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Abstract

Recent work has demonstrated the effective-
ness of cross-lingual language model pretrain-
ing for cross-lingual understanding. In this
study, we present the results of two larger mul-
tilingual masked language models, with 3.5B
and 10.7B parameters. Our two new mod-
els dubbed XLM-RXL and XLM-RXXL outper-
form XLM-R by 1.8% and 2.4% average ac-
curacy on XNLI. Our model also outperforms
the RoBERTa-Large model on several English
tasks of the GLUE benchmark by 0.3% on av-
erage while handling 99 more languages. This
suggests larger capacity models for language
understanding may obtain strong performance
on both high- and low-resource languages. We
make our code and models publicly available.1

1 Introduction

The goal of this paper is to present a study of
the impact of larger capacity models on cross-
lingual language understanding (XLU). We scale
the capacity of XLM-R by almost two orders
of magnitude while training on the same CC100
dataset (Wenzek et al., 2019). Our two new multi-
lingual masked language model dubbed XLM-RXL
and XLM-RXXL, with 3.5 and 10.7 billion parame-
ters respectively, significantly outperform the previ-
ous XLM-R model on cross-lingual understanding
benchmarks and obtain competitive performance
with the multilingual T5 models (Raffel et al., 2019;
Xue et al., 2020). We show that they can even out-
perform RoBERTa-Large (Liu et al., 2019) on the
GLUE benchmark (Wang et al., 2018).

Recent multilingual masked language models
(MLM) like mBERT (Devlin et al., 2018) or
XLM (Lample and Conneau, 2019) improved cross-
lingual language understanding by pretraining large
Transformer models (Vaswani et al., 2017) on mul-

1https://github.com/anonymous

tiple languages at once. The XLM-R model (Con-
neau et al., 2019) extended that approach by scal-
ing the amount of data by two orders of magni-
tude, from Wikipedia to Common-Crawl and train-
ing longer, similar to RoBERTa (Liu et al., 2019).
These models are particularly effective for low-
resource languages, where both labeled and un-
labeled data is scarce. They enable supervised
cross-lingual transfer, where labeled data in one
language can be used to solve the same task in other
languages, and unsupervised cross-lingual transfer,
where low-resource language self-supervised repre-
sentations are improved using additional unlabeled
data from higher-resource languages. Furthermore,
they reduce the need for training one model per
language, and allows the use of a single - poten-
tially much larger - pretrained model that is then
fine-tuned on annotated data from many languages.

The better performance of self-supervised cross-
lingual models on low-resource languages comes
however at the cost of lower performance on higher-
resource languages (Arivazhagan et al., 2019).
When the number of languages becomes large,
Conneau et al. (2019) even observed an overall
decrease of performance on all languages. It was
hypothesized that when multilingual models get
more capacity, they may showcase strong perfor-
mance on both high-resource languages and low-
resource languages. With only 550M parameters,
the XLM-R model is now relatively small com-
pared to new standards. Recent work scaled lan-
guage models to hundreds of billions (Brown et al.,
2020) or even multiple trillion parameters (Fedus
et al., 2021), showing consistent gains in doing
so. Recently, multilingual T5 showed impressive
increase in performance by scaling the model ca-
pacity to tens of billions of parameters. Our study
complements these findings by showing the impact
of larger capacity models on the important pretrain-
ing task of multilingual masked language model-

https://github.com/anonymous
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ing. We show promising results for cross-lingual
understanding: XLM-RXXL can both obtain a new
state of the art on some cross-lingual understanding
benchmarks and outperform the RoBERTa-Large
model on the English GLUE benchmark (Wang
et al., 2018). This suggests that very large-scale
multilingual models may be able to benefit from the
best of both worlds: obtaining strong performance
on high-resource languages while still allowing for
zero-shot transfer and low-resource language un-
derstanding. We make the following contributions:

• We scale XLM capacity by two orders of mag-
nitude, and publicly release XLM-RXL and
XLM-RXXL with 3.5B and 10.7B parameters.

