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Abstract

Strategies for improving the training and predic-
tion quality of weakly supervised machine learn-
ing models vary in how much they are tailored to
a specific task or integrated with a specific model
architecture. In this work, we introduce Knodle, a
software framework that treats weak data annota-
tions, deep learning models, and methods for im-
proving weakly supervised training as separate,
modular components. This modularization gives
the training process access to fine-grained infor-
mation such as data set characteristics, matches
of heuristic rules, or elements of the deep
learning model ultimately used for prediction.
Hence, our framework can encompass a wide
range of training methods for improving weak
supervision, ranging from methods that only look
at correlations of rules and output classes (inde-
pendently of the machine learning model trained
with the resulting labels), to those that harness the
interplay of neural networks and weakly labeled
data. We illustrate the benchmarking potential of
the framework with a performance comparison of
several reference implementations on a selection
of datasets that are already available in Knodle.

1 Introduction

Most of today’s machine learning success stories
are built on top of huge labeled data sets. Creating
and maintaining such data sources manually is a
time-consuming, complicated and thus an expensive
and error-prone process. Various research directions
address the hunger for bigger and better datasets.

One of the most popular approaches that has
recently gained traction is weak supervision. The
learning algorithm is confronted with labels which
are easy to obtain but are not guaranteed to be correct,
and as such often demand denoising. Such weak
labels are created, for example, with the use of regular

expressions, keyword lists or external databases.
Typically, methods for improving weakly supervised
learning (and their respective implementations) are
tailored towards domain-specific tasks or integrated
with a specific model architecture. Examples include
the attention-over-instances architecture introduced
for relation extraction (Lin et al., 2016), an EM-based
algorithm used for event extraction (Keith et al., 2017)
or models of systematic label flips for named entity
recognition (Hedderich et al., 2021). Such diversity
and specificity of approaches makes it difficult
to compare or transfer them across tasks without
extensive adjustments dictated by the implementation,
the task or the data set.

We introduce Knodle: a framework for Knowledge-
supervised Deep Learning, i.e weak supervision
with neural networks. The framework provides a
simple tensor-driven abstraction based on PyTorch
allowing researchers to efficiently develop methods
for improving weakly supervised machine learning
models and try them interchangeably to find the
one that works the best for a given task. Within this
work, we refer to a denoising method as any method
that helps to improve weakly supervised learning
regardless the type of noise or bias and the exact level
of denoising (weak labels, weak rules etc).

The following points summarize Knodle’s main
design goals:

• Data abstraction. A tensor-driven data abstrac-
tion subsumes a large number of input variants
and is applicable to a diverse range of tasks.

• Method independence. A decoupled imple-
mentation of weak supervision denoising meth-
ods and prediction models enables comparability
and accounts for domain-specific inductive bi-
ases.
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• Accessibility. A high-level interface makes it
easy to test existing methods, incorporate new
ones and benchmark them against each other.

Several denoising algorithms are already included
in Knodle. We also propose a new denois-
ing algorithm, WSCrossWeigh, which extends
CrossWeigh (Wang et al., 2019), a method for
detecting mistakes in crowd-sourced annotation,
to the weak supervision setting. The experiments
demonstrate that it outperforms other existing
methods on the majority of dataset s.

All implemented methods are tested on several
datasets, also included in the Knodle ecosystem, and
we discuss their performance. Each dataset exhibits
different characteristics, such as the amount or the
precision-recall balance of the used rules. Moreover,
depending on the weakly labeled data set, methods
for improving weak labels need to remove spurious
matches in some cases, or generalize from them in
others.

It is clear that such a diverse problem space should
be paired with a rich pool of methods so that the most
appropriate denoising method can be found for any
task or dataset. Knodle allows to easily explore the
spaces of weakly supervised learning settings and
label improvement algorithms, and hopefully will
facilitate a better understanding of the phenomena
that are inherent to weakly supervised learning.

The framework is published as an open-
source Python package knodle and available
at https://github.com/knodle/knodle.

