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Abstract

Pre-trained multilingual language models have
become an important building block in mul-
tilingual natural language processing. In the
present paper, we investigate a range of such
models to find out how well they transfer
discourse-level knowledge across languages.
This is done with a systematic evaluation on
a broader set of discourse-level tasks than has
been previously been assembled. We find that
the XLM-RoBERTa family of models consis-
tently show the best performance, by simulta-
neously being good monolingual models and
degrading relatively little in a zero-shot set-
ting. Our results also indicate that model dis-
tillation may hurt the ability of cross-lingual
transfer of sentence representations, while lan-
guage dissimilarity at most has a modest ef-
fect. We hope that our test suite, covering 5
tasks with a total of 22 languages in 10 dis-
tinct families, will serve as a useful evaluation
platform for multilingual performance at and
beyond the sentence level.

1 Introduction

Large-scale pre-trained neural language models
have become immensely popular in the natural lan-
guage processing (NLP) community in recent years
(Devlin et al., 2019; Peters et al., 2018). When
used as contextual sentence encoders, these mod-
els have led to remarkable improvements in per-
formance for a wide range of downstream tasks
(Qiu et al., 2020). In addition, multilingual ver-
sions of these models (Devlin et al., 2019; Conneau
and Lample, 2019) have been successful in trans-
ferring knowledge across languages by providing
language-independent sentence encodings.

The general usefulness of pre-trained language
models has been convincingly demonstrated thanks
to persistent creation and application of evaluation
datasets by the NLP community. Discourse-level
analysis is particularly interesting to study, given

that many of the currently available models are
trained with relatively short contexts such as pairs
of adjacent sentences.

Wang et al. (2019) use a diverse set of natural lan-
guage understanding (NLU) tasks to investigate the
generality of the sentence representations produced
by different language models. Hu et al. (2020) use
a broader set of tasks from across the NLP field
to investigate the ability of multilingual models
to transfer various types of knowledge across lan-
guage boundaries.

Our goal in this paper is to systematically eval-
uate the multilingual performance on NLU tasks,
particularly at the discourse level. This combines
two of the most challenging aspects of representa-
tion learning: multilinguality and discourse-level
analysis. A few datasets have been used for this pur-
pose before, most prominently the XNLI evaluation
set (Conneau et al., 2018) for Natural Language In-
ference (NLI), and recently also XQuAD (Artetxe
et al., 2020) and MLQA (Lewis et al., 2020) for
Question Answering (QA). We substantially in-
crease the breadth of our evaluation by adding three
additional tasks:

1. Penn Discourse TreeBank (PDTB)-style im-
plicit discourse relation classification on an-
notated TED talk subtitles in seven languages
(Section 3.1.1)

2. Rhetorical Structure Theory (RST)-style dis-
course relation classification with a custom
set consisting of treebanks in six non-English
languages (Section 3.1.2)

3. Stance detection with a custom dataset in five
languages (Section 3.1.3)

We investigate the cross-lingual generalization
capabilities of seven multilingual sentence en-
coders with considerably varying model sizes
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through their cross-lingual zero-shot performance1

which, in this context, refers to the evaluation
scheme where sentence encoders are tested on the
languages that they are not exposed to during train-
ing. The complied test suite consists of five tasks,
covering 22 different languages in total.

We specifically focus on zero-shot transfer sce-
nario where a sufficient amount of annotated data
to fine-tune a pre-trained language model is as-
sumed to be available only for one language. We
believe that this is the most realistic scenario for
a great number of languages; therefore, zero-shot
performance is the most direct way of assessing
cross-lingual usefulness in a large scale.

Our contributions are as follows: (i) we provide
a detailed analysis of a wide range of sentence en-
coders on large number of probing tasks, several of
which have not previously been used with multilin-
gual sentence encoders despite their relevancy, (ii)
we provide suitably pre-processed versions of these
datasets to be used as a multilingual benchmark for
future work with strong baselines provided by our
evaluation, (iii) we show that the zero-shot perfor-
mance on discourse level tasks are not correlated
with any kind of language similarity and hard to
predict, (iv) we show that knowledge distillation
may selectively destroy multilingual transfer abil-
ity in a way that harms zero-shot transfer, but is
not visible during evaluations where the models are
trained and evaluated with the same language.

