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Abstract

Existing supervised models for text clustering
find it difficult to directly optimize for clus-
tering results. This is because clustering is a
discrete process and it is difficult to estimate
meaningful gradient of any discrete function
that can drive gradient based optimization al-
gorithms. So, existing supervised clustering
algorithms indirectly optimize for some con-
tinuous function that approximates the clus-
tering process. We propose a scalable train-
ing strategy that directly optimizes for a dis-
crete clustering metric. We train a BERT-
based embedding model using our method and
evaluate it on two publicly available datasets.
We show that our method outperforms an-
other BERT-based embedding model employ-
ing Triplet loss and other unsupervised base-
lines. This suggests that optimizing directly
for the clustering outcome indeed yields better
representations suitable for clustering.

1 Introduction

Text clustering is a well-studied problem which
finds its application in a wide range of tasks: or-
ganizing documents in cluster-based information
retrieval (Cutting et al., 2017; Mei and Chen, 2014),
representation of search results (Scaiella et al.,
2012; Navigli and Crisafulli, 2010), analyzing dif-
ferent opinions about a subject (Tsirakis et al.,
2017) among many others. Each of these appli-
cations may focus on text contents of different
granularities (e.g. words, sentences, passages, arti-
cles) but all of them follow a common high-level
approach to clustering: represent the documents
in form of vectors and then cluster them based
on vector similarities. Although clustering is typ-
ically employed in an unsupervised setting, many
semi-supervised deep learning models have been
proposed recently. Many of these approaches for-
mulate this as a representation space learning prob-

lem (Yang et al., 2017) that projects initial docu-
ment vectors into a latent vector space which is
more suitable for the clustering task and gener-
ate clusters similar to some ground truth. How-
ever, most of these algorithms do not directly op-
timize for a clustering evaluation metric during
training. Instead, they optimize for a different cri-
terion that approximates the global clustering er-
ror. Semi-supervised clustering approaches (Basu
et al., 2002) cast the clustering problem into binary
classification by learning pairwise constraints ex-
tracted from the available training examples: must-
links for sample pairs sharing the same cluster
and cannot-links for different clusters. However,
clustering problems with numerous small clusters
produce only a few must-links among all possible
links, leading to highly unbalanced training data.
Consequently, the trained model is biased towards
predicitng cannot-links. Learning triplet-based con-
straints (Dor et al., 2018) that combine a positive
and a negative sample in a single triplet, mitigate
such bias towards negative samples. However, the
sample complexity (Bartlett, 1998) (number of sam-
ples required to cover all interactions in a dataset)
grows more rapidly compared to paired samples.
Also, such approximation of the original clustering
problem may lead to unsatisfactory results because
the optimization criterion does not always corre-
spond with the clustering quality. These observa-
tions motivate us to hypothesize the following:

1. Instead of learning to solve some approxima-
tion of the original clustering problem, we
need to directly optimize for a clustering eval-
uation metric in order to train a model special-
ized for clustering.

2. Instead of sample-pairs in case of pairwise
constraints or triplets in case of Triplet-loss,
we can make efficient and scalable use of the
available training data by presenting all inter-
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actions between a set of data points as a single
clustering sample. This way the training ap-
proach neither suffers from unbalanced data
nor from sample complexity.

To test our hypotheses, we propose an alternative
training strategy that directly draws its supervision
signal from an evaluation metric that measures clus-
tering quality to train a representation model for
text documents. During training, it consumes a
complete clustering example of a set of data points
as a single training sample in form of an interaction
matrix. Due to this, we experiment with cluster-
ing datasets containing numerous small clustering
examples instead of a single instance of a large
clustering problem.