2 Related work

Many strategies have been introduced to reduce the
need for large amounts of manually labeled data.
Among these are active learning (Sun and Grishman,
2012), where automatically selected instances are
manually annotated by experts, and semi-supervised
learning (Agichtein and Gravano, 2000; Kozareva
et al., 2008), where a small annotated dataset is
combined with a large unlabeled one. Fine-tuning
pretrained language models such as BERT (?)
shows good results if moderate to small amounts of
annotations are available.

2.1 Weak supervision
In weak supervision, tedious expert work is replaced
with easy to obtain, but potentially error-prone
labels, that are usually derived from a set of heuristic
rules. One of the most popular strategies of weakly
supervised learning is distant supervision, which uses

knowledge from existing data sources to annotate
unlabeled data. The technique is used extensively
for relation extraction (Craven and Kumlien, 1999;
Mintz et al., 2009; ?; Riedel et al., 2013; Lin et al.,
2016), where various knowledge databases, such as
WordNet (Snow et al., 2004), Wikipedia (Wu and
Weld, 2007) and Freebase (Mintz et al., 2009), are
used as annotation sources.

When using heuristic rules, it is not uncommon
that one sample turns out to be annotated by multiple
rules. The most straightforward approach to resolve
such cases is majority voting, which is used in early
weak supervision algorithms (Thomas et al., 2011)
as well as in more recent experiments (Krasakis
et al., 2019; Boland and Krüger, 2019). However,
majority voting does not deal with the different types
of noise introduced by weak supervision, and more
noise-specific algorithms are necessary. For example,
the noise produced by incomplete labels, which
stems from the incompleteness of weak supervision
sources and often leads to an increased amount
of false negatives, is commonly reduced by data
manipulations, e.g. enhancing the knowledge base
(Xu et al., 2013), a thorough construction of negative
examples to balance the positive ones (Riedel et al.,
2013), or explicitly modelling missing knowledge
base information with latent variables (Ritter et al.,
2013). The problem of noisy features, i.e. an
increased amount of false positive labels stemming
from overgeneralization, is often approached by using
a relaxed distant supervision assumption (Riedel et al.,
2010; Hoffmann et al., 2011), by active learning with
additional manual expertise (Sterckx et al., 2014),
with help of topic models (Yao et al., 2011; Roth and
Klakow, 2013), as well as by using a combination of
multiple methods (Roth, 2014).

Apart from that, methods treat the identified
potentially noisy samples differently. They are either
kept for further training with reduced weights (Jat
et al., 2018; He et al., 2020), corrected (Shang, 2019)
or eliminated (Qin et al., 2018). Thus, denoising
methods vary significantly depending on the data
and task, what makes the creation of a platform for
comparison crucial.

2.2 Structure Learning

Structure learning assumes multiple weak labels per
instance where each label is created by a so called
labeling function. The goal is to learn a dependency
structure within these labeling functions which
motivates the term structure learning. Most labeling

https://github.com/knodle/knodle
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functions are generated by human intuitions, moti-
vating correlation and dependence between labeling
functions. The first algorithm was implemented in the
software package Snorkel (Ratner et al., 2017), which
also implemented the data programming paradigm,
allowing to programmatically create labeling func-
tions. Subsequently improvements were made (Bach
et al., 2017; Varma et al., 2019) and variations, such
as semi-supdervised learning (Chatterjee et al., 2019;
Maheshwari et al., 2020) were introduced.

2.3 Noise-aware learning
A common idea to mitigate single noisy labels is
to build an architecture which accounts for noisy
data. There are different approaches that model
noise-robustness by adapting the loss function (Patrini
et al., 2017). Examples include a generalization of
cross-entropy and the mean absolute error (Zhang
and Sabuncu, 2018) or the addition of a special noise
layer to a neural network (Sukhbaatar et al., 2015).
Many approaches are based on noise assumptions,
such as on the assumption of symmetric label
noise (van Rooyen et al., 2015). Another approach
aims at finding and removing wrongly labeled
samples from the training procedure. An example
in this domain is given by the confidence learning
framework CleanLab, which is based on the intuition
that low-confidence predictions in cross-validation
are more likely to be labeled wrongly (Northcutt
et al., 2021). Note that most of these methods were
built with the assumption that there is one label
corresponding to each instance, while Knodle makes
use of several weak signals per instance.

