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Abstract
Starting from an existing account of semantic
classification and learning from interaction for-
mulated in a Probabilistic Type Theory with
Records, encompassing Bayesian inference
and learning with a frequentist flavour, we ob-
serve some problems with this account and
provide an alternative account of classification
learning that addresses the observed problems.
The proposed account is also broadly Bayesian
in nature but instead uses a linear transforma-
tion model for classification and learning.

1 Introduction

A probabilistic type theory was presented in
Cooper et al. (2014) and Cooper et al. (2015),
which extends Cooper’s Type Theory with Records
(TTR, Cooper (2012a); Cooper and Ginzburg
(2015)). This theory, Probabilistic Type Theory
with Records (ProbTTR) assigns probability val-
ues, rather than Boolean truth-values, to type judge-
ments.

TTR has been used previously for natural lan-
guage semantics (see, for example, Cooper (2005)
and Cooper (2012a)), and to analyse semantic co-
ordination and learning (for example, (Larsson and
Cooper, 2009; Cooper and Larsson, 2009)). It has
also been applied to the analysis of interaction in
dialogue (for example, Ginzburg (2012) and Brei-
tholtz (2020)), in modelling robotic states and spa-
tial cognition (for example, Dobnik et al. (2013)),
and to the problem of learning perceptual meaning
from interaction (Larsson, 2015). We believe that
a probabilistic version of TTR could be useful in
all these domains.

Two main considerations motivated recasting
TTR in probabilistic terms. First, a probabilistic
type theory offers a natural framework for captur-
ing the gradience of semantic judgements. This al-
lows it to serve as the basis for an account of vague-
ness in interpretation, as shown by Fernández and

Larsson (2014). Second, and this is the focus of the
present paper, such a theory lends itself to develop-
ing a model of semantic classification and learning
that can be straightforwardly integrated into more
general probabilistic explanations of learning and
inference.

This paper presents an account of probabilistic
classification (inference) and learning in ProbTTR
based on a linear transformation model. Recent
work (Larsson, 2020; Larsson and Cooper, 2021;
Larsson et al., 2021; Larsson, 2021) has developed
and used a Bayesian account of classification and
a learning theory with a frequentist flavour. Below
in Section 2, we first introduce TTR and ProbTTR,
and explain briefly how a Naive Bayes classifier
can be formulated in ProbTTR. We then review ear-
lier work on semantic classification and learning
using ProbTTR, and introduce a simple language
game (the fruit recognition game) that has been
used as an example there. In Section 3, we note
some drawbacks of the frequentist account of clas-
sification and learning, motivating the exploration
of alternative accounts. The main contribution of
this paper is the account of semantic classification
and learning using a linear transformation model
presented in Section 4. We show how classification
(Section 4.2) and learning (Section 4.3) is handled
in this account, again taking the fruit recognition
game as our example. In Section 4, we provide
conclusions and point towards future work.

2 Background

This section reviews the background needed to fol-
low the rest of the paper: TTR, Probabilistic TTR
fundamentals, and Bayes nets and Naive Bayes
classifiers.

2.1 TTR: A brief introduction
We will be formulating our account in a Type The-
ory with Records (TTR). We can here only give
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a brief and partial introduction to TTR; see also
Cooper (2005) and Cooper (2012b). To begin with,
s : T is a judgment that some s is of type T . One
basic type in TTR is Ind, the type of an individual;
another basic type is Real, the type of real numbers.

Next, we introduce records and record
types. If a1 : T1, a2 : T2(a1), . . . , an :
Tn(a1, a2, . . . , an−1), where T (a1, . . . , an) rep-
resents a type T which depends on the objects
a1, . . . , an, the record to the left in Figure 1 is of
the record type to the right.

In Figure 1, `1, . . . `n are labels which can be
used elsewhere to refer to the values associated
with them. A sample record and record type is
shown in Figure 2.

Types constructed with predicates may be depen-
dent. This is represented by the fact that arguments
to the predicate may be represented by labels used
on the left of the ‘:’ elsewhere in the record type.
In Figure 2, the type of cman is dependent on ref (as
is crun).