It is challenging to derive training signals di-
rectly from the clustering ground truth or a cluster-
ing evaluation metric because the clustering pro-
cess is discrete. In other words, a function that esti-
mates the clustering quality of a random partition
of the input data is not continuous and hence non-
differentiable. As most supervised algorithms rely
on gradient-based optimization algorithms, it is dif-
ficult for them to orchestrate a useful training pro-
cess without proper gradient. So far some continu-
ous approximation of the clustering problem is used
as discussed earlier to bypass the core optimiza-
tion issue. Recently a novel gradient approxima-
tion method, blackbox backpropagation (Vlastelica
et al., 2019) is proposed for combinatorial prob-
lems that finds solution in a discrete space. We
leverage their findings by molding the clustering
problem into a combinatorial problem. This allows
us to derive meaningful gradients out of the clus-
tering process and to train a representation model
by directly optimizing for a clustering evaluation
metric.

Our contribution: We make the following con-
tributions through this work.

1. We develop a new training strategy for super-
vised clustering that directly obtains its super-
vision signal from optimizing a clustering met-
ric.1 We utilize recently proposed blackbox
backpropagation technique to derive gradients
from discrete clustering results that drives the
training process.

2. We use our training strategy to train a BERT-
based (Devlin et al., 2018) representation

1The source code is available at https://github.
com/nihilistsumo/Blackbox_clustering

model suitable for topical clustering. To sup-
port the training mechanism, we design a loss
function that effectively optimizes a clustering
evaluation metric.

3. We empirically show that our method is more
efficient in terms of training time and utilizing
available training examples when compared to
existing supervised clustering methods. The
resulting representation model achieves better
clustering results than other strong baseline
models.

2 Related Work

Traditionally, text clustering is achieved by em-
ploying a distance-based clustering algorithm (e.g.
KMeans) on vector representations of documents
such as TF-IDF (Jones, 1972). Recent works focus
on learning text representaions suitable for clus-
tering (Chen, 2017; Xu et al., 2017; Hadifar et al.,
2019). Alternatively, they explore different simi-
larity metrics between the vectors that govern the
clustering algorithm through pairwise binary con-
straints (Basu et al., 2002; Kulis et al., 2009). In
this work, we focus on the former – representation
learning of documents, suitable for text clustering.

Deep clustering (Min et al., 2018) is an ac-
tive field of research that utilizes recent advance-
ments of deep learning techniques to improve su-
pervised clustering. The primary focus is to learn a
suitable representation space that optimizes some
clustering criterion (e.g. cluster assignment loss)
along with a representation criterion (e.g. recon-
struction loss) (Xie et al., 2016; Li et al., 2018;
Ghasedi Dizaji et al., 2017; Jiang et al., 2016).
It has also been shown that clustering criterions
alone are sufficient to train such representation
space (Yang et al., 2016). However, none of these
approaches attempt to receive direct supervision
from a clustering evaluation metric. Motivated by
earlier works that learn a representation model un-
der pairwise binary constraints, Chang et al. (2017)
envisions the clustering task as a binary classifi-
cation task of paired data samples and achieves
state-of-the-art results on multiple image cluster-
ing datasets. Reimers and Gurevych (2019) pro-
pose Sentence-BERT which trains a BERT-based
sentence embedding model by employing Triplet
loss (Dor et al., 2018) that uses triples of sentences
as training samples where exactly two of them are
from the same section of Wikipedia. Although both

https://github.com/nihilistsumo/Blackbox_clustering
https://github.com/nihilistsumo/Blackbox_clustering
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of these approaches are supervised, each training
sample only consists of a fraction of the whole
clustering instance. Hence, during training, these
methods mostly ignore the overall relationships be-
tween multiple data samples and how they form
clusters.

The main hindrance of drawing a supervision
signal directly from a clustering evaluation metric
is the combinatorial nature of the clustering prob-
lem. Some research introduce differentiable build-
ing blocks for special cases of combinatorial algo-
rithms such as satisfiability (SAT) problems (Wang
et al., 2019). Wilder et al. (2019) use a differen-
tiable variant of the K-means algorithm to approx-
imate a harder combinatorial problem (e.g. graph
optimization). Such relaxations of the original com-
binatorial problem may lead to sub-optimal results.
Recently, Vlastelica et al. (2019) proposed a novel
technique of differentiating combinatorial solvers
as a blackbox without any relaxation that allows us
to use an optimal combinatorial algorithm as a com-
ponent of a deep representation learning model and
optimize it end-to-end. We give a brief background
of their approach in the following section.