2.4 Crowdsourcing annotations
Another solution to reduce the cost of manual data
supervision by experts is crowdsourcing. In order
to increase the supervision accuracy for a task, most
crowdsourcing experiments rely on annotations by
multiple people, and the final label is defined by
majority voting (Kosinski et al., 2012) or measuring
the inter-annotator agreement (Tratz and Hovy,
2010). More sophisticated denoising strategies
include anomaly detection (Eskin, 2000), annotator’s
reliability modelling (Dawid and Skene, 1979),
Bayesian approaches (Raykar and Yu, 2012) and
generative models (Hovy et al., 2013). Some mistakes
can be identified by such methods. For example,
mistakes consistently made by careful but biased
people (Ipeirotis et al., 2010), or errors introduced by
spammers (Raykar and Yu, 2012).

As both, automatically and human labeled data,

are subject to noise and structural errors, many
algorithms can be used for both domains. For
example, the MACE algorithm (Hovy et al., 2013),
initially proposed for improving noisy annotations
from human annotators, was adapted to the setting of
denoising automatically labeled data for named entity
recognition (Rehbein and Ruppenhofer, 2017). With
the same motivation, we introduce WSCrossWeigh
(see Section 4 for more details). We demonstrate
the usefulness of the Knodle framework to transfer
algorithms for improving crowd-sourced annotations
to weak supervision problems.

2.5 Frameworks

Knodle is based upon the ideas of several software
frameworks. On a low level, Knodle is built on
top of PyTorch (Paszke et al., 2017). As for design
decisions, we followed several other high-level
libraries that aim to ease the training and prediction
experience. Namely, we drew inspiration from
PyTorch lightning (Falcon, 2019), which in essence
tries to remove the burdens of writing your own train
loop, and Huggingface’s Transformers library (Wolf
et al., 2020), which gives easy access to various
transformer-based architectures in a fixed manner, so
that they can be effortlessly interchanged in code.

3 Weakly supervised learning with Knodle

The Knodle architecture provides a layer of abstraction
that allows integrated label improvement and model
training with weakly supervised learning signals in
PyTorch. On the one hand, since Knodle has access to
the information which rules matched for each sample,
it is not restricted to methods that denoise only weak
labels, such as Cleanlab (Northcutt et al., 2021). On
the other hand, the Knodle abstraction also provides
access to input and learned representations, and thus
does not restrict denoising methods to rely on rule
match correlations alone (as Snorkel (Ratner et al.,
2017)). Moreover, access to the deep learning model
enables the integration of denoising methods that use
or manipulate the prediction model itself.

To the best of our knowledge, Knodle is the first
framework to provide a modular architecture for
interchangable application of a wide spectrum of
denoising algorithms. For that reason we believe that
it can become a testbed where different algorithms
for improving the weakly supervised data are im-
plemented and compared with each other to find the
most fruitful task-to-denoising-method combination
or to use it as a foundation for further studies.
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Figure 1: The figure gives an overview of our system. (a) represents the preprocessed input, given as tensors.(b)
resembles the internals of Knodle. The Trainer classes introduced in Section 3.2 handle transformation, denoising
and model training. Note that these three steps could be performed subsequently or subsumed in a single training step.
Then, (c) shows the output, a trained PyTorch model.

The framework follows two main design principles,
outlined below:

1. Tensor-based representations of input data
and weak label matches

Similar to Pytorch models, where the data (input,
labels) is already expected to be in tensor format,
and the specific pre-processing that led to the tensor
representation of the data is outside the scope of the
deep learning model implementation, we choose to
exclude the process of weak label generation from
Knodle. Rather, we encode the information about
weak labels in two tensors. One tensor contains
information about which rules matched for each
data instance, while another tensor describes the
relationship between rules and output classes.

Formally, assume we have n samples, r rules and
k classes. Rule matches are gathered in a binary ma-
trix Z ∈ {0,1}n×r, where Zij =1 if rule j matches
sample i. The initial mapping from rules to the cor-
responding classes is given by another binary matrix
T ∈{0,1}r×k, Tjk=1 if rule j is indicative of class k.