2 Background

The standard way of training a multilingual lan-
guage model is through a large non-parallel mul-
tilingual corpora, e.g. Wikipedia articles, where
the models are not provided with any explicit map-
ping across languages which renders cross-lingual
performance of such models puzzling. Pires et al.
(2019) and Wu and Dredze (2019) are the earliest
studies to explore that puzzle by trying to uncover
the factors that give multilingual BERT (hence-
forth, mBERT) its cross-lingual capabilities. Pires
et al. (2019) perform a number of probing tasks
and hypothesize that the shared sentence pieces
across languages gives mBERT its generalization
ability by forcing other pieces to be mapped into
the same space. Similarly, Wu and Dredze (2019)

1In the remainder of the paper, cross-lingual zero-shot
performance is simply referred as zero-shot performance for
brevity. Similarly, source language performance denotes the
performance of the respective model on the test set of the
training language.

evaluate the performance of mBERT in five tasks
and report that while mBERT shows a strong zero-
shot performance, it also retains language-specific
information in each layer.

Chen et al. (2019a) proposes a benchmark to
evaluate sentence encoders specifically on dis-
course level tasks. The proposed benchmark con-
sists of discourse relation classification and a num-
ber of custom tasks such as finding the correct posi-
tion of a randomly moved sentence in a paragraph
or determining if a given paragraph is coherent or
not. The benchmark is confined to English, hence,
only targets monolingual English models.

Two very recent studies, XTREME (Hu et al.,
2020) and XGLUE (Liang et al., 2020), consti-
tute the first studies on the cross-lingual gener-
alization abilities of pre-trained language mod-
els via their zero-shot performance. The tasks
in both studies largely overlap, where XTREME
serves as cross-lingual benchmark consisting of
well-known datasets, e.g. XNLI, XQuAD. On the
other hand, while covering the most of XTREME
tasks2, XGLUE offers new datasets which either
focus on the relation between a pair of inputs, such
as web page–query matching, or on text genera-
tion via question/news title generation. In addition
to the mBERT and certain XLM and XLM-R ver-
sions, XTREME includes MMTE (Arivazhagan
et al., 2019) whereas XGLUE evaluates Unicoder
(Huang et al., 2019) among its baselines.

3 Cross-lingual Discourse-level
Evaluation

In discourse research, sentences/clauses are not un-
derstood in isolation but in relation to one another.
The semantic interactions between these units are
usually regarded as the backbone of coherence in
various prominent discourse theories including that
underlying the Penn Discourse TreeBank (PDTB)
(Prasad et al., 2007), and Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988) used in
the RST Discourse Treebank (Carlson and Marcu,
2001). Modelling such interactions requires an un-
derstanding that is beyond sentence-level and, from
this point-of-view, determining any kind of relation
between sentences/clauses can be associated with
discourse.

Although paraphrase detection or natural lan-
guage inference may not strike as discourse-level
tasks at first glance, they both deal with semantic

2Except parallel sentence retrieval tasks.
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relations between sentences. Tonelli and Cabrio
(2012) show that textual entailment is, in fact, a sub-
class of Restatement relations of the PDTB frame-
work whereas Nie et al. (2019) report an increase
in discourse relation classification accuracy when
NLI is used as the intermediate fine-tuning task. In
a similar vein, a stance against a judgement, Favor
or Against, can be seen as CONTINGENCY: Cause:
reason and COMPARISON: Contrast in PDTB; Ex-
planation and Antithesis in RST, respectively.

Therefore, these NLU tasks can be seen as spe-
cial subsets of discourse relation classification;
only a model with a good understanding beyond
individual sentences can be expected to solve these
tasks. Finally, since question answering requires
an understanding on discourse level in order to
be solved, so we also believe classifying this as a
discourse-level task should be uncontroversial.

3.1 Tasks & Datasets
In this section, we present our task suite and the
datasets used for training and zero-shot evaluation.
For the sake of clarity, we name each task after the
dataset used for training.

3.1.1 Implicit Discourse Relation
Classification (PDTB)

Implicit discourse relations hold between adjacent
sentence pairs but are not explicitly signaled with
a connective such as because, however. Implicit
discourse relation classification is the task of de-
termining the sense conveyed by these adjacent
sentences, which can be easily inferred by readers.
Classifying implicit relations constitutes the most
challenging step of shallow discourse parsing (Xue
et al., 2016).