Blackbox backpropagation. In their approach
to optimize for a combinatorial function Vlastel-
ica et al. (2019) formalize combinatorial
solvers as a mapping function between con-
tinuous input, w ∈W ⊆ RN and discrete
output, ŷ ∈ Y as w 7→ ŷ such that the output
ŷ = argminy∈Y c(w, y) where c is the cost that
the solver tries to minimize. Here W is the
N -dimensional continuous input space and Y is
a finite set of all possible solutions. For a linear
cost function c, a continuous interpolation of
the original cost function is constructed and the
gradient of this interpolation is used during back-
propagation. The closeness of the interpolation
to the original function is controlled by a single
hyperparameter, λ. In our work, we extend this
approach for clustering framework to draw the
supervision signals directly from the clustering
results and learn our model parameters.

3 Methodology

Our text clustering method works in two steps: 1.
Train a text representation model directly from
example clusters of text snippets, 2. Cluster the
trained embedding vectors using hierarchical ag-
glomerative clustering (HAC). Our primary con-

tribution lies in the training strategy of step 1
which we refer here as Clustering Optimization
as Blackbox (COB). We describe COB in the fol-
lowing sections.

3.1 Overall Approach
Supervised text clustering is a combinatorial prob-
lem. Let P be a set of N documents and Y be the
set of all possible k-partitions of set P . Also let Vφ
be a representation model with trainable parame-
ters φ. We obtain the set of representation vectors
Vφ(P) for each of the documents in set P using
the model, Vφ. Based on the Euclidean distances
between representation vectors in Vφ(P), a clus-
tering algorithm chooses a particular k-partition
ŷ ∈ Y that minimizes some linear cost function
c(Vφ(P), y) e.g. intra-cluster distances for HAC.
Hence the clustering process can be expressed as
the following mapping:

Vφ(P) 7→ ŷ such that ŷ = argmin
y∈Y

c(Vφ(P), y)

The clustering ground truth y∗ ∈ Y is the correct k-
partition of set P . The training process of COB is
governed by a loss function L(y∗, ŷ) that optimizes
a clustering evaluation metric.

However, we want to emphasize here that the
minimization of the cost function c(Vφ(P), y)
takes place inside the clustering algorithm and re-
mains opaque for our supervised model. As a result,
COB is not dependent on the exact clustering algo-
rithm we choose. In this work however, we choose
to use HAC as our clustering algorithm. We opti-
mize for RAND index in this work but our method
can be applied to optimize for other clustering eval-
uation metrics as well (e.g. purity).

3.2 Optimizing for RAND index
Our goal is to train the representation model, Vφ,
such that the resulting clusters maximize a cluster-
ing evaluation metric of our choice. In this work,
we focus on optimizing for RAND index, a widely
used clustering metric, which measures the simi-
larity between the generated clusters and the clus-
tering ground truth. If y∗ ∈ Y be the ground truth
partition or the ideal clustering of P , then the clus-
tering quality of a candidate cluster ŷ is expressed
in terms of RAND index (RI):

RI =

No. of unordered data pairs that agrees
between y∗ and ŷ (

n
2

)
where n = total number of data samples.
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Figure 1: Training loop of our proposed supervised clustering approach.

Table 1: Description of variables used in Figure 1.

Variable Description
P Set of documents to be clustered
Vφ Embedding model with trainable parameters φ
Vφ(P) Representation vectors of P obtained using Vφ

D Pairwise distance matrix of vectors in Vφ(P)
A Adjacency matrix denoting clustering result
T Adjacency matrix denoting ground truth clusters

3.3 COB Training Loop
Figure 1 and Table 1 presents the overall train-
ing approach. The focus of the training loop is to
train the representation model Vφ. First, the set
of representation vectors Vφ(P) is obtained for all
documents in set P . Then we encode the input
to the clustering algorithm as a square symmetric
matrix D with pairwise Euclidean distance scores
between vectors in Vφ(P).