If r is a record and ` is a label in r, we can use a
path r.` to refer to the value of ` in r. Similarly, if
T is a record type and ` is a label in T , T .` refers
to the type of ` in T . Records (and record types)
can be nested, so that the value of a label is itself a
record (or record type). As can be seen in Figure
2, types can be constructed from predicates, e.g.,
“run” or “man”. Such types are called ptypes and
correspond roughly to propositions in first order
logic.

2.2 Probabilistic TTR fundamentals

In ProbTTR (as in TTR generally), situations are
understood in a sense similar to that of Barwise
and Perry (1983). It is also assumed that agents can
individuate situations, and that they have a way of
judging situations to be of situation types.

The core of ProbTTR is the notion of a proba-
bilistic judgement, where a situation s is judged to
be of a type T with some probability.

(1) p(s : T ) = r, where r ∈ [0,1]

Such a judgement expresses a subjective prob-
ability in that it encodes an agent’s take on the
likelihood that a situation is of that type.

A probabilistic Austinian proposition is an ob-
ject (a record) that corresponds to, or encodes, a
probabilistic judgement. Probabilistic Austinian
propositions are records of the type in (2).

(2)

 sit : Sit
sit-type : Type
prob : [0,1]


A probabilistic Austinian proposition ϕ of this type
corresponds to the judgement that ϕ.sit is of type
ϕ.sit-type with probability ϕ.prob.

(3) pJ(ϕ.sit:ϕ.sit-type)= ϕ.prob

We assume that agents track observed situations
and their types, modelled as probabilistic Austinian
propositions.

We use p(T1||T2) to represent the probability
that an agent assigns to some situation s being
of type T1, given that s is of type T2. Note that
p(T1||T2), the conditional probability for some s of
s : T1 given that s : T2, is different from p(T1|T2),
the probability of there being something of type
T1 given that there is something of type T2. We
refer to the former as the bound variable condi-
tional probability, and the latter as the existential
conditional probability.

2.3 Bayesian nets and the Naive Bayes
classifier

A Bayesian Network is a Directed Acyclic Graph
(DAG). The nodes of the DAG are random vari-
ables, each of whose values is the probability of
one of the set of possible states that the variable
denotes. Its directed edges express dependency re-
lations among the variables. When the values of
all the variables are specified, the graph describes
a complete joint probability distribution (JPD) for
its random variables. Bayesian Networks provide
graphical models for probabilistic learning and in-
ference (Pearl (1990); Halpern (2003)).

A standard Naive Bayes model is a special
case of a Bayesian network. More precisely, it
is a Bayesian network with a single class vari-
able C that influences a set of evidence variables
E1, . . . , En (the evidence), which do not depend
on each other. Figure 2 illustrates the relation be-
tween evidence types and class types in a Naive
Bayes classifier.

A Naive Bayes classifier computes the marginal
probability of a class, given the evidence:

(4)

p(c) =
∑

e1,...,en

p(c | e1, . . . , en)p(e1) . . . p(en)

where c1 is the value of C, ei is the value of Ei
(1 ≤ i ≤ n) and
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`1 = a1

`2 = a2

. . .
`n = an
. . .

 :


`1 : T1

`2 : T2(l1)
. . .
`n : Tn(`1, l2, . . . , ln−1)


Figure 1: Schema of record and record type ref = obj123

cman = prfman
crun = prfrun

:

 ref : Ind
cman : man(ref)
crun : run(ref)


Figure 2: Sample record and record type

C

E1 E2 ... En

Figure 3: Evidence and Class in a Naive Bayes classi-
fier

(5) p(c | e1, . . . , en) =

p(c)p(e1 | c) . . . p(en | c)∑
C=c′ p(c

′)p(e1 | c′) . . . p(en | c′)

2.4 Random variables in TTR

Larsson and Cooper (2021) introduce a type theo-
retic counterpart of a random variable in Bayesian
inference. To represent a single (discrete) ran-
dom variable with a range of possible (mutually
exclusive) values, ProbTTR uses a variable type
V whose range is a set of value types R(V ) =
{A1, . . . , An} such that the following conditions
hold.

