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Abstract

The need to deploy large-scale pre-trained
models on edge devices under limited com-
putational resources has led to substantial re-
search to compress these large models. How-
ever, less attention has been given to com-
press the task-specific models. In this work,
we investigate the different methods of un-
structured pruning on task-specific models
for Aspect-based Sentiment Analysis (ABSA)
tasks. Specifically, we analyze differences in
the learning dynamics of pruned models by us-
ing the standard pruning techniques to achieve
high-performing sparse networks. We develop
a hypothesis to demonstrate the effectiveness
of local pruning over global pruning consider-
ing a simple CNN model. Later, we utilize the
hypothesis to demonstrate the efficacy of the
pruned state-of-the-art model compared to the
over-parameterized state-of-the-art model un-
der two settings, the first considering the base-
lines for the same task used for generating the
hypothesis, i.e., aspect extraction and the sec-
ond considering a different task, i.e., sentiment
analysis. We also provide discussion related to
the generalization of the pruning hypothesis.

1 Introduction

Significant progress in deep neural networks
(DNN) over the last decade (Liu et al., 2017) and
access to unlimited online and offline data has
revolutionized the research in Natural Language
Processing (NLP). Neural-based language models
(LMs) (Devlin et al., 2019; Brown et al., 2020)
can utilize large volumes of data and discover pat-
terns that can be used to facilitate various down-
stream tasks (Xu et al., 2019; Sun et al., 2019; Wu
and He, 2019; Li et al., 2019; Dai et al., 2020).
However, the development and deployment of such
LMs require extensive resources that amplify the
costs in industry settings and questions the easy
deployment of such models onto low resource ca-
pable embedded devices such as mobile phones

(Wu and He, 2019; Yang et al., 2017). For in-
stance, pre-trained transformer-based LMs such
as BERT (Devlin et al., 2019) have demonstrated
state-of-the-art results for various applications such
as machine reading comprehension, information re-
trieval, and question answering by extracting con-
textualized word embedding or fine-tuning BERT
for specific functionality (Xu et al., 2019; Li et al.,
2019; Dai et al., 2020). However, these models are
over-parametrized and thus are memory hungry and
time-intensive to deploy on resource-constrained
devices. Therefore, it is crucial to develop energy-
efficient and cost-effective models for use in pro-
duction.

Applications in the real world are task-oriented,
with a demand for resource-efficient models. So,
the models are required to use fewer parameters.
Given the need to build smaller task-specific ar-
chitectures to save memory footprint and compu-
tational burden (Henderson et al., 2020; Bender
et al., 2021), one popular solution is pruning, a well-
vetted topic in computer vision. Pruning (Karnin,
1990) is a compression technique that systemati-
cally removes less significant parameters from an
existing network to produce a smaller compressed
model with similar performance comparing the
larger model. The evolution of DNN has lead to the
rise of research in pruning, even though the concept
of pruning has existed for a long time. Abundant
research has been conducted on compressing deep
learning-based architectures for computer vision
tasks (Li et al., 2016); however, few works have
been proposed for compressing the task-specific
models in NLP (Liu et al., 2018a).

In this work, we aim to sparsify the models for
ABSA tasks. ABSA aims to capture the opinion
of the reviewer towards specific aspect in a review.
In product-based reviews (reviews for restaurants,
websites, etc.), the aspect term describes the at-
tribute of a product, and the opinion term captures
the sentiment expressed towards the aspect term.
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An example of the product-based review is de-
picted in Figure 1. In the review ”The food is great
however the service is poor.” the aspect terms are
food and service and the opinion terms are great
and poor. The sentiment captured by the opinion
terms is positive and negative respectively. As-
pect extraction is considered as a sequence labeling
task to consider the span of aspect terms. Each
term in the span is assigned a label following BIO
scheme (Ramshaw and Marcus, 1999) where B
and I indicate the beginning and inside of the span,
respectively, and O indicates outside of the span.