The training is performed on PDTB3 (Webber
et al., 2016) where sections 2–20, 0–1 are used for
training and development respectively. The zero-
shot evaluation is performed on the TED-MDB cor-
pus (Zeyrek et al., 2019)3, which is a PDTB-style
annotated parallel corpus consisting of 6 TED talk
transcripts, and the recent Chinese annotation effort
on TED talk transcripts that however are mostly not
parallel to TED-MDB (Long et al., 2020). Due to
the small size of the test sets, we confine ourselves
to the top-level senses: Contingency, Comparison,
Expansion, Temporal which is also the most com-
mon setting for this task. Despite the limited size
of TED-MDB, zero-shot transfer is possible and

3https://github.com/MurathanKurfali/Ted-MDB-
Annotation

yields meaningful results as shown in (Kurfalı and
Östling, 2019). In total, seven languages are eval-
uated in this task: English, German, Lithuanian4,
Portuguese, Polish, Russian and Chinese.

3.1.2 Rhetorical Relation Classification
(RST)

Rhetorical relations are just another name for dis-
course relations but this term is most commonly
associated with Rhetorical Structure Theory (RST)
(Mann and Thompson, 1988). Similar to PDTB’s
discourse relations, rhetorical relations also denote
links between discourse units, but are considerably
different from the former. The difference largely
stems from the take of the respective theories on
the structure of the discourse. RST conceives dis-
course as one connected tree-shaped structure as-
suming hierarchical relations among the discourse
relations. On the other hand, PDTB does not make
any claims regarding the structure of the discourse
and annotates discourse relations only in a local
context (i.e. adjacent clauses/sentences) without
assuming any relation on higher levels. Hence,
evaluation on RST and PDTB relations can be seen
as complementary to each other as the former fo-
cuses on both global and local discourse structure
whereas PDTB focuses only on local structure.

We use English RST-DT (Carlson and Marcu,
2001) for training where a randomly selected 35
documents are reserved for development. However,
unlike PDTB, there is not any compact parallel RST
corpus; RST annotations across languages usually
differ from each other in several ways. Therefore,
we follow Braud et al. (2017) and create a custom
multilingual corpus for the zero-shot experiments
which consists of the following languages: Basque
(Iruskieta et al., 2013), Brazilian Portuguese (Car-
doso et al., 2011; Collovini et al., 2007; Pardo and
Seno, 2005), Chinese (Cao et al., 2018), German
(Stede, 2004), Spanish (Da Cunha et al., 2011),
Russian (Pisarevskaya et al., 2017). We perform a
normalization step on each treebank which includes
binarization of non-binary trees and mapping all
relations to 18 coarse grained classes described
in (Carlson and Marcu, 2001). The normalization
step is performed via the pre-processing scripts of
(Braud et al., 2017). Due to memory constraints,
we limit the sequence lengths to 384. Hence, we
only keep those relations where the first discourse
unit is shorter than 150 words so that both units can

4Lithuanian is the latest addition to the Ted-MDB corpus,
as documented in (Oleskeviciene et al., 2018).
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be equally represented which lead to omission of
only 5% of all non-English relations.

3.1.3 Stance Detection (X-Stance)
The stance detection is task of determining the at-
titude expressed in a text towards a target claim.
For experiments, we mainly use the X-stance cor-
pus which consists of 60K answers to 150 ques-
tions concerning politics in German, Italian and
French (Vamvas and Sennrich, 2020). Unlike other
tasks, we select German as the training language
for stance detection as it is the largest language in
X-Stance. Following the official split, we use the
German instances in the training and development
sets during fine-tuning and non-German instances
in the test set for evaluation. Furthermore, we en-
rich the scope of our zero-shot evaluation by two ad-
ditional dataset, one in English (Chen et al., 2019b)
and other one in Chinese (Yuan et al., 2019), which
also consist of stance annotated claim–answer pairs,
despite in different domains.