(6) a. Aj v V for 1 ≤ j ≤ n

b. Aj⊥ Ai for all i, j such that 1 ≤ i 6= j ≤
n

c. for any s, p(s : V ) ∈ {0, 1} and p(s :
V ) =

∑
T∈R(V ) pJ(s : T )

2.5 Representing probability distibutions

For a situation s, a probability distribution over the
m value types Aj ∈ R(A), 1 ≤ j ≤ m belonging
to a variable type A can be written (as above) as a
set of probabilistic Austinian propositions, e.g.

(7) {

sit = s
sit-type = Aj
prob = p(s : Aj)

 | Aj ∈ R(A)}

However, we will also have use for a vector rep-
resentation of probability distributions, which is
also more compact. If we assume R(A) is an or-
dered set {A1, . . . Am}, we can define probability
distribution dA(s):

(8) dA(s) = 〈p1, . . . , pm〉 where pj = p(s : Aj)
for Aj ∈ R(A), 1 ≤ i ≤ m

We also write dA(s)j for p(s : Aj). This means we
can reformulate (11) above:

(9) dCκ(s) = 〈p(s : C1), . . . , p(s : C|R(Cκ)|)〉

2.6 A ProbTTR Naive Bayes classifier

Corresponding to the evidence, class variables, and
their value types, we associate with a ProbTTR
Naive Bayes classifier κ:

(10) a. a collection of n evidence variable types
Eκ1 , . . . ,Eκn

b. n associated sets of evidence value types
R(Eκ1), . . . ,R(Eκn)

c. a class variable type Cκ, e.g. Fruit, and

d. an associated set of class value types
R(Cκ)
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To classify a situation s using a classifier κ, the
evidence is acquired by observing and classifying
s with respect to the evidence types.

Larsson and Cooper (2021) define a ProbTTR
Bayes classifier κ as a function from a situation s
(of the meet type of the evidence variable types
Eκ1 , . . . ,Eκn) to a set of probabilistic Austinian
propositions that define a probability distribution
over the values of the class variable type Cκ, given
probability distributions over the values of each
evidence variable type Eκ1 , . . . ,Eκn. Formally, a
ProbTTR Naı̈ve Bayes classifier is a function

(11) κ : Eκ1 ∧ . . . ∧ Eκn →

Set(

 sit : Sit
sit-type : Type
prob : [0,1]

)

such that if1 s : Eκ1 ∧ . . . ∧ Eκn, then

(12) κ(s)={

sit = s
sit-type = C
prob = p(s : C)

 | C ∈ R(Cκ)}

or equivalently,

(13) κ(s) = {

sit = s
sit-type = C
prob = dCκ(s)C

 | C ∈ R(Cκ)}

2.7 The fruit recognition game
Larsson and Cooper (2021) illustrate semantic clas-
sification and learning using a Naive Bayes classi-
fier in ProbTTR using the Apple Recognition Game.
In this game a teacher shows a learning agent fruits.
The agent makes a guess, the teacher provides the
correct answer, and the agent learns from these
observations.

We will use shorthands Apple and Pear for the
types corresponding to an object being an apple
or a pear, respectively2. Furthermore, we will
assume that the objects in the Apple Recognition
Game have one of two shapes (a-shape or p-shape,
corresponding to types Ashape and Pshape= and
one of two colours (green or red, corresponding to
types Green and Red).

The class variable type is Fruit, with value
types R(Fruit) = {Apple,Pear}. The evidence

1Recall that for any s, pJ(s : V ) ∈ {0, 1} for any variable
type V . Therefore, any type judgement regarding a variable
type, such as that involved in the classifier function, can be
regarded as categorical.

2For details, see Larsson and Cooper (2021).

variable types are (i) Col(our), with value types
R(Col) = {Green,Red}, and (ii) Shape, with
value types R(Shape) = {Ashape,Pshape}. Fig-
ure 4 shows the evidence and class types of the
Apple Recognition Game in a simple Bayesian Net-
work.

Fruit

Shape Colour

Figure 4: Bayesian Network for the Apple Recognition
Game

For a situation s the classifier FruitC(s) returns
a probability distribution over the value types in
R(Fruit).