• We show that those two models obtain very
strong performance on cross-lingual bench-
marks while outperforming RoBERTaLarge on
the GLUE benchmark.

2 Pretraining and evaluation

In this section, we describe the model we use and
how we scale it, as well as the data and tasks we
use for pretraining and evaluation.

2.1 Multilingual masked language models

We use a Transformer model (Vaswani et al., 2017)
trained with the multilingual MLM objective (De-
vlin et al., 2018; Lample and Conneau, 2019) using
only monolingual data. We sample streams of text
from each language and train the model to predict
the masked tokens in the input. We use the same
learning procedure as XLM-R. We apply subword
tokenization directly on raw text data using Sen-
tence Piece (Kudo and Richardson, 2018) with a
unigram language model (Kudo, 2018) just like
in XLM-R. We sample batches from different lan-
guages using the same sampling distribution as
Conneau et al. (2019), with α = 0.3, and without
language embeddings. We use a large vocabulary
size of 250K with a full softmax and train two dif-
ferent models: XLM-RXL (L = 36, H = 2560, A
= 32, 3.5B params) and XLM-RXXL (L = 48, H
= 4096, A = 32, 10.7B params). We pretrain the
models on the CC100 dataset, which corresponds
to 167B tokens in 100 languages. We compare our
approach to previous results as well as the mT5
baselines, which were pretrained on the larger mC4
corpus of 6.4T tokens.

2.2 Evaluation
We consider three evaluation benchmarks. For
cross-lingual understanding, we use cross-lingual
natural language inference and question answer-
ing, and use the GLUE benchmark to evaluate the
English performance.

Cross-lingual Natural Language Inference.
The XNLI dataset (Conneau et al., 2018) comes
with ground-truth dev and test sets in 15 languages,
and a ground-truth English training set. The train-
ing set has been machine-translated to the remain-
ing 14 languages, providing synthetic training data
for these languages as well. We evaluate our model
on cross-lingual transfer from English to other lan-
guages. We also consider two machine translation
baselines: (i) translate-test: dev and test sets are
machine-translated to English and a single English
model is used (ii) translate-train-all: the English
training set is machine-translated to each language
and we fine-tune a multilingual model on all train-
ing sets. For translations, we use the original XNLI
data for consistency.

Cross-lingual Question Answering. We use the
MLQA and XQuad benchmark from Lewis et al.
(2019) and Artetxe et al. (2019), which extends
the English SQuAD benchmark to more languages.
We report the F1 score as well as the exact match
(EM) score for cross-lingual transfer from English.

The English GLUE Benchmark. Finally, we
evaluate the English performance of our model
on the GLUE benchmark (Wang et al., 2018)
which gathers multiple classification tasks, such
as MNLI (Williams et al., 2017), SST-2 (Socher
et al., 2013), or QNLI (Rajpurkar et al., 2018).

2.3 Training details
We use model parallelism based on tensor paral-
lel (Shoeybi et al., 2019) for scaling models. XLM-
RXL uses model parallel size of 2 and XLM-RXXL
used 8. Compared to previous XLM-R models, we
reduce the batch size and number of updates sig-
nificantly to keep the compute of the new models
similar (see Table 5). For both models, we use
batch size of 2048 and train for 500,000 updates.
We use pre-LayerNorm setting for both the models
which was more stable during training.

For all the tasks in finetuning, we use batch size
of 32 and train for 10 epochs. We do early stop-
ping based on the average valid metrics across all
languages and report test results.
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Model Data (#tok) en fr es de el bg ru tr ar vi th zh hi sw ur Avg

Fine-tune multilingual model on English training set (Cross-lingual Transfer)

mBERT
Wikipedia

80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
XLM 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5

mT5-Base
mC4

84.7 73.3 78.6 77.4 77.1 80.3 79.1 70.8 77.1 69.4 73.2 72.8 68.3 74.2 74.1 75.4
mT5-Large 89.4 79.8 84.1 83.4 83.2 84.2 84.1 77.6 81.5 75.4 79.4 80.1 73.5 81.0 80.3 81.1
mT5-XL (6.4T) 90.6 82.2 85.4 85.8 85.4 81.3 85.3 80.4 83.7 78.6 80.9 82.0 77.0 81.8 82.7 82.9
mT5-XXL 91.6 84.5 87.7 87.3 87.3 87.8 86.9 83.2 85.1 80.3 81.7 83.8 79.8 84.6 83.6 84.5