3.1.4 Natural Language Inference (XNLI)
Natural language inference (NLI) is the task of
determining whether a premise sentence entails,
contradicts or is neutral to a hypothesis sentence.
MultiNLI and the mismatched part of the develop-
ment data (Williams et al., 2018) are used for train-
ing and validation, respectively. The evaluation is
performed on the test sets of the XNLI (Conneau
et al., 2018) corpus which covers the following 14
languages in addition to English: French, Spanish,
German, Greek, Bulgarian, Russian, Turkish, Ara-
bic, Vietnamese, Thai, Chinese, Hindi, Swahili and
Urdu.

3.1.5 Question Answering (XQuAD)
Question answering is the task of identifying span
in a paragraph which answers to a question. We
use the SQuAD v1.1 (Rajpurkar et al., 2016) for
training. We evaluate the models on the popular
XQuAD dataset which contains the translation of
SQuAD v1.1 development set into ten languages
(Artetxe et al., 2020): Spanish, German, Greek,
Russian, Turkish, Arabic, Vietnamese, Thai, Chi-
nese, and Hindi.

3.2 Languages

The proposed task suite covers the following 22
languages representing 10 language families: Indo-
European (Bulgarian bg, German de, Greek el, En-
glish en, Spanish es, French fr, Hindi hi, Italian

it, Lithuanian lt, Polish pl, Portuguese pt, Russian
ru, Urdu ur), Afroasiatic (Arabic ar), Basque (eu),
Japonic (Japanese ja), Koreanic (Korean ko), Niger-
Congo (Swahili sw), Tai-Kadai (Thai th), Turkic
(Turkish tr), Austroasiatic (Vietnamese vi), Sino-
Tibetan (Chinese zh). Seven of these languages are
evaluated in at least three different tasks.

4 Experiments

We evaluate a wide range of multilingual sentence
encoders which learn contextual representations.
The evaluated models represent a broad spectrum
of model sizes, in order to allow practitioners to
estimate the trade-off between model size and ac-
curacy.

4.1 Sentence Encoders

The sentence encoders evaluated in the current pa-
per are described in detailed below, and their char-
acteristics summarized in Table 2.

Multilingual BERT (mBERT): mBERT is a
transformer-based language model trained with
masked language modelling and next sentence pre-
diction objectives similar to the original English
BERT model (Devlin et al., 2019)5. mBERT is pre-
trained on the Wikipedias of 104 languages with a
shared word piece vocabulary. As discussed in Sec-
tion 2, its input is not marked with any language-
specific signal and mBERT does not have any ob-
jective to encode different languages in the same
space.

distilmBERT: distilmBERT is a compressed ver-
sion of mBERT obtained via model distillation
(Sanh et al., 2019). Model distillation is a com-
pression technique where a smaller model, called
student, learns to mimic the behavior of the larger
model, called teacher, by matching its output dis-
tribution. distilmBERT is claimed to reach 92% of
mBERT’s performance on XNLI while being two
times faster and 25% smaller.6 However, to the best
of our knowledge, there is not any comprehensive
analysis of distilmBERT’s zero-shot performance.

XLM: XLM is a transformer-based language
model aimed at extending BERT to cross-lingual
setting (Conneau and Lample, 2019). To this end,

5https://github.com/google-research/
bert/blob/master/multilingual.md

6https://github.com/huggingface/
transformers/tree/master/examples/
distillation

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/huggingface/transformers/tree/master/examples/distillation
https://github.com/huggingface/transformers/tree/master/examples/distillation
https://github.com/huggingface/transformers/tree/master/examples/distillation
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Task Training data |train| |test| #langs metric
RST RST DT 17K 603 – 6,902 6 acc
PDTB PDTB3 17K 194 – 1,366 7 F1

X-stance X-stance-DE 33K 1,446 – 6,153 4 F1

NLI MultiNLI 433K 5,010 14 acc
Q/A Squad 1.1 100K 1,190 11 ex. match/F1

Table 1: Summary of the datasets used in experiments. ”Corpus name-(lang.code)” refers to the part of the corpus
belonging to the respective language. #langs refers to the number of zero-shot languages, excluding the training
language.

XLM increases the shared vocabulary across lan-
guages via shared byte pair encoding (BPE) vocab-
ulary. Moreover, unlike BERT, the input sentences
are accompanied by language embeddings. There
are several different XLM models which differ at
either number of training languages or training ob-
jectives. In the current study, we consider the fol-
lowing three:

• XLM-mlm: The XLM model which is trained
with BERT’s masked language model (MLM)
objective on the Wikipedias of the 15 XNLI
languages.