Figure 1: Example of a restaurant review

A complex model slows down the speed of infer-
ence, and thus a simple model is always preferred
over these highly sophisticated architectures (Xu
et al., 2018). To this end, we propose pruning a
simple Convolutional Neural Network (CNN) (Le-
Cun et al.; Wróbel et al., 2018), trained on general
embedding and show that it produces promising
results for ABSA tasks. In this paper, we perform
an in-depth analysis of local and global pruning
to sparsify architectures needed for real-world ap-
plications and empirically demonstrate that local
pruning offers desirable sparsity with less compro-
mising in performance, inferring that it is more
practical in addressing real-world tasks.

Our contributions are as follows:

1. A meta-analysis of pruning a language model
used for ABSA tasks.

2. Empirically demonstrates the effectiveness of
local pruning over global pruning under the
unstructured setting.

3. Empirically illustrates the possibility of gen-
eralization of pruning hypothesis and discuss
our observations to pave the way for future
research in the direction.

The rest of the paper is organized as follows: In
Section 2, we provide an overview of related works
in the field. In Section 3, we discuss the method-
ology proposed. Section 4 details the experimen-
tal setup, datasets, and results of the experiments.
Section 5 concludes the paper and discusses the
possible extensions of this work.

2 Related Works

2.1 Aspect-based Sentiment Analysis

Analysis of the sentiment expressed by a reviewer
for a review has been studied in the past under dif-
ferent settings using supervised (Xu et al., 2019),
semi-supervised (Dai and Song, 2019), and un-
supervised (He et al., 2017) approaches. To ex-
ploit the full potential of supervised approaches,
a large amount of labeled data is required, which
is expensive to obtain. To alleviate this problem,
semi-supervised and unsupervised approaches em-
phasize understanding features directly from raw
corpus. This work focuses on extracting the aspect
terms for a given review in a supervised fashion.

2.2 Pruning

Due to the over-parameterized nature of the deep
neural networks (Mao et al., 2017; Frankle and
Carbin, 2019) which lead to several problems like
high computational costs, larger memory needs, etc.
several compression methods like pruning (Han
et al., 2015; Guo et al., 2016), quantization (Cour-
bariaux et al., 2016; Shu and Nakayama, 2017)
and knowledge distillation (Hinton et al., 2015)
are proposed. Among them, pruning has been an
efficient and effective method to reduce the num-
ber of parameters without loss of accuracy signif-
icantly. Moreover, it helps achieve higher com-
pression rates (Han et al., 2015). Empirically, it
has been shown that pruning performs better for
sparse models compared to dense models (Lee
et al., 2020). Furthermore, there have been many
works on pruning for computer vision applications
(Han et al., 2015; Li et al., 2017; Molchanov et al.,
2017) but very few works exist for natural lan-
guage processing applications (Joulin et al., 2016;
Shu and Nakayama, 2017). Most of the works in
NLP applications use quantization for language
model compression (Joulin et al., 2016; Shu and
Nakayama, 2017; Zadeh et al., 2020; Zafrir et al.,
2019) and only a few apply pruning techniques for
the purpose (Liu et al., 2018a).

3 Methodology

In this section, we introduce the methodology
adopted for this work. We employ magnitude-
based unstructured pruning where individual con-
nections are detached based on the magnitude (L1)
of synaptic weights (Li et al., 2016) and then use
it to implement both local and global pruning. In
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unstructured pruning, (Mao et al., 2017), individual
connections between neurons or filters of adjacent
filters are detached from the network, whereas in
structured pruning (Liu et al., 2018b), the entire
neurons or filters are detached from the network.
In local pruning, (Han et al., 2015), a substantial
percentage of connections are detached by contrast-
ing each connection to the other connections in the
layer, while in global pruning (Lee et al., 2018), all
parameters are put together across all the different
layers, and then a global percentage of them are
taken to prune.