Dij = ||Vφ(pi)− Vφ(pj)||2 where pi, pj ∈ P

The solution to the clustering problem is expressed
in form of an adjacency matrix A such that

Aij = 1 if i, j share same cluster and 0 otherwise

We denote the adjacency matrix of the clustering
ground truth as T . Now, we can express RI using
the following form:

RI = 1−
∑

ij |Aij − Tij |
2
(
n
2

) see Appendix

It is clear from the above equation that if we want
to maximize RI, we need to minimize the differ-
ence between A and T . Intuitively, if we are able
to produce ideal clustering results, then A and T
would be identical, meaningA−T is a zero matrix.
Hence, we define our loss function L as the sum of
A− T . Formally:

L =
∑
ij

|Aij − Tij |

The backward pass of this training loop involves
estimating the gradient of the loss L with respect
to the distance matrix D, the input to the clustering
algorithm. This is achieved using blackbox back-
propagation technique and the resulting gradient
is used to drive a gradient descent algorithm for
training the representation model Vφ.

3.4 Regularization
The purpose of any clustering algorithm is to iden-
tify groups of similar data points. By optimizing
for a clustering metric such as RI, we learn a no-
tion of similarity that most likely yields the ground
truth clusters when used in HAC. However, we
want to encourage a large margin between similar
and dissimilar data points. This is achieved when
the loss function encourages inter-cluster distances
to increase and intra-cluster distances to decrease.
While this is part of the optimization process within
the clustering algorithm, it is opaque during neural
network training, due to the blackbox optimiza-
tion technique. The clustering evaluation metric
does not encourage a margin that is larger than nec-
essary. Hence we incorporate a measure of intra
versus inter-cluster distance as a regularizer in our
optimization criterion as described below.

Lr = L+ r · [mean intra-cluster distance

−mean inter-cluster distance]

= L+ r ·

[ ∑
ij DijTij∑
ij Tij︸ ︷︷ ︸

intra-cluster

−
∑

ij Dij(1− Tij)∑
ij(1− Tij)︸ ︷︷ ︸
inter-cluster

]

where r is the regularization constant

The regularization constant r controls how much
emphasis is placed on increasing the margin be-
tween similar and dissimilar data points versus op-
timizing the clustering evaluation metric.
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Table 2: Dataset statistics: N = total no. of documents,
C = total no. of clustering instances, n = average num-
ber of documents per clustering instance, k = average
number of clusters per clustering instance.

Dataset N C n k
20NG train 11314 226 50 18
20NG test 7532 150 50 18

k(coarse) k(fine)
CAR train 6.8M 597K 11 3.84 5.04
CAR test 6K 126 47 7.78 17.16

4 Experimental Results

In this section, we describe the datasets used for
our experiments, discuss our evaluation paradigm
and present experimental results that demonstrate
efficacy of the representation model trained using
our proposed training strategy over our baseline
models.

4.1 Datasets
To evaluate our proposed approach, we use two pub-
licly available datasets: 20 newsgroups (20NG2)
and TREC Complex Answer Retrieval (CAR3). As
discussed earlier, for our proposed method, each
training example consists of the ideal clustering
of a set of documents. To produce enough such
training samples, we choose to train and evaluate
on multiple smaller clustering instances instead of
a single but large clustering instance. We note that
it will not make any difference in the way our base-
line model is trained because they consume the
training data in form of triples (SBERT Triplet),
as long as we ensure that all models are trained
on the same set of clustering examples. We take
the following approach to construct such clustering
benchmarks from the datasets (detailed statistics
are presented in Table 2):

20NG dataset is a widely used public collec-
tion of 18846 documents, each categorized into
any one of twenty topics. To convert this to a clus-
tering benchmark, both train and test split of 20NG
dataset is randomly grouped into sets of 50 doc-
uments along with their topic labels, resulting in
226 and 150 clustering instances respectively. Each
set of 50 documents represents a single instance of
clustering problem.