This separation between one tensor that contains
rule matches and another tensor that translates them
to labels allows Knodle to access this fine-grained
information during training for certain denoising
algorithms. This is in contrast to other approaches
that treat weak supervision as learning from a noisy
heuristic label matrix Yheur = ZT without direct
access to the individual rules.

2. Separation of the prediction model from the
weak supervision aspects.

Knodle requires a standard PyTorch model for
a given prediction task. It is defined independent
of the weak supervision aspects, such as rule types

or denoising method. Therefore the same PyTorch
model definition can be used for direct or weakly
supervised training, and the two settings can easily
be compared. However, even though the prediction
model is defined separately, the denoising methods
may have access to it during training. For example,
cross-validation schemes such as WSCrossWeigh
(see Section 4) can use the PyTorch model definition
for data reweighting or label correction. This is in
contrast to approaches that modularize denoising and
training by first adjusting label confidences by using
correlations between rules only and then training
a model with the adjusted labels (Takamatsu et al.,
2012; Ratner et al., 2017). Furthermore, Knodle’s
design is much more flexible compared to approaches
where denoising is so tightly integrated into the
underlying prediction model architecture that it could
not be changed (Sukhbaatar et al., 2015).

3.1 Handling of negative instances

Different tasks need a different logic to handle data
samples where no rule matched. These samples are
traditionally called negative instances. Whether unla-
beled instances should be used for training (as an addi-
tional OTHER class) depends on the task at hand and
should be configurable. For example, in knowledge
base population (Surdeanu, 2013) there is only a small
number of relevant target relations, and it is important
to confidently identify sentences that do not contain
any of the target relations (requiring negative instances
as examples for the OTHER class). However, in spam
classification with only two classes (spam and not
spam) there are rules covering both possible outcomes,
and there is no need for unlabeled instances and filter-
ing them out is reasonable. Current weak supervision
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frameworks provide only one of the two options: nega-
tive samples are either filtered out (Ratner et al., 2017)
or included to the training dataset (Shu et al., 2020).

Knodle includes configurable functionality for han-
dling such cases (allowing comparability of denoising
methods across tasks with and without an OTHER
class). From a technical point of view, there is a
filter non labeled flag in a configuration
file, which could be set to False if the negative
instances should be filtered out. To make up for
missing explicit annotations for negative samples,
an additional other class parameter is defined.
Automatically all samples without a matching rule
are set to belong to ”other” class. Hence, the exact
other class id could be either provided by
the user or determined automatically by Knodle.
These types of configurations are well encapsulated,
allowing the specific model to deal with either input.
The amount of negative instances that should included
in the training set can be defined specifically for each
denoising algorithm.

3.2 Implementation Details

Similar to the most popular deep learning frameworks,
such as TensorFlow (Abadi et al., 2015) and
PyTorch (Paszke et al., 2017), we realise learning
as a mapping from input tensor(s) to output tensor(s)
guided by a loss function that measures the quality
of the learned mapping. However, while the most
common solution is to represent the training data by a
design matrixX∈Rn×d (n instances represented by
d feature dimensions) and a label matrix Y ∈Rn×k

(k classes), input of Knodle are matricesX, Z and T
described above. The heuristic labels themselves are
calculated later during the weakly supervised learning
using the information contained there. To ensure a
seamless use, the weakly supervised algorithms need
to be tightly integrated with automatic differentiation
and optimization supported by PyTorch.

The denoising and training procedures are realised
within Trainer classes. During initialization,
they receive data, a possibly pre-initialized or pre-
trained model, and a method-specific configuration,
inheriting from Config containing information
such as model training parameters, criterion, valida-
tion method, class weights, various options to handle
cases where no rule matches discussed in 3.1 and
others. The level of integration between denoising and
training is different for each Trainer. Sometimes
these procedures can be completely disentangled. For
instance, the SnorkelTrainer firstly denoises

the input rules with Snorkel and, secondly, trains the
classification model on the purified labels. Other
methods highly integrate denoising and training
with each other. An example is given by the
WSCrossWeighTrainer, where several models
are trained in oder to calculate sample weights as part
of the denoising procedure before the final classifier
is trained.