We have used unstructured pruning over struc-
tured pruning considering the in-feasibility of struc-
tured pruning due to ample search space for prun-
ing rates per layer (Renda et al., 2020) and for
causing large accuracy loss also (Li et al., 2016).

Algorithm 1 Training and pruning

W ← randomlyInitialize()
M ← {1}|W |

for i = 0 : E do
W ′ ← weightUpdate(f(X;W ))
M ′ ← unstructuredPrune(M,L1(W ′))
W ′ ← Set(f(X;M ′ �W ′))
W ←W ′

M ←M ′

end for

Algorithm 1 shows the proposed pruning algo-
rithm where f(X;W ) refers to the neural network
model, which is a collection of nested functions
parameterized by weight W . W ′ is the updated
weight, M denotes the mask, E represents the num-
ber of training epochs, and X is the training dataset.
In the algorithm, we prune the language model us-
ing gradual pruning (Liu et al., 2018b; Renda et al.,
2019). The result after training is the pruned model
with desired sparsity. During the training phase, we
first perform weight updates to obtain W ′, later L1-
norm is applied on the updated weights to remove
the least essential weights resulting in an updated
binary mask M ′ that affixes a definite number of
parameters to 0. The generated pruned model is
f(X;M ′ � W ′), and M ′ ∈ {0, 1}|W

′| and � is
the element-wise product operator which helps to
generate pruned weights. This enables the masked
parameters to reactivate during training based on
gradient updates. At last, we apply a gradual spar-
sification schedule with sorting-based weights to
achieve desirable sparsification.

To show the effectiveness of the proposed hy-

pothesis, we consider two CNN-based baselines
with 4 and 6 convolutional layers respectively work-
ing on aspect extraction (AE) task. To study the
possibility of pruning hypothesis generalization,
we further consider two neural network-based ar-
chitectures proposed by Xu et al. (Xu et al., 2018)
and Li et al. (Li et al., 2019). The architectures
proposed in these works use different language
models thus enabling us to perform meta-analysis
for our hypothesis. Xu et al. (Xu et al., 2018) uses
a CNN-based model for aspect term extraction by
employing double embeddings (domain + general)
whereas Li et al. (Li et al., 2019) uses five different
versions of BERT-based models to perform AE and
sentiment analysis of the extracted aspect terms.

The code is implemented in Pytorch, and the
code is available at the url1.

4 Experiments

The effectiveness of the inferred hypothesis is
tested considering two settings. In the first set-
ting, we consider the baselines for the same task
of aspect extraction, which is used to generate the
hypothesis. In the second setting, we consider the
baselines for a different sentiment analysis task
to validate the generalization of the hypothesis.
We use fastText (Bojanowski et al., 2017) for the
general-purpose embedding.

4.1 Dataset Overview

Following the baseline papers (Xu et al., 2018;
Li et al., 2019), we conduct our experiments on
two benchmark datasets from SemEval challenges
(Pontiki et al., 2014, 2016). The first dataset is from
the laptop domain on subtask 1 of SemEval-2014
Task 4. The second dataset is from the restaurant
domain on subtask 1 of SemEval-2016 Task 5. The
statistics of the dataset are given in Figure 2.

Experiments Description Training + 
Validation

Testing

Baseline SemEval-14 Laptop 3045 800

BERT-based Models SemEval-14 Laptop 3045 800

DE-CNN
SemEval-14 Laptop 3045 800

SemEval-16 Restaurant 2000 676

Figure 2: Dataset Overview

1https://github.com/abhishekkumarm98/
Local_Vs_Global-Pruning.git

https://github.com/abhishekkumarm98/Local_Vs_Global-Pruning.git
https://github.com/abhishekkumarm98/Local_Vs_Global-Pruning.git
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4.2 Baselines
To obtain the proposed hypothesis, we consider
two different CNN-based models with 4 and 6 con-
volutional layers respectively. For both the models,
after the convolutional layers, fully connected layer
along with a softmax layer is applied. The architec-
ture is shown in Figure 3. Furthermore, we consider
general purpose embedding using fastText for both.