CAR dataset (version 2.0 year 1) is a large col-
lection of Wikipedia articles. Each article consists
of text passages about a topic, segmented into hier-
archical subtopics using sections. From the CAR

2Part of scikit-learn datasets Pedregosa et al. (2011)
3http://trec-car.cs.unh.edu/

Figure 2: Coarse and fine-grained clustering bench-
marks from CAR dataset.

dataset, we use train.v2.0 as train split (CAR
train) and benchmarkY1test as test split (CAR
test). This dataset is originally designed for a pas-
sage retrieval task where passages in CAR articles
are relevant for different sections under the over-
arching topic of the article. This relevance infor-
mation is part of the dataset in form of the ground
truth. We assume that all relevant passages for an
article are already retrieved and our focus is to clus-
ter these passages. So each article is a separate
clustering problem where our task is to cluster all
the passages of the article such that passages from
same sections in the original article share the same
cluster. We treat the section label under which a
passage appears as the clustering label of the pas-
sage.

Section labels in CAR dataset are hierarchical.
This provides an opportunity to evaluate our clus-
tering models under different levels of granular-
ity. As depicted in Figure 2, passages p6 and p7
in article COVID 19 belong to the sections Cause
and Cause/Transmission respectively. For a coarse-
grained view of the clustering, we consider p6, p7
under the same topic cluster Cause. However, for
fine-grained clustering we have to consider p6, p7
under separate subtopic clusters. The CAR dataset
provides both in form of top-level (coarse) and hier-
archical (fine-grained) benchmarks. We train and
evaluate our models on both flavors of the dataset.

4.2 Evaluation Paradigm

Our primary focus is to evaluate the efficacy of our
proposed training strategy for supervised clustering
and compare it with other training methods while
ensuring the fairness of our evaluation. Hence, we
train the same text embedding model with the same
training data differing only in the training strate-

http://trec-car.cs.unh.edu/
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gies. For the embedding model, we use Sentence-
BERT (Reimers and Gurevych, 2019), a recent
BERT-based embedding model. Finally, macro-
average performance on all clustering instances on
the test sets are reported with statistical significance
testing. We use three clustering evaluation metrics,
RAND index (RI), Adjusted RAND index (ARI)
and Normalized Mutual Information (NMI).

Compared methods. In this section we discuss
all the methods which are compared in our experi-
ments. All methods are trained until no significant
improvement is observed on the validation set. For
each method, models are saved on regular interval
and we use the best model found during training
in terms of validation ARI score to evaluate on the
test set.

SBERT COB. We train Sentence-BERT with
our proposed training strategy and refer the ob-
tained model as SBERT COB.

SBERT Triplet. To compare our approach with
a strong supervised baseline, we train Sentence-
BERT with Triplet loss function (Dor et al., 2018).
It is designed to generate document representations
that capture topical similarities. Here, each train-
ing example consists of two similar (d, d+) and
one dissimilar (d−) documents. Triplet loss trains
the document representation model Vtrip so that
the Euclidean distance between the similar pair
of representations ||Vtrip(d)− Vtrip(d+)||2 is less
than the negative pair ||Vtrip(d)− Vtrip(d−)||2 by
at least a margin ε.

Ltriplet = max(0, ||Vtrip(d)− Vtrip(d+)||2
− ||Vtrip(d)− Vtrip(d−)||2 + ε)

Unsupervised baselines. To compare the per-
formances of unsupervised clustering approaches
for our use cases, we also include:

1. SBERT raw, the pre-trained Sentence-BERT
model without any finetuning and

2. TFIDF with cosine similarity as a more canon-
ical approach.

4.3 Hyperparameter Optimization
The interpolation parameter λ (Section 2) and reg-
ularization constant r (Section 3.4) are two hyper-
parameters we have to tune in SBERT COB. We
use Optuna (Akiba et al., 2019), a recently pro-
posed hyperparameter optimization framework, to

Table 3: Optimum values for interpolation parameter λ
and regularization constant r found using Optuna.