XLM-RBase
CC100

85.8 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 76.2
XLM-RLarge 89.1 84.1 85.1 83.9 82.9 84.0 81.2 79.6 79.8 80.8 78.1 80.2 76.9 73.9 73.8 80.9
XLM-RXL (167B) 90.7 85.5 86.5 84.6 84.0 85.2 82.7 81.7 81.6 82.4 79.4 81.7 78.5 75.3 74.3 82.3
XLM-RXXL 91.6 86.2 87.3 87.0 85.1 85.7 82.5 82.0 82.5 83.0 79.5 82.6 79.8 76.2 74.9 83.1

Translate everything to English and use English-only model (TRANSLATE-TEST)

RoBERTa CC-En 91.3 82.9 84.3 81.2 81.7 83.1 78.3 76.8 76.6 74.2 74.1 77.5 70.9 66.7 66.8 77.8

Fine-tune multilingual model on all training sets (TRANSLATE-TRAIN-ALL)

mT5-Base
mC4

82.0 74.4 78.5 77.7 78.1 79.1 77.9 72.2 76.5 71.5 75.0 74.8 70.4 74.5 76.0 75.9
mT5-Large 88.3 80.3 84.1 84.0 83.7 84.9 83.8 79.8 82.0 76.4 79.9 81.0 75.9 81.3 81.7 81.8
mT5-XL (6.4T) 90.9 84.2 86.8 86.8 86.4 87.4 86.8 83.1 84.9 81.3 82.3 84.4 79.4 83.9 84.0 84.8
mT5-XXL 92.7 87.2 89.4 89.8 89.5 90.0 89.1 86.5 87.6 84.3 85.6 87.1 83.8 87.5 86.5 87.8

XLM-RBase
CC100

85.4 81.4 82.2 80.3 80.4 81.3 79.7 78.6 77.3 79.7 77.9 80.2 76.1 73.1 73.0 79.1
XLM-RLarge 89.1 85.1 86.6 85.7 85.3 85.9 83.5 83.2 83.1 83.7 81.5 83.7 81.6 78.0 78.1 83.6
XLM-RXL (167B) 91.1 87.2 88.1 87.0 87.4 87.8 85.3 85.2 85.3 86.2 83.8 85.3 83.1 79.8 78.2 85.4
XLM-RXXL 91.5 87.6 88.7 87.8 87.4 88.2 85.6 85.1 85.8 86.3 83.9 85.6 84.6 81.7 80.6 86.0

Table 1: Results on cross-lingual classification (XNLI). We report the accuracy on each of the 15 XNLI languages
and average accuracy, and specify the dataset and its corresponding size in number of tokens. We report results of
XLM-R models with increasing capacity, from 270M (Base), 550M (Large), 3.5B (XL) to 10.7B (XXL) parameters.

3 Analysis and Results

In this section, we present our results and compare
XLM-RXL and XLM-RXXL performance to other
methods from previous work.

Cross-lingual understanding results. On
XNLI, we observe in Table 1 that scaling the
capacity from XLM-RLarge to XLM-RXL leads
to an average accuracy improvement of 1.4 on
zero-shot cross-lingual transfer and 1.8 on mul-
tilingual fine-tuning. When scaling even further
to XLM-RXXL, we observe a total improvement
of 2.2 on zero-shot and 2.4 on translate-train-all
compared to XLM-RXL, with a new state of
the art on French, Vietnamese and Hindi. On
MLQA, in Table 4, we observe even larger
gains for cross-lingual zero-shot transfer, where
scaling from XLM-RLarge to XLM-RXXL leads
to improvements of 4.1 F1 and 3.9 EM scores
on average. Similarly, on XQuad we observe
improvements of 4.4 F1 and 5.5 scores, with new
state-of-the-art results on Arabic, German, Greek
and Russian (see Table 3).

