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Abstract

Task-oriented compositional semantic parsing
(TCSP) handles complex nested user queries
and serves as an essential component of vir-
tual assistants. Current TCSP models rely on
numerous training data to achieve decent per-
formance but fail to generalize to low-resource
target languages or domains. In this paper,
we present X2Parser, a transferable Cross-
lingual and Cross-domain Parser for TCSP.
Unlike previous models that learn to gener-
ate the hierarchical representations for nested
intents and slots, we propose to predict flat-
tened intents and slots representations sepa-
rately and cast both prediction tasks into se-
quence labeling problems. After that, we fur-
ther propose a fertility-based slot predictor that
first learns to dynamically detect the number
of labels for each token, and then predicts
the slot types. Experimental results illustrate
that our model can significantly outperform
existing strong baselines in cross-lingual and
cross-domain settings, and our model can also
achieve a good generalization ability on target
languages of target domains. Furthermore, our
model tackles the problem in an efficient non-
autoregressive way that reduces the latency by
up to 66% compared to the generative model.1

1 Introduction

Virtual assistants can perform a wide variety of
tasks for users, such as setting reminders, searching
for events, and sending messages. Task-oriented
compositional semantic parsing (TCSP) which
comprehends users’ intents and detects the key
information (slots) in the utterance is one of the
core components in virtual assistants. Existing
TCSP models highly rely on large amounts of train-
ing data that usually only exist in high-resource
domains and languages (e.g., English), and they

1The code will be released in https://github.com/
zliucr/X2Parser.

Figure 1: Illustration of the cross-lingual task, cross-
domain task, and the combination of both (X2 task).

generally fail to generalize well in a low-resource
scenario. Given that collecting enormous training
data is expensive and time-consuming, we aim to
develop a transferable model that can quickly adapt
to low-resource target languages and domains.

The traditional semantic parsing can be treated
as a simple joint intent detection and slot filling
task (Liu and Lane, 2016; Goo et al., 2018; Zhang
et al., 2019), while compositional semantic parsing
has to cope with complex nested queries, which re-
quires more sophisticated models. Current state-of-
the-art TCSP models (Rongali et al., 2020; Li et al.,
2020a) are generation-based models that learn to
directly generate the hierarchical representations
which contain nested intent and slot labels.2 We
argue that the hierarchical representations are rela-
tively complex, and the models need to learn when
to generate the starting intent or slot label, when to
copy tokens from the input, and when to generate
the end of the label. Hence, large quantities of train-

2An example of hierarchical representations is illustrated
at the bottom of Figure 2.

https://github.com/zliucr/X2Parser
https://github.com/zliucr/X2Parser
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Figure 2: One data example with the illustration of our proposed flattened intents and slots representations, as well
as the hierarchical representations used in Li et al. (2020a).

ing data are necessary for the models to learn these
complicated skills (Rongali et al., 2020), while they
cannot generalize well when large datasets are ab-
sent (Li et al., 2020a). Moreover, the inference
speed of generation-based models will be greatly
limited by the output length.

In this paper, we propose a transferable cross-
lingual and cross-domain parser (X2Parser) for
TCSP. Instead of generating hierarchical represen-
tations, we convert the nested annotations into flat-
tened intent and slot representations (as shown in
Figure 2) so that the model can learn to predict the
intents and slots separately. We cast the nested slot
prediction problem into a special sequence labeling
task where each token can have multiple slot labels.
To tackle this task, our model first learns to predict
the number of slot labels, which helps it capture
the hierarchical slot information in user queries.
Then, it copies the corresponding hidden state for
each token and uses those hidden states to predict
the slot labels. For the nested intent prediction, we
cast the problem into a normal sequence labeling
problem where each token only has one intent la-
bel since the nested cases for intents are simpler
than those for slots. Compared to generation-based
models (Li et al., 2020a), X2Parser simplifies the
problem by flattening the hierarchical representa-
tions and tackles the task in a non-autoregressive
way, which strengthen its adaptation ability in low-
resource scenarios and greatly reduce the latency.

As shown in Figure 1, we conduct experiments

on three low-resource settings: cross-lingual, cross-
domain, and a combination of both. Results show
that our model can remarkably surpass existing
strong baselines in all the low-resource scenar-
ios by more than 10% exact match accuracy, and
can reduce the latency by up to 66% compared to
generation-based models. We summarize the main
contributions of this paper as follows:

• We provide a new perspective to tackle the
TCSP task, which is to flatten the hierarchi-
cal representations and cast the problem into
several sequence labeling tasks.

• X2Parser can significantly outperform exist-
ing strong baselines in different low-resource
settings and notably reduce the latency com-
pared to the generation-based model.

• We conduct extensive experiments in different
few-shot settings and explore the combination
of cross-lingual and cross-domain scenarios.