Dataset λ r
NG20 90.0 1.0
CAR coarse 47.0 3.8
CAR fine-grained 103.0 0.3

Table 4: Clustering performance on NG20 dataset in
terms of mean RAND index (RI), its corrected for
chance version Adjusted RAND Index (ARI) and mean
Normalized Mutual Information (NMI). Paired t-test
(α = 0.05) is carried out with respect to SBERT Triplet
(denoted with *) and N and H denotes significantly
higher or lower performance.

Method RI ARI NMI
SBERT COB 0.925 0.233N 0.725N
SBERT Triplet* 0.924 0.223 0.721
SBERT raw 0.754H 0.041H 0.582H
TFIDF 0.624H 0.008H 0.506H

search for optimum λ, r pair in terms of valida-
tion performance for each dataset. Table 3 presents
the optimum hyperparameter values used for our
experiments.

4.4 Clustering Evaluation

Here we present details of all the experiments car-
ried out and discuss the results. All experiments
are executed on a single NVIDIA Titan XP GPU
with 12GB memory. For all the SBERT models,
we use uncased DistilBERT (Sanh et al., 2019) as
the underlying BERT embedding model.

4.4.1 Experiment 1: 20NG
We train SBERT COB and other supervised meth-
ods using 80% of the train split of 20NG dataset
and the remainder is held out for validation. Table
4 presents the performance on the test set evaluated
using mean RI, ARI and NMI.

We observe that our proposed method SBERT
COB outperforms all other baselines in terms of
RI, ARI and NMI. For ARI and NMI, the improve-
ment is statistically significant in terms of paired
t-test with α = 0.05 carried out with respect to
the best performing baseline, SBERT Triplet. Both
TFIDF and SBERT raw fail to obtain meaningful
clusters, demonstrating the efficacy of supervised
representation models in clustering context.

4.4.2 Experiment 2: CAR
Due to large size of the CAR training split
(train.v2.0), it is impractical to train SBERT
Triplet with all possible triplets in the training set.
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Table 5: Dataset statistics: N,C, n, k denotes the same
as Table 2, t denotes the total number of available
triples to train SBERT Triplet method.

Subset N C k(coarse) k(fine) t(coarse) t(fine)
n=30 71K 2.4K 5.97 10.64 8.6M 5.8M
n=35 56K 1.6K 6.27 12.17 9.3M 5.9M
n=40 50K 1.2K 6.73 13.62 10.8M 6.5M

Figure 3: Comparison between SBERT COB and
SBERT Triplet in terms of total training time.

Instead, we compare the supervised models trained
on three smaller subsets of the training dataset.
Each subset contains articles with exactly n pas-
sages where n = 30, 35 and 40. However, they are
always evaluated on the same CAR test set. These
values of n are chosen so that we obtain reasonable
numbers of training samples while their statistics
remain close to the CAR test set on which we are
evaluating. Table 5 presents statistics about these
three training subsets.

We report the coarse and fine-grained cluster-
ing performance in Table 6 and Table 7 respec-
tively. For both coarse and fine-grained cluster-
ing, we observe that for each of the training splits
(n = 30, 35, 40), our proposed method SBERT
COB consistently performs better than the best per-
forming baseline, SBERT Triplet (n = 30) in terms
of both ARI and NMI. As expected, clustering per-
formance in terms of RI score mostly correlates
with ARI score. The only exception is SBERT

Table 6: Coarse-level clustering performance on CAR
dataset using top-level benchmarks. Supervised mod-
els are trained with set of clustering examples each con-
taining n passages. Paired t-test (α = 0.05) is car-
ried out with respect to SBERT Triplet (n = 30) and
marked with *.