• XLM-tlm: In addition to the MLM, this XLM
model has a novel training objective which is
called Translation Language Model (TLM). In
TLM, the model receives a pair of translation-
ally equivalent sentences and tries to predict
the masked word by attending both sentences.
Hence, the model tries to predict the masked
word by looking at its context in another lan-
guage which encourages representations of
different languages to be aligned. TLM is
shown to lead a significant increase on XNLI
(Conneau and Lample, 2019). XLM-tlm is
also trained for 15 XNLI languages but only
on parallel data.

• XLM-100: This version is trained, like
mBERT, on Wikipedia data covering 100 lan-
guages using only an MLM objective. Unlike
previous XLM models, this version does not
utilize language embeddings.

XLM-RoBERTa (XLM-R): XLM-RoBERTa is
not an XLM model, in spite of what its name sug-
gests. XLM-R does not use language embeddings,
applies sentence-piece tokenization instead of BPE
and is not trained on a parallel corpus unlike the
XLM-tlm. Instead, it is a RoBERTa model (Liu
et al., 2019), which is an optimized version of

BERT, trained on 2.5 TB of cleaned CommonCrawl
data covering 100 languages (Conneau et al., 2020).
There are two released XLM-R models, XLM-
Rbase and XLM-Rlarge, named after the BERT-
architecture they are based on. Compared to orig-
inal multilingual-BERT, XLM-RoBERTa models
have a considerably larger vocabulary size which
results in larger models.

4.2 Experimental Setup
A summary of the datasets used in the experiments
is provided in Table 1. Except PDTB, all datasets
are publicly available. As stated earlier, the train-
ing language is English for all tasks except stance
detection where German is preferred due the size
of the available data. In the spirit of real zero-
shot transfer, the validation sets only consist of
instances in the training language; hence, no cross-
lingual information whatsoever is utilized during
training/model selection. For the evaluation met-
rics, we stick to the default metrics of each task
(Table 1).

We set the sequence length to 384 for question
answering and RST relation classification; to 250
for stance detection and to 128 for the remaining
tasks. At evaluation time, we keep the same config-
uration. For all models, adam epsilon is set to 1e-8
and maximum gradient norm to 1.0. The learn-
ing rate of 2 × 10−5 is used for all the models
except XLM-R-large and XLM-100 where it is set
to 5 × 10−6. We adopt the standard fine-tuning
approach and fine-tune all models for 4 epochs.
We do not apply any early stopping and use the
model with the best validation performance during
zero-shot experiments. All tasks are implemented
using Huggingface’s Transformers library (Wolf
et al., 2019). As fine-tuning procedure is known
to show high variance on small training datasets,
all models are run for 4 times with different seeds
and the average performance is reported. For XLM
and XLM-tlm models, we fall back to English lan-
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Model Langs Parameter count Vocab. size # of layers
distilmBERT 104 134M 30K 6
mBERT 104 177M 30K 12
XLM-mlm 15 250M 95K 12
XLM-tlm 15 250M 95K 12
XLM-100 100 570M 200K 16
XLM-Rbase 100 270M 250K 12
XLM-Rlarge 100 550M 250K 24

Table 2: The characteristics of the sentence encoders evaluated in the experiments

Figure 1: Overview of performance of each sentence
encoder on all Disco-X tasks. The semi-transparent
bars represent source language performance (German
for X-stance, English for the rest) while the solid bars
represent the zero-shot performance, i.e. the mean per-
formance across all languages except the training lan-
guage. All values are averages over independent train-
ing runs.

guage embeddings for non-XNLI languages. All
experiments are run on a single TITAN X (12 GB)
GPU.

5 Results and Discussion

We provide an overview of the main results in Fig-
ure 1. The detailed results with per-language break-
down are provided in the Appendix A.

Overall, there is a clear difference between the
training and zero-shot performance of all models.
When averaged over all tasks, the performance loss
in zero-shot transfer ranges from 15.58% (XLM-
R-large) to 34.96% (distilmBERT) which clearly
highlights the room for improvement, especially
with smaller model sizes. In the rest of the section,
we discuss the results in terms of the encoder type,
task and the languages.