While in standard deep learning frame-
works training can be executed by calling
model.train(X,Y), in Knodle the same
functionality would be invoked with the following
command (illustrates the Trainer with k-NN search,
which we describe in Section 4):

kNNAggregationTrainer(model, X, Z,
T, config).train()

The following code snippet shows an end-to-end
process, starting from data loading, training and
evaluation:

1 import torch
2 from knodle.trainer.knn_aggregation import \
3 kNNAggregationTrainer, kNNConfig
4
5 # load data in Knodle format
6 X_train, Z, T, X_test, Y_test = load_data()
7
8 # define custom config (or use default)
9 config = kNNConfig(epochs=2, k=3)

10
11 # initialize trainer
12 trainer = kNNAggregationTrainer(
13 model, X_train, Z, T, config
14 )
15
16 # train
17 trainer.train()
18
19 # evaluate
20 eval_dict = trainer.test(X_test, Y_test)

More detailed information about
kNNAggregationTrainer as well as about
other Trainers included to Knodle is provided
in the next section.

4 Trainers

Knodle currently provides several out-of-the-box base-
lines and trainers, which we outline in the following
section. All Trainer classes are compatible with
any PyTorch model. As examples for PyTorch clas-
sifiers, Knodle provides code using logistic regression
and HuggingFace’s transformers (Wolf et al.,
2020).

Majority Voting Baseline. As a simple baseline,
the rules are directly applied to the test data without
any additional model training. If several rules match,
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the prediction is done based on the majority; ties
are broken randomly. As was already mentioned
in Section 2, it is one of the most basic approaches
to denoise the data labeled by two or more rules or
human annotators.

Trainer without Denoising. The simplest trained
model is the NoDenoisingTrainer. The
majority vote is computed on the training data and
used to train the given model. This is the most direct
use of the rule matches for training a classifier. To
cover cases where several rules match, this trainer can
be configured to either use a one-hot encoding of the
winning label from the majority vote or a distribution
over labels (relative to the number of matching rules).

Trainer with kNN Denoising. This
kNNAggregationTrainer includes the
label denoising method with a simple geometric
interpretation. The intuition behind it is that similar
samples should be activated by the same rules which
is allowed by a smoothness assumption on the target
space. The trainer looks at the k most similar samples
sorted by, for example, TF-IDF features combined
with L2 distance, and activates the rules matching the
neighbors to create a denoised Ẑ. Importantly, Knodle
allows separate features for the model training and the
neighborhood activation. This method also provides a
way to activate rules for initially unmatched samples.

Trainer with Snorkel Denoising. Knodle pro-
vides a wrapper of the Snorkel system (Ratner et al.,
2017) SnorkelTrainer which incorporates both
generative and discriminative Snorkel steps. The
generative step constitutes a denoising method in
Knodle’s terminology, while the discriminative step
corresponds to a prediction model. The structure
within labels and rules, in our notation P(Y,Z,T), is
learned in an unsupervised fashion by the generative
model. Afterwards, the final discriminative model,
i.e. the prediction model, is trained with weak labels
provided by the generative model, following the
general Knodle design. Both steps are conveniently
provided in a single method call.

Trainer with Weak Supervision CrossWeigh
Denoising. Finally, we implemented our own
algorithm for noise correction in weakly su-
pervised data. It is based on the CrossWeight
method (Wang et al., 2019) and included to Knodle
as WSCrossWeighTrainer. While the original
CrossWeigh method was proposed for mistakes
identification in crowdworkers annotations, we extend
it for denoising the weakly supervised data as well.
In WSCrossWeigh we adopted the same logic for

estimating the reliability of weakly annotated data,
but made some necessarily corrections specific to
weakly supervised learning.

The main intuition behind WSCrossWeigh is the
following: if a labeling rule corresponds to a wrong
class and, therefore, annotates many samples in the
training set with a wrong label, a machine learning
model is likely to learn the incorrect pattern and to
make similar mistakes when labeling the test samples.
However, if we take a sufficiently big portion of data
with samples not labeled by this rule, train the model
on it, and then classify the samples matched by the
rule, the predictions will contradict the initial wrong
labels, and help us to trace the misclassified samples
and reduce their importance in final classifier training.