Comparison to monolingual English model.
For smaller-capacity models like the Base and
Large version of XLM-R, it was shown that the
more languages are considered the lower the perfor-

mance (Conneau et al., 2019), in particular on high-
resource languages. For instance, XLM-RLarge
was outperformed by RoBERTaLarge by 1% ac-
curacy on average on several downstream tasks
from the GLUE benchmark, as illustrated in Ta-
ble2. With larger capacity, we now observe that
XLM-RXXL is able to outperform RoBERTaLarge
by 0.3 dev points, going from 92.9 to 93.2 aver-
age accuracy, while handling 99 more languages.
While a RoBERTaXXL model may outperform
XLM-RXXL, we believe it interesting to notice that
with more capacity, a multilingual model can get
strong high-resource performance while not losing
its cross-lingual transfer ability for lower-resource
languages. Given the compute needed for training
such large-scale models, the possibility of training
a single very large model on hundreds of languages
with state-of-the-art performance on high-resource
languages is an encouraging and positive result.

Model #lgs MNLI QNLI QQP SST MRPC Avg

RoBERTa† 1 90.2 94.7 92.2 96.4 90.9 92.9
XLM-RLarge 100 88.9 93.8 92.3 95.0 89.5 91.9
XLM-RXL 100 90.4 94.9 92.5 96.6 90.4 93.0
XLM-RXXL 100 90.9 95.0 92.6 96.7 90.7 93.2

Table 2: GLUE dev results
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Model en ar de el es hi ru th tr vi zh avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mT5-Large 88.4 / 77.3 75.2 / 56.7 80.0 / 62.9 77.5 / 57.6 81.8 / 64.2 73.4 / 56.6 74.7 / 56.9 73.4 / 62.0 76.5 / 56.3 79.4 / 60.3 75.9 / 65.5 77.8 / 61.5
mT5-XL 88.8 / 78.1 77.4 / 60.8 80.4 / 63.5 80.4 / 61.2 82.7 / 64.5 76.1 / 60.3 76.2 / 58.8 74.2 / 62.5 77.7 / 58.4 80.5 / 60.8 80.5 / 71.0 79.5 / 63.6
mt5-XXL 90.9 / 80.1 80.3 / 62.6 83.1 / 65.5 83.3 / 65.5 85.1 / 68.1 81.7 / 65.9 79.3 / 63.6 77.8 / 66.1 80.2 / 60.9 83.1 / 63.6 83.1 / 73.4 82.5 / 66.8

XLM-RLarge 86.5 / 75.7 68.6 / 49.0 80.4 / 63.4 79.8 / 61.7 82.0 / 63.9 76.7 / 59.7 80.1 / 64.3 74.2 / 62.8 75.9 / 59.3 79.1 / 59.0 59.3 / 50.0 76.6 / 60.8
XLM-RXL 89.5 / 79.0 78.4 / 61.6 81.3 / 64.1 82.3 / 63.9 84.6 / 66.2 78.8 / 63.2 81.5 / 65.0 76.0 / 65.5 73.9 / 57.9 81.7 / 61.8 72.3 / 66.1 80.0 / 64.9
XLM-RXXL 89.3 / 79.4 80.1 / 63.7 82.7 / 65.8 83.4 / 65.5 83.8 / 66.0 80.7 / 65.4 82.4 / 65.4 76.6 / 65.6 76.8 / 61.7 82.2 / 63.0 74.1 / 67.4 81.1 / 66.3

Table 3: XQuad results (F1/EM) for each language.