Model-wise analysis The ranking of the en-
coders displays relatively little variation across
tasks, with XLM-Rlarge exhibiting the best zero-
shot performance across all tasks by outperforming
the second best model (XLM-Rbase) by 5.98%. dis-
tillmBERT, on the other hand, fails to match the
performance of other encoders.7

The Translation Language Model (TLM) objec-
tive is proved to be a better training objective than
MLM by consistently outperforming the vanilla
XLM in all tasks. XLM-tlm outperforms XLM-
100 on XNLI languages as well which is possibly
because of the ‘curse of multilinguality’ (Conneau
et al., 2020), the degradation of the overall perfor-
mance in proportion to the number of languages in
the training. However, training setting (e.g. train-
ing data, hyperparameters) outplays the ‘curse of
multilinguality’ as XLM-Rbase clearly outperforms
XLM-tlm even on XNLI languages. It would be in-
teresting to see how an XLM-R trained with TLM
objective on small set of languages, e.g. XNLI
languages, would perform.

DistillmBERT is the lightest model evaluated in
the current investigation. It is shown to retain 92%
of the mBERT’s performance on certain XNLI lan-
guages.8 The results suggest that distillmBERT
delivers its promise, although to a lesser extent.
When averaged over all tasks, distillmBERT re-
tains 93% of the source language performance of
mBERT. However, its relative performance signifi-
cantly drops to 82% on zero-shot transfer. That is,
distillmBERT is not as successful when it comes to
copying mBERT’s cross-lingual abilities. Further-
more, its performance (relative to mBERT) is not
stable across tasks either. It only achieves 69% of

7The only exception is the XLM and XLM-tlm’s perfor-
mance on non-XNLI languages where distillmBERT manages
to outperform them but not always by a large margin.

8https://github.com/huggingface/
transformers/tree/master/examples/
distillation

https://github.com/huggingface/transformers/tree/master/examples/distillation
https://github.com/huggingface/transformers/tree/master/examples/distillation
https://github.com/huggingface/transformers/tree/master/examples/distillation
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mBERT’s zero-shot performance on RST whereas
89% on XNLI. The low memory requirement and
its speed (with the same batch size, it is x2 faster
than mBERT and x5 than XLM-Rlarge) definitely
makes distillmBERT a favorable option; however,
the results show that its zero-shot performance is
considerably lower than its source language perfor-
mance and is highly task-dependent, hence, hard to
predict.

Task-wise Analysis Table 3 shows to what ex-
tent encoders manage to transfer their source lan-
guage performance to zero-shot languages. Over-
all, the zero-shot performances show high variance
across tasks which is quite interesting given that
all tasks are on the same linguistic level. It is also
surprising that mBERT manages a better zero-shot
transfer performance than all XLM models while
being almost as consistent as XLM-Rbase.

Overall, the results show that even modern sen-
tence encoders struggle to capture inter-sentential
interactions in both monolingual and multilingual
settings, contrary to the what the high performances
on well-known datasets (e.g. PAWS (Hu et al.,
2020)) may suggest. We believe that this finding
supports our motivation to propose new probing
tasks to have a fuller picture of the capabilities of
these encoders.

Language-wise Analysis: In all tasks, regard-
less of the model, training-language performance
is better than even the best zero-shot performance.
The only exception is the XLM-R-large’s perfor-
mance on the X-stance where the zero-shot per-
formance is on par with its performance on the
German test set.

An important aspect of cross-lingual research
is predictability. The zero-shot performance of a
certain language do not seem to be stable across
tasks (e.g. German is the language with the worst
RST performance; yet it is one of the best in XNLI).
We further investigate this following Lauscher et al.
(2020), who report high correlation between syn-
tactic similarity and zero-shot performance for low-
level tasks, POS-tagging and dependency parsing.
We conduct the same correlation analysis using
Lang2Vec (Littell et al., 2017). However, syntactic
and geographical similarity only weakly correlates
with zero-shot performances across the tasks (Pear-
son’s r = .46 and Spearman’s r = .53 on average
for syntactic; Pearson’s r = .30 and Spearman’s
r = .45 for geographical similarity). Such low

correlations are important as it further supports the
claim that the tasks are beyond the sentence level
and also highlights a need for further research to
reveal the factors at play during zero-shot transfer
of discourse-level tasks.