Method RI ARI NMI
Trained on n=30 subset
SBERT COB 0.742 0.230 0.502
SBERT Triplet* 0.738 0.214 0.494
Trained on n=35 subset
SBERT COB 0.744 0.236 0.512N
SBERT Triplet 0.715H 0.167H 0.460H
Trained on n=40 subset
SBERT COB 0.726 0.231 0.514N
SBERT Triplet 0.704H 0.145H 0.438H
Unsupervised
SBERT raw 0.563H 0.101H 0.406H
TFIDF 0.544H 0.072H 0.375H

Table 7: Fine-grained clustering performance on CAR
dataset using hierarchical benchmarks. Notations used
are same as in Table 6.

Method RI ARI NMI
Trained on n=30 subset
SBERT COB 0.849 0.178 0.682
SBERT Triplet* 0.848 0.173 0.678
Trained on n=35 subset
SBERT COB 0.837H 0.163 0.672
SBERT Triplet 0.830H 0.152H 0.665H
Trained on n=40 subset
SBERT COB 0.832H 0.154 0.666H
SBERT Triplet 0.860N 0.138H 0.662H
Unsupervised
SBERT raw 0.796H 0.130H 0.646H
TFIDF 0.788H 0.110H 0.631H

Triplet trained on n = 40 for fine-grained cluster-
ing. However, we also observe overall decrease in
ARI scores for all methods in case of fine-grained
clustering. This is expected as fine-grained clus-
tering is a harder problem largely due to fewer
passage pairs sharing a cluster. Note that RI and
NMI measures are only comparable within table
because unlike ARI, it is not adjusted for chance.

4.4.3 Experiment 3: Training Convergence
Existing methods for learning clustering represen-
tation spaces, focus solely on classifying individual
pairs as similar or different, and hence ignore to
which extent other data points already form clus-
ters. The key difference in our work is that we learn
the representation space to directly optimize for the
clustering evaluation metric, which is based on the
clustering results of HAC when used with pairwise
Euclidean distances. This allows the model to reach
convergence much faster, leading to reduced over-
all training time, when compared to other methods
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Figure 4: Visual comparison of clustering results between SBERT COB and SBERT Triplet (n = 35). Each
dot denotes a passage from an article projected into the representation space after applying PCA. Different color
denotes different subtopics. Clear separation of different colored blobs indicates good clustering quality.

that uses only a sub-sample of each clustering ex-
ample (e.g. Triplets). This is particularly helpful
in scenarios when we want to regularly update our
model to incorporate new training examples.

To demonstrate this we present Figure 5 that
compares the time taken to reach convergence dur-
ing training of SBERT Triplet and SBERT COB
on 20NG dataset and CAR dataset (coarse n = 35)
respectively. For both the datasets, SBERT COB
is able to converge at least five times sooner than
SBERT Triplet, leading to much faster overall train-
ing time. Moreover, for NG20 dataset each epoch
of SBERT COB is about 100 times faster than
SBERT Triplet. This leads to decrease in overall
training time even though SBERT COB takes many
more epochs to converge than SBERT Triplet. We
observe similar training behaviour for CAR dataset.

4.5 Qualitative Evaluation

Here, we demonstrate efficacy of SBERT COB
over SBERT Triplet (n = 35) through visual com-
parison of clustering results from the CAR dataset.
Principle Component Analysis (PCA) is used to
transform the representation vectors into 3D vec-
tors which are then visualized as points in 3D vec-
tor space. Figure 4 compares the results obtained
for four articles from CAR test split.

For articles Anti-slavery International and Hy-
brid Electric Vehicle, SBERT COB is able to
clearly identify clusters of different topics and
projects them in different regions of the embedding
space. On the contrary, it is difficult to find any

clear cluster boundaries in the SBERT Triplet rep-
resentation space which is also reflected in the ARI
scores obtained by the methods. For the article Cof-
fee Preparation, both the methods perform poorly
in terms of ARI scores. But in case of SBERT COB
we see a tendency to separate dissimilar passages.
SBERT Triplet projects almost all the passages in
a dense region except for a few outlier passages.
For the article Hot Chocolate, SBERT Triplet ob-
tains numerous small clusters of similar passages.
As ARI metric is based on sample-pairs, SBERT
Triplet obtains better ARI score even though it does
not achieve clear groupings of similar elements.