2 Related Work

2.1 Task-Oriented Semantic Parsing

The majority of works on task-oriented seman-
tic parsing focused on non-compositional user
queries (Mesnil et al., 2013; Liu and Lane, 2016;
Goo et al., 2018; Zhang et al., 2019), which turns
the parsing task into a combination of intent detec-
tion and slot filling. Recently, Gupta et al. (2018)
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Figure 3: The architecture of X2Parser. We consider the TCSP task as a combination of the coarse-grained intent
classification, fine-grained intent prediction, and slot filling tasks.

introduced a new dataset, called TOP, annotated
with complex nested intents and slots and proposed
to use the hierarchical representations to model the
task. After that, Rongali et al. (2020) showed that
leveraging a sequence-to-sequence model based on
a copy mechanism (See et al., 2017) to directly gen-
erate the hierarchical representations was effective
at parsing the nested queries. Taking this further,
Chen et al. (2020) and Li et al. (2020a) extended the
TOP dataset into multiple domains and multiple lan-
guages, and Li et al. (2020a) conducted zero-shot
cross-lingual experiments using the combination of
the multilingual pre-trained models (Conneau et al.,
2020; Tran et al., 2020) and the copy mechanism
method proposed in Rongali et al. (2020). Lately,
Babu et al. (2021) and Shrivastava et al. (2021),
which are concurrent works of X2Parser, proposed
to tackled the TCSP task in a non-autoregressive
way. Different from them, we propose to flatten the
hierarchical representations and cast the problem
into several sequence labeling tasks.

2.2 Language and Domain Adaptation
Recently, cross-lingual and cross-domain models
that aim to tackle low-resource issues have been ap-
plied to natural language understanding (Conneau
et al., 2018; Huang et al., 2019; Conneau et al.,
2020; Gururangan et al., 2020), sentiment analy-
sis (Zhou et al., 2016; Ziser and Reichart, 2017),
task-oriented semantic parsing (Chen et al., 2018;
Schuster et al., 2019; Liu et al., 2019; Wu et al.,
2019; Liu et al., 2020a; Chen et al., 2020; Liu et al.,
2020b), named entity recognition (Ni et al., 2017;
Xie et al., 2018; Jia et al., 2019; Liu et al., 2020c),
speech recognition (Mimura et al., 2017; Winata
et al., 2020), abstractive summarization (Zhu et al.,
2019; Ouyang et al., 2019; Yu et al., 2021), etc. De-

spite numerous studies related to the cross-lingual
and cross-domain areas, only a few of them have ex-
plored how to effectively adapt models to the target
languages in target domains, and the investigated
tasks are limited to sentiment analysis (Fernández
et al., 2016; Li et al., 2020b), abusive language de-
tection (Pamungkas and Patti, 2019), and machine
reading comprehension (Charlet et al., 2020). To
the best of our knowledge, we are the first to study
the combination of cross-lingual and cross-domain
adaptations in the TCSP task.

3 Task Decomposition

In this section, we first introduce the intuition of
decomposing the compositional semantic parsing
into intent predictions and slot filling. Then, we
describe how we construct intent and slot labels.

3.1 Intuition of Task Decomposition

We argue that hierarchical representations contain-
ing nested annotations for intents and slots are rel-
atively complex. We need large enough training
data to train a good model based on such repre-
sentations, and the model’s performance will be
greatly limited in low-resource scenarios. There-
fore, instead of incorporating intents and slots into
one representation, we propose to predict them sep-
arately so that we can simplify the parsing problem
and enable the model to easily learn the skills for
each decomposed task, and finally, our model can
achieve a better adaptation ability in low-resource
scenarios. As illustrated in Figure 2, we obtain the
coarse-grained intent, flattened fine-grained intents
and flattened slot labels from the hierarchical repre-
sentations, and train the model based on these three
categories in a multi-task fashion. Note that we
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can always reconstruct the hierarchical representa-
tions based on the labels in these three categories,
which means that the decomposed labels and the
hierarchical labels are equivalent.

3.2 Label Constructions
Slot Labels We extract nested slot labels from
the hierarchical representations and assign the la-
bels to corresponding tokens based on the BIO
(begin-inside-outside) structure. As we can see
from Figure 2, there could exist multiple slot
labels for one token, and we consider the or-
der of the labels so as to reconstruct the hier-
archical representations. Specifically, we put
the more fine-grained slot label at the later po-
sition. For example, “message” (in Figure 2)
has B-TODO and B-METHOD-MESSAGE labels,
and B-METHOD-MESSAGE comes after B-TODO
since it is a more fine-grained slot label.

Intent Labels Each data sample has one intent
label for the whole user utterance, and we extract
it as an individual coarse-grained intent label. For
the intents expressed by partial tokens (i.e., fine-
grained intents), we use the BIO structure to label
the corresponding tokens. We notice that we only
need to assign one intent label to each token since
the nested cases for intents are relatively simple.3

Therefore, the fine-grained intent classification be-
comes a sequence labeling task.

4 X2Parser

The model architecture of our X2Parser is illus-
trated in Figure 3. To enable the cross-lingual
ability of our model, we leverage the multilin-
gual pre-trained model XLM-R (Conneau et al.,
2020) as the sequence encoder. Let us define
X = {x1, x2, ..., xn} as the user utterance and
H = {h1, h2, ..., hn} as the hidden states (denoted
as Emb in Figure 3) from XLM-R.