(14) FruitC(s) =

{

sit = s
sit-type = F
prob = pFruitC(s : F )

 | F ∈ R(Fruit)}

2.8 A frequentist model of semantic
classification and learning

In Larsson et al. (2021), an account of semantic
classification and learning with a frequentist flavour
(but also with some differences to regular frequen-
tist learning acccounts) is presented, under the as-
sumption that we can compute conditional proba-
bilities p(Cj ||E1 . . . En) of a class value types Cj
given evidence value types E1 . . . En.

In general, for Cj ∈ R(Cκ), we have

(15) p(s : Cj) =∑
E1∈R(Eκ1 )

...
En∈R(Eκn)

p(Cj ||E1 . . . En)p(s : E1) . . . p(s : En)

The non-conditional probabilities
p(s : E1) . . . p(s : En) are derived from the
agents’ take on the particular situation s being
classified, coming for example from perceptual
sensors that are directed at s.
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For the model of semantic classification that
uses conditional probabilities, a central question
is of course how to estimate conditional proba-
bilities, of the form p(C||E1 ∧ . . . ∧ En) (where
C ∈ R(C), Ei ∈ R(Ei), 1 ≤ i ≤ n). Using
Bayes rule and marginalising over the class value
types, we get for a Naive Bayes classifier:

(16) p̂κ(C||E1 ∧ . . . ∧ En) =

p(C)p(E1||C) . . . p(En||C)∑
C′∈R(Cκ) p(C

′)p(E1||C ′) . . . p(En||C ′)

To estimate the likelihoods p(Ei||C) and priors
p(C ′), Larsson et al. (2021) use a version of count-
ing previous instances of C and Ei:

p(Ei|C) =
|Ei&C|
|C|

The account in (ibid.) is based on the idea that an
agent makes judgements based on a finite string of
probabilistic Austinian propositions, the judgement
history J. When an agent A encounters a new
situation s and wants to know if it is of type T or
not, A uses probabilistic reasoning to determine
pJ(s : T ) on the basis of A’s previous judgements
J. For all combinations of evidence value types
E1, . . . , En and class value types C, the account
in (ibid.) computes the conditional probability of
the evidence value types given the class value type
as in (17):

(17)

p(Ei||C) =

∑
j∈J,j.sit=s pJ(s : C)pJ(s : Ei)∑

j∈J,j.sit=s pJ(s : C)

Note that the recorded judgements concerning
the class types C ∈ R(C) are here assumed to be
derived mainly from a tutor’s explicit judgements,
which are thus assumed to provide the ground truth.

The account in (ibid.) also computes the prior
of the class value type as in (18). pJ(T ) represents
the prior probability that an arbitrary situation is of
type T given J.

(18)

pJ(T ) =
|| T ||J
P(J)

if P(J) > 0, otherwise 0

where P(J) is the cardinality of situations in J, i.e.
the total number of situations in J.

(19) P(J) = |{s|∃j ∈ J, j.sit = s}|

3 Drawbacks of the frequentist account

While conceptually simple, the above account, as
any frequentist model, has some drawbacks. Some
are well known, such as (problem P1) assigning
probability 0 to judgements concerning unseen
types, and (P2) putting equal weight on old and
recent observations, thereby risking that classifiers
for types that have a large amount of related judge-
ments in J may change only very slowly in light
of new observations. Also, (P3) the account may
be computationally unwieldy in real life settings
since conditional probabilities are computed from
scratch from J on every instance of classification.

Other drawbacks are more specifically related
to our goal of modelling semantic coordination in
dialogue, where both definitions (or explications)
and examples can affect meanings but in differ-
ent ways (Myrendal, 2019; Larsson and Myrendal,
2017; Larsson, 2021). With respect to the problem
(P4) of combining evidence from examples and
definitions (as described in Larsson (2021)), the
frequentist model does not provide a theoretically
satisfying way of doing this. While a definition
may be useful until examples have been observed,
at some point the observed examples may override
a definition. In the account proposed in (Larsson,
2021), definitions affect the corresponding classi-
fier only in the short run, and effects of proposed
definitions are overwritten as soon as an observa-
tion of an instance of the defined concept has been
made. A more flexible trade-off between defini-
tions and examples (observations) would probably
be desirable in this context.