As in the original CrossWeigh, the basic idea is
similar to the k-fold cross-validation, where input
data is split into k folds, each of which becomes, in
turn, a test set, while the model is trained on the other
folds. In WSCrossWeigh, however, the splitting is per-
formed not randomly, but based on which rules match
for the samples. Firstly, the rules are randomly split
into K folds {r1,...,rk} and, iteratively, each foldl is
chosen to form a test set that is built from all samples
matched this fold’s rules. Other samples constitute
a training set that is used for training the classification
model. During the testing of the trained model on the
hold-out fold samples, the predicted label ŷi for each
test sample xi is compared to the label yi originally
assigned to xi by weak supervision. If ŷi 6=yi, this is
taken as an indication that the sample xi is likely to be
potentially mislabeled, and its weights wxi is reduced
by a value of an empirically estimated parameter ε.
This procedure is repeated several times with different
splits to detect misclassified samples more accurately.

The final classifier is trained on the whole
reweighed training dataset. As a result, the more times
the original yi label of data samplexi was suspected to
be wrong, the smaller is its weightwxi, and, therefore,
the smaller part it will play in the classifier training.

Along with other denoising algorithms,
WSCrossWeigh was tested on the datasets described
in Section 5 and showed quite promising results: it
outperforms all other algorithms on three out of four
datasets (for more details please see Section 6).

5 Datasets

Apart from denoising methods, Knodle includes a few
datasets from previous works in the Knodle-specific
tensor format in order to demonstrate the abilities of
the framework. All datasets are rather simple, but have
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dataset classes train / test samples rules avg. rule hits class ratio

Spam 2 1586 / 250 10 1.63 0.47
Spouse 2 22254 / 2701 9 0.34 0.08
IMDb 2 40000 / 5000 6786 33.97 0.50
TAC-based RE 41 1937211 / 18660 182292 0.51 -

Table 1: Summary of data statistics. The average rule hits are computed on the train set. Class ratio describes the amount
of positive samples in the test set for binary classification datasets, i.e. data skewedness.

their own peculiarities with respect to the respective
Z and T matrices, that are worth investigating. The
overview of dataset statistics is provided in Table 1.

Spam Dataset. The first task uses the YouTube
comments dataset (Alberto et al., 2015). Here, the
task is to classify whether a text is relevant to the
video or holds spam, such as advertisement. The
dataset has a small size of both train and test sets.
Thus, a single wrongly labeled instance might
have quite a big impact on the learning algorithm.
We use the preprocessed version by the Snorkel
team (Snorkel, 2020b). Among others, the rules were
created based on keywords and regular expressions.

Spouse Dataset. This relation extraction dataset is
based on the Signal Media One-Million News Articles
Dataset (Corney et al., 2016). The task is to decide
whether a sentence holds a spouse relation or not.
Again, the preprocessed version by the Snorkel team
is used (Snorkel, 2020a), so the results can be related
to previous studies (Ratner et al., 2017). The rules are
created via a set of known spouse relationships from
DBPedia (Lehmann et al., 2014) as well as keywords
and encoded language patterns. The difficulty of the
Spouse dataset is its skewness: over 90% of samples
in the test set hold a no-spouse relation.

IMDb Dataset. The third dataset is based on the
well-known IMDb dataset (?), which consists of short
movie reviews. The task is to determine whether a
review holds a positive or negative sentiment. Despite
the training set has labels, we do not use them in our
experiments, but handle this data in an unsupervised
fashion. To create the Z and T matrices, we use
positive and negative keyword lists (Hu and Liu,
2004), with a total of 6800 keywords.

TAC-based Relation Extraction Dataset. Lastly,
given the importance of distant supervision for
relation extraction, we add a larger dataset with more
relations (than just spouse). For development and
test purposes the TACRED corpus annotated via
crowdsourcing and human labeling from KBP (Zhang
et al., 2017) is used. As human labels are not allowed

in weak training, the training is performed not on
the TACRED dataset, but on a weakly-supervised
noisy corpus built on TAC KBP corpora (Surdeanu,
2013; Roth, 2014), which was annotated with entity
pairs extracted from Freebase (Google, 2014) with
corresponding relations mapped to the 41 TAC
relations. The amount of entity pairs per relation is
limited to 10.000 and each entity pair is allowed to
be mentioned in no more than 500 sentences. An
important difference of this dataset to the other three
is the presence of negative instances added to the
dataset in equal proportion to the positive ones.