4.1 Slot Predictor
The slot predictor consists of a fertility classifier, a
slot encoder, and a slot classifier. Inspired by Gu
et al. (2018), the fertility classifier learns to predict
the number of slot labels for each token, and then it
copies the corresponding number of hidden states.
Finally, the slot classifier is trained to conduct the
sequence labeling based on the slot labels we con-
structed. The fertility classifier not only helps the

3We place more details about how we construct labels for
fine-grained nested intents in the Appendix A.

model identify the number of labels for each token
but also guides the model to implicitly learn the
nested slot information in user queries. It relieves
the burden of the slot classifier, which needs to
predict multiple slot entities for certain tokens.

Fertility Classifier (FC) We add a linear layer
(FC) on top of the hidden states from XLM-R to
predict the number of labels (fertility), which we
formulate as follows:

F = {f1, f2, ..., fn} = FC({h1, h2, ..., hn}),
(1)

where FC is an n-way classifier (n is the maximum
label number) and fi(i ∈ [1, n]) is a positive inte-
ger representing the number of labels for xi.

Slot Filling After obtaining the fertility predic-
tions, we copy the corresponding number of hidden
states from XLM-R:

H ′ = CopyHiddens(H,F ). (2)

Then, we add a transformer encoder (Vaswani et al.,
2017) (slot encoder (SE)) on top of H ′ to incor-
porate the sequential information into the hidden
states, followed by adding a linear layer (slot clas-
sifier (SC)) to predict the slots, which we formulate
as follows:

Pslot = SC(SE(H ′)), (3)

where Pslot is a sequence of slots that has the same
length as the sum of the fertility numbers.

4.2 Intent Predictor
Coarse-Grained Intent The coarse-grained in-
tent is predicted based on the hidden state of the
“[CLS]” token from XLM-R since it can be the
representation for the whole sequence, and then we
add a linear layer (coarse-grained intent classifier
(CGIC)) on top of the hidden state to predict the
coarse-grained intent:

pcg = CGIC(hcls), (4)

where pcg is a single intent prediction.

Fine-Grained Intent We add a linear layer (fine-
grained intent classifier (FGIC)) on top of the hid-
den states H to produce the fine-grained intents:

Pfg = FGIC({h1, h2, ..., hn}), (5)

where Pfg is a sequence of intent labels that has the
same length as the input sequence.
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Model en es fr de hi th Avg.

Seq2Seq w/ CRISS (Li et al., 2020a) 84.20 48.60 46.60 36.10 31.20 0.00 32.50

Seq2Seq w/ XLM-R (Li et al., 2020a) 83.90 50.30 43.90 42.30 30.90 26.70 38.82

Neural Layered Model (NLM) 82.40 59.99 58.16 54.91 29.31 28.78 46.23

X2Parser 83.39 60.30 58.34 56.16 37.06 29.35 48.24

Table 1: Exact match accuracies for the zero-shot cross-lingual setting. “Avg.” denotes the averaged performance
over all target languages (English excluded). The results of X2Parser and NLM are averaged over five runs.

Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg.

Seq2Seq 67.94 64.25 61.93 50.11 32.20 43.20 52.54 34.21 46.32 44.83 73.58 51.92

NLM 76.32 70.02 73.60 70.58 56.52 58.01 67.33 50.01 57.28 64.37 80.15 65.83

X2Parser 76.72 73.16 77.33 71.45 55.19 64.43 69.77 51.78 58.86 65.98 81.17 67.80

Table 2: Exact match accuracies (averaged over three runs) for the cross-domain setting in English. The scores
represent the performance for the corresponding target domains. We use 10% of training samples in the target
domain. “Seq2Seq” denotes the “Seq2Seq w/ XLM-R” baseline (same for the following tables and figures).

5 Experiments

5.1 Experimental Setup

Dataset We conduct the experiments on the
MTOP dataset proposed by Li et al. (2020a), which
contains six languages: English (en), German (de),
French (fr), Spanish (es), and Thai (th), and 11
domains: alarm, calling, event, messaging, music,
news, people, recipes, reminder, timer, and weather.
The data statistics are reported in the Appendix B.

Cross-Lingual Setting In the cross-lingual set-
ting, we use English as the source language and the
other languages as target languages. In addition,
we consider a zero-shot scenario where we only
use English data for training.

Cross-Domain Setting In the cross-domain set-
ting, we only consider training and evaluation in
English. We choose ten domains as source domains
and the other domain as the target domain. Differ-
ent from the cross-lingual setting, we consider a
few-shot scenario where we first train the model
using the data from the ten source domains, and
then we fine-tune the model using a few data sam-
ples (e.g., 10% of the data) from the target domain.
We consider the few-shot scenario because zero-
shot adapting the model to the target domain is
extremely difficult due to the unseen intent and slot
types, while zero-shot to target languages is easier
using multilingual pre-trained models.

Cross-Lingual Cross-Domain Setting This set-
ting combines the cross-lingual and cross-domain

settings. Specifically, we first train the model on
the English data from the ten source domains, and
then fine-tune it on a few English data samples
from the other (target) domain. Finally, we conduct
the zero-shot evaluation on all the target languages
of the target domain.