Finally, (P5) the frequentist model has little to
say about the relation between the learning agents’
own judgement and the judgement given by the
teacher with respect to how much weight is put
on these relative to each other when learning from
interaction. Does the agent completely trust the tu-
tor, or does it weigh in other factors when learning
from tutor input?

While there may be ways of addressing at least
some of these problems within the frequentist ac-
count3, we will here explore an alternative account

3One might argue that the interactive learning setting al-
ready addresses P1 to the extent that tutor input can override
the agent’s judgement concerning unseen types. To address
P2, the frequentist model could be amended with exponential
decay over J. To address P3, some method of caching condi-
tional probabilities and priors computed from J, and updating
them only when needed, might be devised. To address P4, one
could let a definition lead to adding some relatively high num-
ber N of “fake” observations in line with the definition to J.
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that seems to address all these problems without
the need for ad hoc solutions.

4 Semantic classification and learning
using a linear transformation model

In this section we present a model where the prob-
abilities given in J are used to compute a linear
transformation model Θ that generalises over J
and which is used to compute the conditional prob-
abilities used in classification. Such a model can
be made more computationally efficient than the
frequentist model, and is also compatible with the
way probabilistic inference and learning is encoded
in neural network models.

4.1 Modelling how Evidence is determined
by Class

Like before we assume that evidence variables are
determined independently by the class variable
(in the fruit recognition game game, Col(our) and
Shape are determined independently by the Fruit
variable).

Following standard practice in deep learning
models, a probability distribution over the values
(class value types) of the class variable type C is
mapped to probability distributions over the evi-
dence value types corresponding to each evidence
variable type Ei (in the fruit recognition game,
fruit type is mapped to a colour distribution and a
shape distribution) using a linear transformation,
represented by a matrix ΘC→Ei (in the apple game,
ΘFruit→Col and ΘFruit→Shape) followed by a soft-
max. Let us call Θ the combined parameters of
such linear transformations. For a classifier κ, a
subset Θκ of the parameters can be used.

For example, in the apple game, we assume that
the probability distribution over the variable value
types in R(Col) are estimated thus:

(20) d̂Col(s) = softmax(Θκ
Fruit→ColdFruit(s))

In general,

(21) d̂Ei(s) = softmax(Θκ
C→EidC(s))

Even more generally, with an arbitrary bayesian
network, we take into account all edges to the vari-
able E (giving a finite set of unobserved variables

By manipulation of N , the relative importance of definitions
relative to observations can be regulated. To address P5, judge-
ments s : C regarding class value types C that are added to J
could be made to reflect a combination of teacher judgement
and other factors, including the agents’ own estimation.

ranged by I below). We assume simultaneously a
parameter matrix Θκ

IE for each such edge:

(22) d̂E(s) = softmax(
∑

(I→E)∈net Θκ
IEdI(s))

It follows that for Ej ∈ R(Ei), an estimation of
the probability of a situation having evidence value
type Ej is:

(23) p̂(s : Ej) = d̂Ei(s)j =
softmax(Θκ

C→EidC(s))j

Expanding the definition of softmax, we get:

(24)

p̂(s : Ej) =
e

(ΘκC→Ei
dC(s))j∑

Ek∈R(Eκi ) e
(ΘκC→Ei

dC(s))k

or equivalently (dot, products and column vectors)

(25)

p̂(s : Ej) =
e

(ΘκC→Ej
·dC(s))∑

Ek∈R(Eκi ) e
(ΘκC→Ek

·dC(s))

Note that softmax is here overloaded to be used
for vectors of probabilities as well as for individual
probabilities.

We also define for any distribution dA over (vari-
able value types of) variable type A:

(26) ďB(dA) = softmax(ΘA→BdA)

so that e.g.

(27) d̂E(s) = ďE(dC(s)) =
softmax(Θκ

C→EdC(s))

4.2 Classification using a transformation
model

When we use a transformation model for classifi-
cation, the idea is to evaluate the likelihood of a
distribution d̂C(s) which according to the model Θ
accounts for the observed evidence dEi(s)

4. This
means we need to represent meta-level probabilities
of a probability distribution given another probabil-
ity distribution.