6 Experiments

The aim of Knodle is not to find the best denoising
method in general. Rather, the goal is to find the
method that improves weak labels most for a given
task or dataset and its specific properties. Thus,
Knodle supports experimentation to get a better
understanding in which settings a certain method
works well and when it does not.

6.1 Experimental Details

In all experiments, the DistilBert uncased model for
English language (Sanh et al., 2019) provided by the
HuggingFace 1 (Wolf et al., 2020) library is used as
the prediction model. The optimization is performed
with the AdamW optimizer (Loshchilov and Hutter,
2019) and a learning rate of 1e−4. We employ a
cross-entropy loss accepting a probability distribution
over all labels as reference input whenever the
output of a denoising algorithm is a distribution over
weak labels (e.g. kNNAggregationTrainer,
SnorkelTrainer). Reducing this representation
to a single label (i.e. log-likelihood) would lead to
a loss of weak signals, whereas a label distribution
allows to exploit the information from Z and T to the
fullest. Each model was trained for 2 epochs (unless
stated otherwise), which was enough to receive a
stable result.

1https://huggingface.co/
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Spam Spouse IMDb TAC-based RE

Mode Acc P R F1 Acc P R F1

Majority vote 0.81 0.12 0.79 0.22 0.65 0.09 0.001 0.001
Majority + DistilBert 0.87 0.09 0.90 0.17 0.67 0.20 0.19 0.19

k-NN + DistilBert 0.94 0.12 0.86 0.21 0.50 0.10† 0.11† 0.10†

WSCrossWeigh + DistilBert 0.94 0.09 0.69 0.16 0.73 0.25 0.27 0.26
Snorkel + DistilBert 0.88 0.13 0.70 0.23 0.50 - - -

Table 2: Results of the classifier training with different denoising methods on the test sets of datasets included in Knodle.
†The neighbors were searched with Approximate Nearest Neighbors (Bernhardsson, 2015) because of computation
complexity of k-NN search.

For the k-NN algorithm, nearest neighbors were
found using the cosine similarity of TF-IDF features
based on a dictionary of 3000 words, and the number
of k neighbors is treated as a hyper-parameter. In our
experiments, we used k=2 except where otherwise
noted. Hyperparameters for the WSCrossWeigh
denoising algorithm are the number of folds the
data is be split into, the number of partitions (that is,
how many times the splitting for mistake estimation
is done) and a weight-reducing rate (the value, by
which the initial sample weights are reduced to
each time the sample is predicted wrongly). These
parameters are tuned for each dataset individually.
The following best parameter values were found
empirically: (folds=3, partitions=10 and ε=0.3)
for the Spam dataset, (3, 2 and 0.3) for the Spouse
dataset and (2, 25, 0.7) for the IMDb dataset. Apart
from that, Knodle provides the opportunity to train the
cross-validated sample weights with a model different
from the final classifier. In our experiments, the
weights were calculated using a Bidirectional LSTM
with GloVe Embeddings (Pennington et al., 2014),
while the final training was performed with DistilBert
using the same settings as in the experiments with
other denoising methods. The only difference is the
number of epochs on the TAC-based dataset: the best
results were obtained with 1 DistilBert epoch.

6.2 Results
An overview of the results is given in Table 2. In the
Spam dataset, all denoising methods show an improve-
ment over the simple majority vote baseline. The data-
adaptive k-NN and WSCrossWeigh methods perform
best in this setting. Snorkel and standard majority
voting followed by DistilBert fine-tuning overfit to
the noisy majority votes. This becomes obvious with
the observation that Snorkel achieves a score of 0.93
with a simple logistic regression discriminative model.

Interestingly, k-NN performs well which can serve
as a proof for the reliability of neighboring labels.