5.2 Baselines

Seq2Seq w/ XLM-R Rongali et al. (2020) pro-
posed a sequence-to-sequence (Seq2Seq) model
using a pointer-generator network (See et al., 2017)
to handle nested queries, and achieved new state-of-
the-art results in English. Li et al. (2020a) adopted
this architecture for zero-shot cross-lingual adap-
tation. They replaced the encoder with the XLM-
R (Conneau et al., 2020) and used a customized
decoder to learn to generate intent and label types
and copy tokens from the inputs.4

Seq2Seq w/ CRISS It is the same architecture as
Seq2Seq w/ XLM-R, except that Li et al. (2020a)
replaced XLM-R with the multilingual pre-trained
model, CRISS (Tran et al., 2020), as the encoder
for the zero-shot cross-lingual adaptation.

Neural Layered Model (NLM) This baseline
conducts the multi-task training based on the same
task decomposition as X2Parser, but it replaces the
slot predictor module in X2Parser with a neural

4In order to compare the performance in the cross-domain
and cross-lingual cross-domain settings, we follow Li et al.
(2020a) to reimplement this baseline since the source code is
not publicly available.
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Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg.

Seq2Seq 34.29 47.00 41.81 25.86 19.21 25.39 22.13 16.12 9.80 20.01 36.90 22.25

NLM 48.53 43.30 44.62 43.32 36.25 28.60 43.29 28.54 20.50 34.16 59.57 39.15

X2Parser 48.72 51.30 53.22 43.99 37.25 34.85 45.97 32.99 27.87 36.61 60.05 42.98

Table 3: Exact match accuracies (averaged over three runs) for the cross-lingual cross-domain setting. The result
for each domain is the averaged performance over all target languages. We use 10% of training samples in the
English target domain, and do not use any data in the target languages.

Figure 4: Full cross-lingual cross-domain results (across all target languages of target domains) for Table 3.

layered model (Ju et al., 2018),5 while keeping the
other modules the same. Unlike our fertility-based
slot predictor, NLM uses several stacked layers to
predict entities of different levels. We use this base-
line to verify the effectiveness of our fertility-based
slot predictor.

5.3 Training Details

We use XLM-R Large (Conneau et al., 2020) as
the sequence encoder. For a word (in an utterance)
with multiple subword tokens, we take the repre-
sentations from the first subword token to predict
the labels for this word. The transformer encoder
(slot encoder) has one layer with a head number of
4, a hidden dimension of 400, and a filter size of 64.
We set the fertility classifier as a 3-way classifier
since the maximum label number for each token in
the dataset is 3. We train X2Parser using the Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 2e-5 and a batch size of 32. We follow Li
et al. (2020a) and use the exact match accuracy to
evaluate the models. For our model, the prediction
is considered correct only when the predictions for
the coarse-grained intent, fine-grained intents, and
the slots are all correct. To ensure a fair compar-
ison, we use the same three random seeds to run
each model and calculate the averaged score for
each target language and domain.

5This model was originally proposed to tackle the nested
named entity recognition task

6 Results & Discussion

6.1 Main Results

Cross-Lingual Setting As we can see from Ta-
ble 1, X2Parser achieves similar performance in
English compared to Seq2Seq-based models, while
it significantly outperforms them in the zero-shot
cross-lingual setting, with ∼10% accuracy im-
provement on average. In the English training pro-
cess, the Seq2Seq-based models can well learn the
specific scope of tokens that need to be copied and
assigned to a specific label type based on numerous
training data. However, these models will easily
lose effectiveness when the input sequences are
in target languages due to the inherent variances
across languages and the difficulty of generating hi-
erarchical representations. X2Parser separates the
TCSP task into predicting intents and slots individ-
ually, which lowers the task difficulty and boosts
its zero-shot adaptation ability to target languages.
Interestingly, we find that compared to Seq2Seq w/
XLM-R, X2Parser greatly boosts the performance
on target languages that are topologically close
to English (e.g., French (fr)) with more than 10%
scores, while the improvements for languages that
are topologically distant from English (e.g., Thai
(th) and Hindi (hi)) are relatively limited. We ar-
gue that the large discrepancies between English
and Thai make the representation alignment qual-
ity between English and Thai (Hindi) in XLM-R
relatively low, and their different language patterns
lead to unstable slot and intent predictions. These
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Figure 5: Few-shot exact match results on the cross-domain setting for Event, News and Recipe target domains.

Figure 6: Few-shot exact match results on the cross-lingual cross-domain setting for Event, News and Recipe
target domains. The results are averaged over all target languages.

factors limit the improvement for X2Parser on the
adaptation to topologically distant languages.

From Table 1, although NLM achieves
marginally lower performance in English com-
pared to Seq2Seq w/ XLM-R, it produces signifi-
cant improvements in target languages. This can
be attributed to the fact that NLM leverages the
same task decomposition as X2Parser, which fur-
ther indicates the effectiveness of decomposing the
TCSP task into intent and slot predictions for low-
resource scenarios. Additionally, X2Parser sur-
passes NLM by ∼2% exact match accuracy on
average in target languages. We conjecture that the
stacked layers in NLM could make the model con-
fused about which layer needs to generate which
entity types, and this confusion is aggravated in
the zero-shot cross-lingual setting where no train-
ing data are available. However, our fertility-based
method helps the model implicitly learn the struc-
ture of hierarchical slots by predicting the number
of labels for each token, which allows the slot clas-
sifier to predict the slot types more easily in the
cross-lingual setting.