When classifying fruits in the Apple game, we
want to estimate the probability of the class value
types given the observed distribution over the ev-
idence value types. The probability for a particu-
lar distribution dC(s) is estimated using Bayesian
marginalisation:

4It is also possible to not decide on one distribution, but to
keep a distribution over distributions over the class variable.



20

(28) p̂(dC(s)|dEi(s)) ∝ p(dEi(s)|dC(s)) ×
prior(dC(s))

If we want to find the distribution dC(s) that max-
imises the observed evidence in light of the model,
for a single evidence variable type Ei we want to
find

(29) argmaxz∈[0,1]|R(C)| p̂(dEi(s)|z)prior(z)

and for evidence variable types Eκ1 , . . .Eκn we want
to find

(30) dCκ(s) = argmaxz∈[0,1]|R(C)|

p̂(dE1(s)|z) . . . p̂(dEn(s)|z)prior(z)

where z is ranging over the space of distributions
over C value types . If we have k = |R(C)| pos-
sible value types, this space is contained in [0, 1]k.
To find z we need a numerical method, e.g. gradi-
ent descent.

To classify a situation s with respect to each
Cj ∈ R(C),

(31) p̂(s : Cj) = d̂C(s)j

In the fruit game, for each Cj ∈ R(Fruit),

(32) p̂(s : Cj) = d̂C(s)j =
argmaxz∈[0,1]2 p̂(dCol(s)|z)p̂(dShp(s)|z)prior(z)

Conditional probabilities Instead of estimating
the conditional probability of an evidence value
type given a class value type, as in the frequentist
model, we here estimate the conditional probability
of a distribution over evidence value types given a
distribution over class value types belonging to the
class variable type.

The probability of an observed probability distri-
bution dEi(s) over evidence value types Ej ∈ Ei
for a situation s given a distribution dC(s) over the
class value types for s can be estimated as:

(33) p̂(dEi(s)|dC(s)) = e−H(dEi (s),ďEi (dC(s)))

where H(dEi(s), ďEi(dC(s))) is the cross entropy
between the observed distribution over the evidence
dEi(s) and the distribution ďEi(dC(s)) over the ev-
idence variable type Ei as predicted by the model
Θκ

C→Ei based on a (hypothetical) distribution over
the class variable.

Probability Density Functions In reality, dC(s)
is a continuous variable (since it is a probability
distribution), so p(dC(s)) = 0. Basically, since
there are uncountably many possible probability
distributions, the probability of any one of them is
zero.

However, the same kind formula works for Prob-
ability Density Functions (PDFs) which give proba-
bility distributions over a continuous variable. Writ-
ing f for PDF, we have:

(34) fdEi (s)(dC(s)) ∝ p(dEi(s)|dC(s)) ×
fprior(dC(s))

corresponding to (28), repeated here as (35)):

(35) p̂(dC(s)|dEi(s)) ∝ p(dEi(s)|dC(s)) ×
prior(dC(s))

As before, when classifying we want the the
distribution d̂C(s) that maximises the probability
that the model Θ accounts for the evidence. For a
single evidence variable, this is dEi(s).

(36) d̂Cκ(s) = argmaxz p̂(dEi(s)|z)fprior(z)

For n evidence variables:

(37) d̂Cκ(s) =
argmaxz p̂(dE1(s)|z) · · · p̂(dEn(s)|z)fprior(z)

corresponding to (30), repeated here as (38):

(38) dCκ(s) = argmaxz∈[0,1]|R(C)|

p̂(dE1(s)|z) . . . p̂(dEn(s)|z)prior(z)

Priors for dC There are many ways to give a
prior for dC. We know that (1) it must be a func-
tion of Θ and (2) must be a probability distribution.
One way to satisfy these requirements is to follow
the same recipe as for evidence (but with no de-
pendency). According to this recipe, we have the
formula:

d̂C(s) = softmax(Θκ
C)

This way, there is a functional dependency from
Θ to d̂C(s), and therefore any prior density func-
tion on Θ yields another density function on d̂C(s),
called hereafter fprior(d̂C(s))5.