Compared to the Spam dataset, the Spouse dataset
is much larger. As the task is to find sentences holding
spouse relations, we relate all metrics to the is-spouse
relation. Note that the non-spouse relation remains
in this case completely disregarded. Furthermore, the
class ratio equals 0.08 shows that is-spouse is the com-
plicated class of interest. On average, 0.34 rules hit per
instance, meaning that almost 70% of the data match
no rule. In these cases, majority vote uses a random
vote which oversamples the is-spouse relation, render-
ing a high recall but low precision. We found that the
rule matches overrepresent the is-spouse class as they
are closer to a class ratio of 0.5 than to the true class
ratio of 0.9. Thus, the additional model training mag-
nifies overfitting towards the is-spouse class which,
again, is expressed by increased recall and lower pre-
cision. The only denoising system that generalizes is
Snorkel. One possible explanation could be that it is
the only method that provides explicit rule denoising.

For IMDb, the majority vote shows that the rules
have rather low quality on their own, but an additional
trained model on top manages to generalize beyond
the given labels. In contrast, denoising with the k-NN
algorithm only aggravates the problems inherent to
labels as the classifier’s performance drops down to a
random vote (50% accuracy). This behaviour can be
explained by the high density of rule hits: on average,
no less than 33 keywords match for each sentence,
which means that already for k=1 many neighbors
are added and that the propagation of imprecise
labelings overrules the expected benefits of k-NN.
In general, there are cues that k-NN might useful in
cases where the weak labels are already rather reliable
but fail in cases where weak labels are too noisy. The
Snorkel based denoising does not perform well on
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IMDb dataset as well, which can be explained by
the lack of dependencies between the rules that the
Snorkel system relies on. However, WSCrossWeigh
appears to be very robust to these data characteristics,
the large amount of rules seems to help tease out and
mutually reinforce the data characteristics associated
with a specific label in cross-validation.

The distantly supervised TAC-based RE dataset
turns out to be the most complicated dataset among
all because of a larger size of samples n and a larger
number of rules r. Due to its specificity, there are
almost no rule matches (entity pairs from the seed
KB) on the test set, implying that the simple majority
baseline has scores close to 0. Training with DistilBert
improves the result, however the performance remains
considerably worse than for the data sets discussed
above. On the contrary the WSCrossWeigh method
that not directly denoise the rules, but downweigh
the mislabeled data samples is still able to improve
the results. Snorkel denoising could not be performed
on this dataset on a machine with CPU frequency of
2.2GHz with 40 cores due to the immense amount of
rules without the data manipulations we want to avoid
(such as significantly reducing the number of rules).
The computation of distances between almost 2
millions instances, which are necessary to determine
the nearest neighbors, also turned out to be extremely
memory- and time-consuming, explaining why k-NN
algorithm was also not performed. Instead, we work
around this by applying an approximated k-NN
algorithm. In our experiments we used the Annoy
library (Bernhardsson, 2015) and k = 3 parameter.
The poor performance of approximated k-NN could
be explained by a small average of rule hits in the
TAC-based RE data set; the possible approximation
losses are also not to be neglected. In contrast, the
WSCrossWeigh method performs quite well. Our
explanation is that WSCrossWeigh does not directly
denoise the rules, but down-weighs samples it is
less confident about. This makes this approach more
robust in cases where the rules are very noisy.

7 Conclusion

This work introduces the Knowledge-supervised
Deep Learning framework Knodle. Knodle provides a
unified interface to work with multiple weak labeling
sources, so that they can be seamlessly integrated with
the training of deep neural networks. This is achieved
by a tensor-based input format and a intuitive
separation of weak supervision aspects and model
training. The framework facilitates experimentation

that helps researchers to gain better insights into
the correspondence between characteristics of weak
supervision problems, and the effectiveness of
methods for improving weakly supervised learning.
From a practical perspective, Knodle can be used to
compare different denoising methods and select the
one that gives the best result for a specific task.

Knodle’s modular approach makes it easy to add
new data sets and denoising algorithms. Adding func-
tionality to Knodle is straightforward, and we do hope
that it will encourage researchers to create their own
algorithms to improve learning with weakly annotated
data, and incorporate them into the Knodle framework.
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