Figure 3: Baseline framework for (Conv-4 and Conv-
6) layers where the input to the model is “The food is
good however the service is poor”.

The embedding layers in the LM provide vector
representation at the character, word, or sentence
level. Considering the distribution of parameters
in the language models, a substantial percentage of
parameters come from the embedding layer. Dur-
ing training, we apply different fractions of local
and global pruning in an unstructured manner. The
average f1-score of the resultant pruned model with
respect to the fraction of weights pruned is shown
in Figure 4 for SemEval-14 laptop dataset. For the
experiments, the hyperparameter settings include
epochs (200), batch size (128), learning rate (1e-4)
with a learning rate scheduler dividing the learning
rate by ten after each epoch.

From Figure 4, it can be observed that for both
the models, applying local pruning resulted in a
considerable average f1-score until 80% of the
weights were pruned, whereas applying global
pruning resulted in a substantial performance degra-
dation after 40% of the weights were pruned. This
observation validates our claim that local pruning is
more efficient than global pruning for ABSA tasks.

4.3 DE-CNN
In order to validate the generalization of our pro-
posed hypothesis, for the double-embedding CNN-
based model, we have trained and pruned on both
SemEval-14 laptop and SemEval-16 restaurant
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Figure 4: Performance of Conv-4 and Conv-6 mod-
els on applying local and global pruning on test set of
SemEval-14 laptop.

datasets by applying local and global pruning in an
unstructured manner considering the same hyperpa-
rameter settings as proposed in the paper. We made
a few modifications like changing the number of
epochs to 300, introducing a learning rate sched-
uler, and early stopping to learn effectively and
prevent overfitting. Results are shown in Figure 7.

From Figure 7, we can see that for both datasets,
SemEval-14 laptop, and SemEval-16 restaurant,
we have obtained a considerable f1-score on apply-
ing pruning locally until 80% of the weights were
pruned, but the model’s performance dropped dras-
tically on applying pruning globally immediately
after 30% of the weights were pruned.

In the literature, it has been shown that global
pruning performs slightly better than local prun-
ing (Blalock et al., 2020) which contradicts our
observations. Our in-depth analysis shows that
most of the works on pruning are performed for
computer vision tasks, and their model architecture
is different from the architecture of a LM. Stan-
dard model architectures like ResNet-50 (He et al.,
2016), VGG-16 (Simonyan and Zisserman, 2014),
extensively used in the computer vision domain,
have a bunch of convolutional layers, batch normal-
ization layers but lacks embedding layer, a crucial
part of any LM. The general embedding layer of
a language model contains substantial portions of
the total parameters of the model. Figure 8 demon-
strates the relative percentage of model parameters
in each layer of the DE-CNN model.

We further analyzed the drastic drop in perfor-
mance when we applied global pruning on the mod-
els considered in the baselines and DE-CNN. The
results of our analysis are shown in Figure 5.

We have observed that sparsification occurs
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Prune = 0% Prune = 10% Prune = 20% Prune = 30% Prune = 40%

Prune = 50% Prune = 60% Prune = 70% Prune = 95%Prune = 90%Prune = 80%

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 5: Spread of sparsification across each layer of DE-CNN with respect to different global pruning percent-
ages.

more progressively for all layers except embedding
layers as we increase the pruning percentage. From
Figure 8, it can be observed that around 70% of the
parameters belong to general and domain embed-
ding layers. During global pruning, we pool all the
parameters together and then take L1-norm to sort
the absolute values in the decreasing order. The
desired sparsification is applied to the sorted abso-
lute values by setting the parameters to 0. From
Figure 5 (b), it can be observed that sparsification
has started in all layers, but as we progress, from
Figure 5 (e), it can be observed that all layers ex-
cept the embedding layers are sparsified completely.
This leads to concluding that L1-norm causes the
parameters of all the layers except the embedding
layer to be smaller in magnitude resulting in the
pruning of convolutional, bias, and fully connected
layers ahead of embedding layers. This results in
substantial decrement in models performance.