It is clear from the examples that SBERT
COB provides better global clustering quality than
SBERT Triplet. This is expected because unlike
SBERT Triplet, SBERT COB observes the rela-
tionships between all passages in a clustering in-
stance at once to directly optimize for RAND index.
Hence, SBERT COB is able to make better global
clustering decisions than other pair-based methods.

4.6 Quadratic Scaling of SBERT COB

As SBERT COB learns from all possible interac-
tions of data points in a clustering instance at once,
it requires all the adjacency matrices in a batch
of clustering samples to fit in memory. Thus the
space complexity increases quadratically with the
size of each clustering instance. Hence, the batch
size is kept small to allow training with a limited
GPU memory. However, even with batch size of 1,
SBERT COB is observed to obtain superior results
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in terms of training speed and clustering perfor-
mance as reported earlier.

5 Conclusion

In this work, we propose an alternative training
strategy to train a representation model, for clus-
tering. Our training strategy, COB (Clustering
Optimization as Blackbox), directly optimizes the
RAND index, a clustering evaluation metric. Using
our method, we train SBERT COB, a BERT-based
text representation model. We empirically show
that SBERT COB significantly outperforms other
supervised and unsupervised text embedding model
on two separate datasets in terms of RI, ARI and
NMI, indicating better cluster quality. Visual rep-
resentations of the resulting vectors also confirm
that SBERT COB learns to holistically distinguish
clusters of different topics. Moreover, each epoch
in SBERT COB training loop is about 100 times
faster when compared to SBERT Triplet, our best
performing baseline method. This leads to a signif-
icant decrease in overall training time even though
SBERT COB requires more iterations to converge
than SBERT Triplet. This makes SBERT COB suit-
able for applications that require clustering models
to be updated on a regular basis as new training
samples become available. Lastly, although we
have conducted experiments with a specific clus-
tering algorithm (HAC) and a clustering metric to
optimize (RAND index), our model is independent
of the particular choice of algorithm or the metric.
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A Relation between RAND index and
Adjacency matrix

Given a set of n data points P , let us compare
two clustering results of P , CT and CA, in terms
of RAND index. We know that RAND index is
expressed as:

RI =
a+ b(
n
2

)
where a = number of pairs that share the same

cluster both in CT and CA
where b = number of pairs that are from different

clusters both in CT and CA

Now we can express any clustering result CM in
form of an adjacency matrix M where Mij = 1 if
the i, j-th data points in P share the same cluster
in CM and Mij = 0 otherwise. We represent the
clustering results CT and CA with such adjacency
matrices T and A respectively. Also, the difference
matrix of A, T denoted as |A − T | indicates the
ordered pairs that do not agree between A, T . In
other words, |Aij−Tij | = 1 denotes that the i, j-th
data points do not agree between A and T . Now,
we can express RAND index in terms of A and T
as follows:
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RI =
a+ b(
n
2

)
=

No. of agreements between CT , CA(
n
2

)
=

No. of unordered pairs in P that agrees be-
tween CT , CA (

n
2

)
=

No. of ordered pairs in P that agrees between
CT , CA

2
(
n
2

)
=

Total ordered pairs in P −
∑

ij |Aij − Tij |
2
(
n
2

)
=

2
(
n
2

)
−
∑

ij |Aij − Tij |
2
(
n
2

)
= 1−

∑
ij |Aij − Tij |

2
(
n
2

)
B Comparison of Epoch Time

Figure 5 shows the mean epoch time of SBERT
Triplet and SBERT COB on 20NG dataset and
CAR dataset (coarse n = 35) respectively.