6 Conclusion

As pre-trained multilingual sentence encoders have
become prevalent in natural language processing,
research on cross-lingual zero-shot transfer gains
increasing importance (Hu et al., 2020; Liang et al.,
2020). In this work, we evaluate a wide range of
sentence encoders on a variety of discourse-level
tasks in a zero-shot transfer setting. Firstly, we
enrich the set of available probing tasks by intro-
ducing three resources which have not been utilized
in this context before. We systematically evaluate a
broad range of widely used sentence encoders with
considerably varying sizes, an analysis which has
not been made before.

The main variable we look at is the performance
gap between training-language evaluation and zero-
shot evaluation. Unsurprisingly, nearly always
there is such a gap, but its magnitude depends on a
number of factors:

• Distillation: the distilled mBERT model has
a larger gap than the full mBERT model, in-
dicating loss of multilingual transfer ability
during distillation.

• Language similarity: the gap correlates
only weakly with measures of language sim-
ilarity (syntactic and geographical), indicat-
ing that sentence encoders generally transfer
discourse-level information about as well be-
tween similar and dissimilar languages.

• High variance: apart from the above, we
also observe a generally high variance in the
gap magnitude between different tasks in our
benchmark suite.

These observation provide several starting points
for future work: investigating why knowledge dis-
tillation seems to hurt zero-shot performance to a
much greater extent than same-language sentence
encoding ability and what can be done to solve this
problem, and explaining the large variations in the
zero-shot transfer gap between different discourse-
level NLP tasks.



15

Model PDTB RST X-stance XQuAD MNLI Average ± std
mBERT 74.49 64.18 84.75 74.22 80.28 75.58± 6.92
distilmBERT 66.13 54.37 71.34 57.35 75.9 65.02± 8.15
XLM-mlm 60.32 52.93 76.4 69.68 83.47 68.56± 10.93
XLM-tlm 63.49 50.36 85.57 78.76 84.26 72.49± 13.56
XLM-100 73.76 57.54 87.62 74.89 81.01 74.96± 10.02
XLM-Rbase 78.96 70.75 94.29 82.44 88.1 82.91± 8.00
XLM-Rlarge 79.91 73.33 100.4 86.81 89 85.89± 9.11

Table 3: Relative zero-shot performance of each encoder to the source language performance (metrics differ be-
tween tasks but higher is better in all cases). The figures shows what percentage of the source language performance
is retained through zero-shot transfer in each task. Hu et al. (2020) refer to this as the cross-lingual transfer gap.
A score above 100 indicates that a better zero-shot performance than that of training.
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A Task-wise Results
Model en de es eu pt ru zh AVG
mBERT 66.7 29.2 39.3 31.1 58.6 48.0 50.7 42.8
distilmBERT 54.1 16.3 25.7 21.4 44.5 32.2 36.5 29.4
XLM-mlm 60.6 25.5 33.2 14.1* 40.4* 39.8 39.4 32.1
XLM-tlm 65.5 26.0 35.2 13.3* 42.0* 39.9 41.3 33.0
XLM-100 63.8 24.3 34.6 26.2 55.2 40.0 39.8 36.7
XLMR-b 69.8 37.6 44.7 39.4 61.9 56.2 56.7 49.4
XLMR-l 72.9 44.8 46.8 47.0 65.6 59.3 57.3 53.5

Table 4: RST zero-shot results (Accuracy) for each language. * denotes that the language is not one of the training
languages of the respective sentence encoder.

Model en de lt pl pt ru tr zh AVG
mBERT 53.6 42.7 39.2 33.9 46.7 33.1 40.3 43.5 39.9
distilmBERT 53.1 42.7 30.0 34.7 41.1 32.6 29.4 35.4 35.1
XLM-mlm 54.9 44.9 19.5* 20.6* 28.9* 33.8 43.5 40.5 33.1
XLM-tlm 53.3 45.9 20.1* 21.3* 26.8* 37.1 41.9 43.6 33.8
XLM-100 54.6 41.9 41.6 32.5 44.5 34.2 35.9 40.4 38.7
XLMR-b 61.8 49.5 49.6 40.4 53.5 42.7 54.4 51.4 48.8
XLMR-l 65.4 53.4 49.4 42.8 59.5 48.9 53.8 58.1 52.3

Table 5: PDTB zero-shot results (F1) for each language. * denotes that the language is not one of the training
languages of the respective sentence encoder.