Cross-Domain Setting As shown in Table 2,
X2Parser and NLM notably surpass the Seq2Seq
model, with ∼15% improvements on the averaged
scores. This can be largely attributed to the effec-
tiveness of our proposed task decomposition for
low-resource scenarios. Seq2Seq models need to
learn when to generate the label, when to copy to-

kens from the inputs, and when to produce the end
of the label to generate hierarchical representations.
This generation process requires a relatively large
number of data samples to learn, which leads to
the weak few-shot cross-domain performance for
the Seq2Seq model. Furthermore, X2Parser out-
performs NLM, with a ∼2% averaged score. We
conjecture that our fertility classifier guides the
model to learn the inherent hierarchical informa-
tion from the user queries, making it easier for the
slot classifier to predict slot types for each token.
However, the NLM’s slot classifier, which consists
of multiple stacked layers, needs to capture the hi-
erarchical information and correctly assign slot la-
bels of different levels to the corresponding stacked
layer, which requires relatively larger data to learn.

Cross-Lingual Cross-Domain Setting From
Table 3 and Figure 4, we can further observe the
effectiveness of our proposed task decomposition
and X2Parser in the cross-lingual cross-domain set-
ting. X2Parser and NLM consistently outperform
the Seq2Seq model in all target languages of the
target domains and boost the averaged exact match
accuracy by ∼20%. Additionally, from Table 3,
X2Parser also consistently outperforms NLM on
all 11 domains and surpasses it by 3.84% accuracy
on average. From Figure 4, X2Parser greatly im-
proves on NLM in topologically distant languages
(i.e., Hindi and Thai). It illustrates the powerful
transferability and robustness of the fertility-based
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Model
Spanish French German Hindi Thai Average

NN Nested NN Nested NN Nested NN Nested NN Nested NN Nested

Seq2Seq 56.21 29.38 48.11 32.83 46.02 20.25 37.84 22.30 33.27 13.56 44.29 23.66

NLM 65.65 41.95 61.02 42.91 56.90 37.94 36.48 24.36 34.15 15.70 50.84 32.57

X2Parser 66.69 39.19 63.45 44.28 58.43 39.71 42.64 28.55 35.96 16.67 53.43 33.68

Table 4: Zero-shot cross-lingual exact match accuracies for nested and non-nested (NN) cases.

slot prediction that enables X2Parser to have a good
zero-shot cross-lingual performance after it is fine-
tuned to the target domain.

6.2 Few-shot Analysis

We conduct few-shot experiments using different
sample sizes from the target domain for the cross-
domain and cross-lingual cross-domain settings.
The few-shot results on the Event, News, and
Recipe target domains for both settings6 are shown
in Figure 5 and Figure 6. We find that the per-
formance of the Seq2Seq model is generally poor
in both settings, especially when only 1% of data
samples are available. With the help of the task
decomposition, NLM and X2Parser remarkably
outperform the Seq2Seq model in various target do-
mains for both the cross-domain and cross-lingual
cross-domain settings across different few-shot sce-
narios (from 1% to 10%). Moreover, X2Parser con-
sistently surpasses NLM for both the cross-domain
and cross-lingual cross-domain settings in differ-
ent few-shot scenarios, which further verifies the
strong adaptation ability of our model.

Interestingly, we observe that the improvement
of X2Parser over Seq2Seq grows as the number
of training samples increases. For example, in the
cross-lingual cross-domain setting of the event do-
main, the improvement goes from 20% to 30% as
the training data increases from 1% to 10%. We
hypothesize that in the low-resource scenario, the
effectiveness of X2Parser will be greatly boosted
when a relatively large number of data samples are
available, while the Seq2Seq model needs much
larger training data to achieve good performance.

6.3 Analysis on Nested & Non-Nested Data

To further understand how our model improves the
performance, we split the test data in the MTOP
dataset (Li et al., 2020a) into nested and non-nested
samples. We consider the user utterances that do

6We only report three domains due to the page limit, and
place the full results for all 11 target domains in the Ap-
pendix C and Appendix D.
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Figure 7: Averaged latencies for our model and base-
lines on different output lengths of the MTOP dataset.

not have fine-grained intents and nested slots as the
non-nested data sample and the rest of the data as
the nested data sample. As we can see from Table 4,
X2Parser significantly outperforms the Seq2Seq
model on both nested and non-nested user queries
with an average of∼10% accuracy improvement in
both cases. In addition, X2Parser also consistently
surpasses NLM on all target languages in both the
nested and non-nested scenarios, except for the
Spanish nested case, which further illustrates the
stable and robust adaptation ability of X2Parser.