4.4 BERT-based models

In order to validate the generalization of our pro-
posed hypothesis, we have trained and pruned the
five different versions of BERT based models pro-
posed in (Li et al., 2019) for an end to end ABSA
task by applying local and global pruning in an
unstructured manner considering the same hyper-
parameter settings as proposed in the paper. The
result is demonstrated in Figure 9.

From Figure 9, it can be observed that apply-
ing local pruning resulted in a considerable perfor-
mance for all the models until 60% of the weight
pruning, whereas a substantial performance drop

is observed after 30% of the weight pruning when
global pruning is applied. The statistics of the cru-
cial embedding layer of the model are shown in
Figure 10. The reason for this performance drop is
similar to what is observed for DE-CNN, where po-
sition type embedding and token type embedding
layers are progressively sparsified compared to the
word embedding layer as shown in Figure 6.

Furthermore, BERT has 200 layers where em-
bedding, attention, and pooling layers have higher
parameters than position and token type embed-
ding layers, resulting in faster sparsification than
other layers. Analyzing the phenomenon on the
foundation of machine learning makes it analogous
to garbage in, garbage out scenarios. Pruning most
of the parameters by setting them to 0 results in an
improper representation of the input, leading to per-
formance deterioration observed for all the models.
As per our analysis, the reason for better perfor-
mance of local pruning compared to global pruning
is because of giving more weightage during prun-
ing to the layers with considerable parameters.

5 Conclusion and Future Works

This paper considers standard pruning techniques
for compressing the model for two sub-tasks under
ABSA tasks. We propose our hypothesis stating
that local pruning is more effective than global
pruning for aspect extraction. We empirically
then demonstrate the validity of our hypothesis
on two benchmark datasets for DE-CNN and show
that pruned models can achieve comparable perfor-
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Prune = 0% Prune = 10% Prune = 20% Prune = 30% Prune = 40%

Prune = 50% Prune = 60% Prune = 70% Prune = 95%Prune = 90%Prune = 80%

(a) (b) (d) (e)

(f) (g) (h) (i) (j) (k)

(c)

Figure 6: Spread of sparsification across each embedding layer of BERT with respect to different global pruning
percentages.

0.0 0.2 0.4 0.6 0.8
Weights pruning

0.0

0.2

0.4

0.6

0.8

av
g-

f1
-s

co
re

Laptop-local
Laptop-global
Restaurant-local
Restaurant-global

Figure 7: Performance of DE-CNN on test set of
SemEval-14 laptop and SemEval-16 restaurant on ap-
plying local and global pruning.
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Figure 8: Relative percentage of parameters of each
layer of DE-CNN.

mance comparing the original models. We further
performed experiments on BERT-based models to

0.0 0.2 0.4 0.6 0.8
Weights pruning

0.0

0.1

0.2

0.3

0.4

0.5

0.6

av
g-

f1
-s

co
re

BERT-linear-local
BERT-linear-global
BERT-san-local
BERT-san-global
BERT-tfm-local
BERT-tfm-global
BERT-gru-local
BERT-gru-global
BERT-crf-local
BERT-crf-global

Figure 9: Performance of BERT (linear, crf, tfm, gru,
san) on test set of SemEval-14 laptop on applying local
and global pruning.

Embedding layer’s name Parameters Percentage
Position ids 511 0.0005%
Word embedding 23,440,896 21.4012%
Position embedding 393,216 0.3591%
Token type embedding 1,536 0.0014%

Figure 10: Details of BERT’s crucial embedding lay-
ers.

verify the effectiveness of generalizing our hypoth-
esis for the sentiment analysis task. In the future,
we aim to explore different models on various tasks
using other novel pruning-based techniques like
global and local gradient magnitude.
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