Model de en fr it zh AVG
mBERT 69.3 60.2 60.7 63.2 50.8 58.7
distilmBERT 67.7 49.8 48.7 59.5 35.2 48.3
XLM-mlm 67.3 52.6 55.0 56.2* 41.8 51.4
XLM-tlm 71.2 60.4 62.5 59.6* 61.1 60.9
XLM-100 71.8 62.3 64.8 64.0 60.6 62.9
XLMR-b 72.3 65.8 70.4 69.9 66.7 68.2
XLMR-l 79.3 80.9 79.0 78.9 79.5 79.6

Table 6: X-stance zero-shot results (F1) for each language. * denotes that the language is not one of the training
languages of the respective sentence encoder.

Model en ar bg de el es fr hi ru sw th tr ur vi zh AVG
mBERT 82.3 65.7 69.4 72.1 68.2 75.9 75.3 60.6 69.8 51.3 54.7 62.2 58.8 70.9 69.7 66.1
distilmBERT 77.9 60.3 63.9 65.7 61.4 70.1 69.9 54.7 63.6 46.6 39.1 57.3 54.1 59.2 62.4 59.2
XLM-mlm 81.9 68.5 73.7 73.0 73.3 75.3 75.2 64.4 72.0 64.9 49.2 67.3 62.8 70.3 67.3 68.4
XLM-tlm 84.2 71.1 76.5 76.2 74.3 78.3 77.9 66.5 75.3 67.4 53.9 70.8 62.7 72.8 69.3 70.9
XLM-100 83.1 67.9 72.6 73.3 72.4 76.6 75.5 64.7 71.3 58.4 39.7 68.2 62.0 72.7 67.0 67.3
XLMR-b 82.8 71.0 77.3 75.7 75.3 78.2 76.9 68.6 75.2 66.4 71.6 72.4 65.2 74.6 73.0 73.0
XLMR-l 88.8 78.6 83.0 82.9 81.8 84.5 82.7 76.0 79.3 71.6 77.0 78.7 71.5 79.5 79.3 79.0

Table 7: XNLI zero-shot results (Accuracy) for each language
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Model en ar de el es hi
mBERT 84.8/72.9 62.6/46.0 72.5/56.8 64.4/47.1 75.3/56.3 58.6/45.1
distilmBERT 78.0/65.9 44.6/28.3 57.6/41.0 37.6/21.2 60.5/40.0 34.9/20.5
XLM-mlm 77.2/64.5 59.9/43.2 66.0/50.4 57.8/39.5 67.7/49.8 47.5/33.0
XLM-tlm 82.5/70.4 68.1/51.6 73.7/57.6 69.5/51.2 77.1/59.2 65.6/50.2
XLM-100 84.6/73.4 67.6/50.3 73.6/58.3 63.9/45.1 77.3/59.1 60.2/44.5
XLMR-b 83.3/72.4 65.0/47.1 73.4/57.6 71.9/54.5 75.5/57.1 68.3/50.9
XLMR-l 86.8/75.5 74.1/55.6 79.5/62.6 79.8/61.4 82.0/62.3 75.4/58.6
Model ru th tr vi zh AVG
mBERT 71.4/54.9 43.3/34.4 54.8/40.8 68.1/48.9 58.3/48.2 62.9/47.8
distilmBERT 58.9/40.2 20.9/13.9 37.9/21.8 47.5/28.2 46.9/33.8 44.7/28.9
XLM 64.1/47.0 24.9/12.4 50.2/34.6 60.3/41.3 39.8/30.1 53.8/38.1
XLM-tlm 72.6/55.3 33.3/21.9 65.0/47.5 71.8/51.3 53.4/43.8 65.0/48.9
XLM-100 73.7/57.6 22.4/13.6 66.7/49.9 73.9/54.8 54.1/44.5 63.3/47.8
XLMR-b 73.3/56.9 67.1/55.5 67.5/50.4 73.0/53.4 51.6/41.7 68.7/52.5
XLMR-l 79.4/62.9 73.7/62.6 74.7/58.5 79.4/59.4 55.5/46.7 75.4/59.1

Table 8: XQuAD results (F1/Exact-match) for each language