6.4 Latency Analysis
We can see from Figure 7 that, as the output length
increases, the latency discrepancy between the
Seq2Seq-based model (Seq2Seq) and sequence
labeling-based models (NLM and X2Parser) be-
comes larger, and when the output length reaches
40 tokens (around the maximum length in MTOP),
X2Parser can achieve an up to 66% reduction in
latency compared to the Seq2Seq model. This can
be attributed to the fact that the Seq2Seq model
has to generate the outputs token by token, while
X2Parser and NLM can directly generate all the out-
puts. In addition, the inference speed of X2Parser
is slightly faster than that of NLM. This is because
NLM uses several stacked layers to predict slot en-
tities of different levels, and the higher-level layer
has to wait for the predictions from the lower-level
layer, which slightly decreases the inference speed.
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7 Conclusion

In this paper, we develop a transferable and non-
autoregressive model (X2Parser) for the TCSP task
that can better adapt to target languages and do-
mains with a faster inference speed. Unlike previ-
ous TCSP models that learn to generate hierarchical
representations, we propose to decompose the task
into intent and slot predictions so as to lower the
difficulty of the task, and then we cast both predic-
tion tasks into sequence labeling problems. After
that, we further propose a fertility-based method
to cope with the slot prediction task where each
token could have multiple labels. Results illus-
trate that X2Parser significantly outperforms strong
baselines in all low-resource settings. Furthermore,
our model is able to reduce the latency by up to
66% compared to the generation-based model.
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A Intent Label Construction

In this section, we further describe how we convert
the fine-grained intent prediction into a sequence
labeling task (each token has only one label). We
use a few examples to illustrate our intent label
construction method.

25/4/2021, 11:32 PMintent
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Message     Mike       at   7   pm   tonight

B-SEND
MESSAGE O O O O

Remind   me   to        call       Grandma       at   7   pm

I-SEND
MESSAGE

B-CREATE
CALL

B-GET
CONTACT
NESTED O O OOOO

Figure 8: A labeling example for non-nested intent.

As illustrated in Figure 8, when there are no
nested intents in the input utterance, we follow the
BIO structure to give intent labels.

25/4/2021, 11:32 PMintent

Page 1 of 2https://www.mathcha.io/editor#
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Remind   me   to        call       Grandma       at   7   pm

I-SEND
MESSAGE

B-CREATE
CALL

B-GET
CONTACT
NESTED O O OOOO

Figure 9: A labeling example for nested intent.

We can see from Figure 9 that “call
Grandma” is a CREATE-CALL intent and
“Grandma” is a GET-CONTACT intent. Hence,
the GET-CONTACT intent is nested in the
CREATE-CALL intent. We use a special intent
label (with “NESTED”) for the “GET-CONTACT”
intent (B-GET-CONTACT-NESTED) to represent
that this intent is nested in another intent, and
hence, the scope of the CREATE-CALL intent
is automatically expanded from “call” to “call
Grandma”. 7

Note that we cannot apply this labeling method
to the slot prediction since one token in the user
utterance could be the starting token for more than
one slot entity. If that is the case, we have to use
more than one slot label for this token to denote
the starting position for each slot entity. Given
that in the MTOP dataset, one token will not be
the starting token of more than one intent, we can
apply this method for the intent label construction.
In the future, when more complex and sophisti-
cated datasets are collected for the task-oriented
compositional semantic parsing task, where there
could exist more than one intent label for each to-
ken, we can always use the fertility-based method

7We notice that if two intents have overlaps, one intent
either fully covers the other intent or is fully covered by the
other intent.

(currently applied for the slot prediction) for the
intent prediction.

B Data Statistics

The data statistics for MTOP are shown in Table 5.

C Few-shot Cross-Domain Results

Full few-shot cross-domain results across all 11
target domains are shown in Figure 10 and Table 6.

D Few-shot Cross-Lingual
Cross-Domain Results

Full few-shot cross-lingual cross-domain results
across all 11 target domains are shown in Figure 11
and Tables 7, 8, 9, 10, and 11.
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Domain Number of Utterances Intent
Types

Slot
TypesEnglish German French Spanish Hindi Thai

Alarm 1,783 1,581 1,706 1,377 1,510 1,783 6 5
Calling 2,872 2,797 2,057 2,515 2,490 2,872 19 14
Event 1,081 1,051 1,115 911 988 1,081 12 12
Messaging 1,053 1,239 1,335 1,164 1,082 1,053 7 15
Music 1,648 1,499 1,312 1,509 1,418 1,648 27 12
News 1,393 905 1,052 1,130 930 1,393 3 6
People 1,449 1,392 763 1,408 1,168 1,449 17 16
Recipes 1,586 1,002 762 1,382 929 1,586 3 18
Reminder 2,439 2,321 2,202 1,811 1,833 2,439 19 17
Timer 1,358 1,014 1,165 1,159 1,047 1,358 9 5
Weather 2,126 1,785 1,990 1,816 1,800 2,126 4 4
Total 18,788 16,585 15,459 16,182 15,195 18,788 117 78

Table 5: Data statistics of the MTOP dataset. The data are roughly divided into a 70:10:20 percent split for train,
eval and test

Figure 10: Few-shot exact match accuracies for the cross-domain setting across all 11 target domains.
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Figure 11: Few-shot Exact match accuracies for the cross-lingual cross-domain setting across all 11 target do-
mains. The results are averaged over all target languages.

# Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 45.22 33.07 34.52 22.58 10.38 20.14 12.43 11.39 18.33 20.34 48.36 25.16

NLM 51.75 41.00 41.46 48.97 22.49 23.84 18.65 16.52 36.84 23.67 63.11 35.30

X2Parser 54.94 45.20 41.96 51.91 26.83 31.19 18.83 20.00 42.31 30.80 66.53 39.14

3%

Seq2Seq 52.55 50.33 39.59 30.87 16.82 30.45 31.64 14.20 23.90 30.69 58.06 34.46

NLM 56.86 61.68 49.24 59.86 33.06 43.95 49.43 19.71 48.23 38.62 69.20 48.17

X2Parser 62.36 63.37 52.97 60.70 33.42 54.38 50.47 27.34 52.21 50.58 70.57 52.58

6%

Seq2Seq 63.88 58.32 46.70 45.48 25.87 36.03 42.94 21.45 37.81 34.14 63.86 43.32

NLM 68.53 66.42 63.96 70.28 45.98 56.33 59.23 28.12 52.21 58.51 75.16 58.61

X2Parser 71.61 68.97 69.54 70.09 46.70 59.87 59.70 35.65 56.57 61.70 77.00 61.58

10%

Seq2Seq 67.94 64.25 61.93 50.11 32.20 43.20 52.54 34.21 46.32 44.83 73.58 51.92

NLM 76.32 70.02 73.60 70.58 56.52 58.01 67.33 50.01 57.28 64.37 80.15 65.83

X2Parser 76.72 73.16 77.33 71.45 55.19 64.43 69.77 51.78 58.86 65.98 81.17 67.80

Table 6: Complete results of the cross-domain setting.
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# Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 33.81 28.00 24.29 9.89 8.22 13.59 4.49 15.87 7.87 14.29 38.86 18.11

NLM 44.41 31.75 36.53 41.95 14.36 16.34 12.82 23.28 21.76 24.67 57.92 29.62

X2Parser 51.51 36.67 36.72 51.84 20.86 19.90 15.60 19.05 26.16 30.74 59.65 33.52

3%

Seq2Seq 48.58 41.75 30.51 14.07 12.35 10.68 17.31 19.84 6.94 28.57 42.82 24.86

NLM 53.41 50.33 43.31 54.37 26.10 29.45 34.19 24.61 25.46 38.96 64.03 40.38

X2Parser 56.06 54.75 46.14 53.23 24.25 33.82 34.61 23.54 30.79 44.73 63.61 42.32

6%

Seq2Seq 51.70 43.50 36.16 25.48 16.91 18.45 27.56 23.02 12.50 33.33 51.49 30.92

NLM 60.32 52.83 48.02 60.84 41.46 47.25 46.58 26.19 27.70 53.10 67.41 48.34

X2Parser 66.10 61.67 53.30 61.85 40.24 44.82 44.01 27.78 31.48 53.97 68.81 50.37

10%

Seq2Seq 59.94 47.00 41.81 25.86 22.85 25.39 34.21 21.25 17.59 32.90 60.69 35.41

NLM 64.57 57.08 53.11 60.08 49.86 48.84 58.12 34.13 24.61 51.95 70.30 52.06

X2Parser 65.81 59.75 54.24 61.98 51.36 46.12 59.62 36.51 32.10 56.57 71.45 54.14

Table 7: Complete results of the cross-lingual cross-domain setting in Spanish.

# Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 43.94 30.77 15.72 11.55 8.07 5.66 8.09 12.15 5.87 13.16 35.67 17.33

NLM 53.13 35.04 41.51 46.75 16.07 7.55 15.32 18.78 26.01 23.51 59.74 31.22

X2Parser 54.65 37.48 41.51 49.40 21.67 10.27 18.01 20.44 29.28 26.67 65.07 34.04

3%

Seq2Seq 51.21 42.91 16.98 10.76 9.07 8.81 8.09 14.92 5.22 22.11 43.54 21.24

NLM 55.66 49.58 51.57 54.98 25.32 17.82 33.34 23.94 30.73 34.91 65.73 40.33

X2Parser 59.70 52.87 54.72 52.99 24.40 18.03 38.60 27.81 31.74 40.18 65.92 42.45

6%

Seq2Seq 49.70 45.24 25.79 19.92 17.86 5.66 19.85 19.89 14.78 31.05 55.62 27.76

NLM 64.08 50.00 57.86 63.88 36.67 23.27 48.41 28.73 28.48 50.18 74.72 47.84

X2Parser 66.77 59.22 58.49 59.49 38.45 25.16 46.81 29.84 35.29 55.62 71.82 49.72

10%

Seq2Seq 50.00 46.34 27.67 29.48 24.29 10.18 25.43 25.10 16.09 28.42 57.81 30.98

NLM 59.64 52.68 61.22 62.29 48.93 22.59 57.35 31.49 32.75 52.81 76.69 50.77

X2Parser 62.32 56.84 58.70 61.89 49.17 25.58 60.54 38.49 36.31 52.28 75.37 52.50

Table 8: Complete results of the cross-lingual cross-domain setting in French.

# Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 35.13 21.61 7.36 8.81 7.98 11.74 3.58 6.90 0.89 17.19 24.15 13.21

NLM 46.27 37.43 44.58 27.81 18.95 24.50 14.70 11.84 16.03 22.00 57.86 29.27

X2Parser 52.03 39.32 45.40 34.72 21.68 33.97 15.17 15.29 19.98 27.09 60.52 33.20

3%

Seq2Seq 38.81 35.45 15.34 8.81 13.89 13.26 15.41 11.03 2.46 28.12 23.69 18.75

NLM 52.50 48.44 57.87 38.86 28.94 38.38 38.35 16.32 21.55 36.98 64.84 40.28

X2Parser 52.69 50.18 58.28 39.90 25.82 48.36 45.04 24.71 23.64 39.32 65.83 43.07

6%

Seq2Seq 37.68 38.10 20.25 17.62 15.80 18.18 25.81 13.10 6.49 30.47 36.67 23.65

NLM 54.77 50.00 62.78 42.14 34.75 47.35 50.54 21.72 21.92 47.27 70.31 45.78

X2Parser 59.39 55.31 69.32 48.70 35.08 51.77 53.53 28.74 25.28 50.00 73.20 50.03

10%

Seq2Seq 39.38 35.90 22.09 13.47 25.17 22.83 30.24 17.83 7.38 32.03 36.89 25.75

NLM 60.13 54.76 64.01 46.98 42.16 46.84 57.35 40.12 22.30 49.22 73.88 50.70

X2Parser 56.75 56.23 68.92 49.05 40.96 52.65 65.59 42.64 24.91 51.56 75.47 53.16

Table 9: Complete results of the cross-lingual cross-domain setting in German.
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# Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 11.99 13.30 9.85 1.46 1.65 3.23 1.91 3.08 0.00 0.00 6.89 4.85

NLM 16.10 17.67 15.15 20.39 9.92 12.73 9.54 5.73 1.27 3.25 30.44 12.92

X2Parser 16.10 25.04 25.00 20.55 10.60 15.59 7.76 7.64 12.88 3.25 31.63 16.00

3%

Seq2Seq 11.61 18.00 14.39 6.80 4.83 3.76 5.73 3.96 0.38 2.56 14.07 7.83

NLM 14.23 28.62 23.49 24.27 13.54 14.87 16.29 9.25 3.28 5.47 34.33 17.06

X2Parser 25.59 34.76 40.91 21.85 14.46 34.77 19.08 17.03 15.66 16.93 32.64 24.88

6%

Seq2Seq 14.61 13.73 18.18 6.31 10.26 4.84 11.83 5.29 0.38 2.56 12.87 9.17

NLM 29.63 35.29 29.80 22.17 20.11 21.33 20.74 9.84 2.15 16.07 38.42 22.32

X2Parser 27.97 34.05 47.47 23.62 17.36 36.74 21.88 16.59 16.54 26.84 33.34 27.49

10%

Seq2Seq 11.24 22.53 18.94 8.74 13.31 7.23 13.54 6.52 0.38 5.64 19.07 11.56

NLM 22.58 25.61 32.07 21.36 24.38 20.25 24.30 15.13 2.40 14.19 38.61 21.90

X2Parser 30.71 43.92 50.25 22.33 22.73 33.33 25.06 22.02 16.54 20.17 35.53 29.33

Table 10: Complete results of the cross-lingual cross-domain setting in Hindi.

# Sample Model Alarm Call. Event Msg. Music News People Recipe Remind Timer Weather Avg

1%

Seq2Seq 7.82 10.81 3.40 0.00 1.82 0.64 0.94 6.90 2.31 0.00 2.59 3.38

NLM 37.08 26.27 10.20 16.92 9.93 4.46 4.40 8.74 14.65 1.06 26.82 14.59

X2Parser 34.12 26.77 16.33 18.95 11.29 8.92 4.25 13.33 25.76 1.24 34.87 17.80

3%

Seq2Seq 12.93 12.96 4.08 1.02 5.08 0.64 3.77 7.59 3.20 0.53 4.60 5.13

NLM 30.61 31.54 16.49 24.03 12.75 3.82 8.96 16.78 22.02 2.29 27.59 17.90

X2Parser 35.03 36.09 30.16 20.14 10.07 12.32 11.32 19.08 26.55 1.77 37.36 21.81

6%

Seq2Seq 6.46 16.95 4.76 2.03 6.86 1.27 6.60 5.52 5.32 1.06 6.03 5.71

NLM 34.39 35.31 15.42 29.10 10.48 5.73 10.85 20.46 21.73 2.65 30.36 19.68

X2Parser 35.83 38.21 30.16 25.21 16.19 11.68 11.16 20.92 24.87 1.77 34.36 22.76

10%

Seq2Seq 10.88 16.53 2.04 4.57 10.45 2.91 7.25 9.90 7.56 1.06 10.02 7.56

NLM 35.75 26.34 12.70 25.89 15.92 4.46 19.34 21.84 20.45 2.65 38.39 20.34

X2Parser 28.00 39.75 34.01 24.70 22.04 16.56 19.02 25.29 29.50 2.47 42.43 25.80

Table 11: Complete results of the cross-lingual cross-domain setting in Thai.


