommend this place to any women in future .
the man was always great and the service was really helpful .
do not waste a star from the older man this place is overpriced .
the store experience is awesome the salesman it was very nice.
oh ok and the man in the service looked nice .
kind of really nice man ’s walking the restaurant that they ’re very delish .

ARAE

the gentleman i left inside the kitchen was a rather nice follow up .
this woman has gotten me .
the woman in a little job of perfect !
the man was not that amazing if i tried to order it .
this woman has a cake must me in the burgh .
all was excellent by the salesman we had to do .
there is a friendly man and the crowd of bacon in your face .
their woman was under staffed as very polite and how talented .

Text samples of ARAE are from Zhao et al. (2018).

4.7 Style Classifier in Other Models
Through the above experiments, we have illustrated
the effect of the style classifier in our method on
clustering the latent representations based on the
attributes. We also perform an ablation study re-
garding the style classifier on two other advanced
models: DAAE and BTDAE (Lample et al., 2019).

In DAAE, we implement style transfer by the vec-
tor arithmetic based update, and in BTDAE the
back-translation algorithm is used for style transfer.
From Table 9, we observe that with the inclusion
of a style classifier in DAAE the performance on
all evaluation metrics is improved. For BTDAE,
with a style classifier the BLEU and the PPL scores
are improved. These results again demonstrate the
effectiveness of a style classifier on style transfer.

Table 9: Comparison between the models and the mod-
els with a style classifier on Yelp.

Methods Transfer ↑ BLEU ↑ PPL ↓

DAAE (±2.0v) 0.461 18.55 114.59

DAAE + Class.(±1.5v) 0.646 22.02 112.50

BTDAE 0.87 38.41 36.42

BTDAE + Class. 0.86 39.87 34.39

As the official code of BTDAE is unavailable, we implemented the algorithm
based on the description in Lample et al. (2019).

5 Conclusion and Future Work

In this paper, we proposed a new approach for text
style transfer with entangled latent representations.
We added a classifier to regularize the distribution
of latent sentences in a probabilistic autoencoder.
Extensive experiments show that this regularized
latent structure significantly improves the down-
stream text manipulation tasks. Compared with
benchmarks our method achieves impressive re-
sults on both single-attribute and multi-attribute
text style transfer. Moreover, both approaches of
fast gradient and vector arithmetic style transfer
outperform baselines on style transfer tasks. In
addition, we demonstrated that the classifier regu-
larization also improves other style transfer models.

In the future, we would like to explore other
methods to regularize latent representation in con-
trollable text generation. Moreover, text generation
models have a wide range of applications in NLP
tasks. Besides style transfer, we will apply our
model to other tasks such as text simplification and
examine the latent structure in these applications.
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