Model en es de ar hi vi zh Avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mT5-Large 84.9 / 70.7 65.3 / 44.6 68.9 / 51.8 73.5 / 54.1 66.9 / 47.7 72.5 / 50.7 66.2 / 42.0 71.2 / 51.7
mT5-XL 85.5 / 71.9 68.0 / 47.4 70.5 / 54.4 75.2 / 56.3 70.5 / 51.0 74.2 / 52.8 70.5 / 47.2 73.5 / 54.4
mT5-XXL 86.7 / 73.5 70.7 / 50.4 74.0 / 57.8 76.8 / 58.4 75.6 / 57.3 76.4 / 56.0 71.8 / 48.8 76.0 / 57.4

XLM-RLarge 80.6 / 67.8 74.1 / 56.0 68.5 / 53.6 63.1 / 43.5 69.2 / 51.6 71.3 / 50.9 68.0 / 45.4 70.7 / 52.7
XLM-RXL 85.1 / 72.6 66.7 / 46.2 70.5 / 55.5 74.3 / 56.9 72.2 / 54.7 74.4 / 52.9 70.9 / 48.5 73.4 / 55.3
XLM-RXXL 85.5 / 72.4 68.6 / 48.4 72.7 / 57.8 75.4 / 57.6 73.7 / 55.8 76.0 / 55.0 71.7 / 48.9 74.8 / 56.6

Table 4: MLQA results (F1/EM) for each language.

Discussion and comparison to mT5. Both mT5
and XLM-R models obtain strong performance on
cross-lingual understanding benchmarks, as well
as high performance on English benchmarks (see
the score of 91.6 of mT5XXL on English XNLI).
Many hyperparameters are however different be-
tween mT5 and XLM-R models which makes diffi-
cult an apple-to-apple comparison. First, as shown
in Table 5, the mT5 models are pretrained on the
much larger mC4 dataset which contains around
6.4T tokens, which is 38 times bigger than CC100
(167B tokens). While XLM-RLarge was pretrained
with more updates (6T tokens), the XLM-RXL and
XLM-RXXL models have seen less tokens (0.5T)
during pretraining than their mT5 counterparts, al-
though it also uses a bigger batch size (2048 over
1024 for mT5). Another difference is the context
sequence length of 512 for XLM-R and 1024 for
mT5. The mT5-XXL model also has slightly more
parameters (13B over 10.7B). The larger number
of updates combined with the larger dataset size
may explain the larger improvement from the XL
model to the XXL model in the case of mT5 (+3 av-
erage accuracy on XNLI), in which the additional

Model Number of Dataset Dataset Number of Batch Sequence
parameters name size training tokens size length

XLM-RLarge 550M CC100 167B 6T 8192 512
XLM-RXL 3.5B CC100 167B 0.5T 2048 512
XLM-RXXL 10.7B CC100 167B 0.5T 2048 512
mt5-XL 3.7B mC4 6.4T 1T 1024 1024
mt5-XXL 13B mC4 6.4T 1T 1024 1024

Table 5: Comparison of datasets and pretraining details
between XLM-R and mT5. We report dataset sizes and
number of updates in terms of number of tokens.

capacity can exploit the large quantity of unlabeled
mC4 data. We note however that the mT5XL is
outperformed by XLM-RXL on XNLI by 0.6% on
average, on XQuad by 1.3% and on MLQA by
0.9% when considering average EM score. In com-
parison, gains of XLM-R from the XL to the XXL
architecture are only of 0.6 on average. Another
explanation may be that generative models scale
better than masked language models. The differ-
ence in the nature of the pretraining dataset is par-
ticularly striking when looking at the variance of
performance across languages. For example the
mT5XXL outperforms XLM-RXXL by 8.4 points on
Swahili on XNLI zero-shot, while it only outper-
forms XLM-RXXL by 1.4 average accuracy. These
results may suggest that the CC100 dataset gets
saturated with current larger-capacity models.

4 Conclusion

In this study, we scaled the model capacity of the
XLM-R model up to 10.7B parameters and ob-
tained stronger performance than previous XLM-
R models on cross-lingual understanding bench-
marks. We also show that the additional capac-
ity allows a multilingual model to outperform a
the RoBERTaLarge baseline on English benchmarks.
Our technical study thus suggests that larger capac-
ity multilingual model can obtain state-of-the-art
cross-lingual understanding results while maintain-
ing strong performance on high-resource languages.
Our work provides an alternative to mT5 models,
with new state-of-the-art performance on some lan-
guages. We release our code and models publicly.
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