Note that here, Θκ
C is a vector, not a matrix. The

priors of each element in Θ can be an independent
uniform distribution over reals.

5Unfortunately, because softmax is not a bijective func-
tion, there is no simple formula connecting these PDFs.
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4.3 Learning
It remains to see how Θ gets updated by any learn-
ing event j. To do so, one uses Bayesian reasoning
again. We start by evaluating the probability of a
learning event in the form of a newly observed situ-
ation s associated with j actually occurring, given
a fixed value of Θ. As in the frequentist account
of learning, we assume that our agent A has stored
in J probabilistic judgements providing probabil-
ity distributions for s over the class and evidence
variables (or in the general case of a Bayes net, all
evidence variables and unobserved variables).

We want to assign a high probability if they
match the prediction and low otherwise. Following
standard practice in information theory, we assign
it the (inverse exponential of) the cross entropy of
each characteristic’s observed distribution, with the
predicted distribution.

When learning from a tutor, as in the fruit recog-
nition game, the learning agent computes the cross
entropy between the predicted (estimated) distri-
bution d̂C(s) and the distribution based on the
teacher’s input dC(s), which is here treated as
ground truth. By contrast, in the frequentist ac-
count, the predicted dC played no role in learning
(although it did affect the learning agent’s guess).

Using Jκ(s) as a shorthand for the probabilistic
judgements concerning a situation s (with respect
to an evidence variable Ei and a class variable C
used by a classifier κ) encoded in J (concretely,
the observed probability distributions for s over Ei
and C), we can compute the conditional probability
of these judgements given a classifier parameter
matrix Θκ thus:

(39)

p(Jκ(s)|Θκ) = p(dEi(s), dC(s)|Θκ) =

e−H(dC(s),d̂C(s)) ×
∏
i

e−H(dEi (s),d̂Ei (s))

Using the same kind of Bayesian reasoning as
always, we can marginalise:

p(Θ|J(s)) ∝ p(J(s)|Θ)p(Θ)

A benefit of this model that the estimation for
various probabilities depend only on Θ. This
means that the agent needs not remember the whole
history J , only the distribution of Θ (over all

Ξ ∈ Parameters). (Yet one can consider several
learning events jointly when performing a Bayesian
update.)

In practice, an actual agent will only work with
an approximation of this distribution. For example,
a neural net may remember just a single Θ, and
instead of a Bayesian update it takes a gradient of
p(J(s)|Θ) wrt. Θ and update it accordingly:

Θ := Θ− αdp(J(s)|Θ)

dΘ

Insofar as the agent updates parameters directly,
rather than updating the judgements history J and
using it to compute classifier parameters, this ac-
count addresses problem P2 noted above. Further-
more, the fact that the proposed model has an ex-
plicit learning factor is key to addressing some of
the other problems noted above. Since the learning
factor explicitly addresses the impact of new exam-
ples compared to previous observations, it enables
us to address problem P3. To address problem P4,
definitions can be associated with a higher learning
factor than examples, to model the hypothesis that
definitions have a much larger potential impact on
an agents’ take on a meaning compared to an ex-
ample. Also, we could possibly use the learning
factor α to model how much the teacher’s judge-
ment is prioritised over the agent’s own judgement
estimation (based on perception of the situation),
thereby addressing problem P5.

5 Conclusions and future work

Previous work proposed a frequentist Bayesian ac-
count of semantic classification and learning for-
mulated in terms of a Probabilistic Type Theory
with Records. We observed some problems with
this approach, including accounting for the effect
of definitions as opposed to examples in learning
meanings from interaction, and proposed an alter-
native account of learning that keeps the broadly
Bayesian model of classification, but where classi-
fication is based on a linear transformation model.
We argued that the account proposed here can ad-
dress some of the problems of the frequentist ac-
count.

In future work, we wish to implement both the
frequentist model (including some amendments to
address observed problems) and the linear transfor-
mation model, and evaluate and compare them prac-
tically with respect to the problems P1-P5 noted
above.
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